(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0010】
本明細書及び図面における参照文字の反復使用は、本発明の同じ又は類似の特徴又は要素を示すことを意図するものである。
【0011】
当業者であれば、本考察は例示的な実施形態についての説明にすぎず、例示的な構成で具体化される本発明のより広い態様を限定することを意図するものではないと理解すべきである。
【0012】
大まかに言えば、本発明は、高静電容量を達成することができ、なおかつ極限状態で熱的及び機械的に安定した状態を保つコンデンサアセンブリに関する。アセンブリの静電容量値は、用途に応じて様々であってよいが、120Hzの動作周波数及び約23℃±約2℃の温度で測定した場合、約200μF〜約10,000μF、実施形態によっては約500μF〜約8,000μF、実施形態によっては約1,000μF〜約6,000μF、及び実施形態によっては約2,000μF〜約5,000μFに及ぶことができる。このような高静電容量値においても、アセンブリのハウジングに複数の個々のコンデンサ素子を接続することによって良好な機械的安定性を達成することができる。理論によって制限することを意図するわけではないが、複数の素子を使用すると、素子がハウジングに接続される部分の表面積が増加すると考えられる。とりわけ、この結果、素子が、使用中により受ける振動力を広い面積にわたって分散できるようになり、層間剥離の可能性が低下する。コンデンサ素子は、不活性ガスを含む気体雰囲気中で単一のハウジング内に封入されて密封され、これによりコンデンサ素子の固体電解質に供給される酸素及び水分の量が制限される。上述の特徴を組み合わせることにより、コンデンサ素子は、極限状態でより良好に機能することができる。
【0013】
ここで、本発明の様々な実施形態についてより詳細に説明する。
【0014】
I.
コンデンサ素子
上述したように、コンデンサアセンブリは、並置関係にある複数のコンデンサを含む。一般的には、あらゆる数のコンデンサ素子を使用することができる。例えば、コンデンサアセンブリは、2個〜8個のコンデンサ素子(例えば、2個、3個、又は4個)、実施形態によっては2個〜4個のコンデンサ素子、実施形態によっては2個〜3個のコンデンサ素子、及び実施形態によっては2個のコンデンサ素子を含むことができる。
【0015】
使用する数に関わらず、コンデンサ素子は陽極を含む。高電圧用途で使用する場合には、多くの場合、陽極は、1グラム当たり約70,000マイクロファラド
*ボルト(「μF
*V/g」)未満、実施形態によっては約2,000μF
*V/g〜約65,000μF
*V/g、及び実施形態によっては約5,000μF
*V/g〜約50,000μF
*V/gなどの比較的比電荷の低い粉末から形成されることが望ましい。当然ながら、低比電荷の粉末が望ましいこともあり得るが、これは決して必須条件ではない。すなわち、この粉末は、1グラム当たり約70,000マイクロファラド
*ボルト(「μF
*V/g」)又はそれ以上、実施形態によっては約80,000μF
*V/g又はそれ以上、実施形態によっては約90,000μF
*V/g又はそれ以上、実施形態によっては約100,000μF
*V/g又はそれ以上、及び実施形態によっては約120,000μF
*V/g〜約250,000μF
*V/gの比較的高い比電荷を有することもできる。
【0016】
粉末は、タンタル、ニオブ、アルミニウム、ハフニウム、チタニウム、これらの合金、これらの酸化物、これらの窒化物などのバルブ金属(すなわち、酸化できる金属)又はバルブ金属ベースの化合物を含むことができる。例えば、バルブ金属組成物は、ニオブの酸素に対する原子比が1:1.0±1.0、実施形態によっては1:1.0±0.3、実施形態によっては1:1.0±0.1、及び実施形態によっては1:1.0±0.05の酸化ニオブなどのニオブの導電性酸化物を含むことができる。例えば、酸化ニオブは、NbO
0.7、NbO
1.0、NbO
1.1、及びNbO
2とすることができる。このようなバルブ金属酸化物の例が、
Fifeに付与された米国特許第6,322,912号、
Fife他に付与された第6,391,275号、
Fife他に付与された第6,416,730号、
Fifeに付与された第6,527,937号、
Kimmel他に付与された第6,576,099号、
Fife他に付与された第6,592,740号、
Kimmel他に付与された第6,639,787号、及び
Kimmel他に付与された第7,220,397号、並びに
Schnitterに付与された米国特許出願公開第2005/0019581号、
Schnitter他に付与された米国特許出願公開第2005/0103638号、
Thomas他に付与された米国特許出願公開第2005/0013765号に記載されており、これらの特許は全てあらゆる目的によるこれらへの参照によりその全体が本明細書に組み入れられる。
【0017】
粉末の粒子は、フレーク状、角状、瘤状、及びこれらの混合又は変形であってもよい。これらの粒子は、通常少なくとも約60メッシュの、実施形態によっては約60メッシュ〜約325メッシュの、及び実施形態によっては約100〜約200メッシュの篩サイズ分布も有する。さらに比表面積は、約0.1〜約10.0m
2/g、実施形態によっては約0.5〜約5.0m
2/g、及び実施形態によっては約1.0〜約2.0m
2/gである。「比表面積」という用語は、吸着ガスとして窒素を使用する、Bruanauer、Emmet及びTeller著、Journal of American Chemical Society、第60巻、1938年、309頁の物理的ガス吸着法(B.E.T.)により測定される表面積を意味する。同様に、バルク(又はScott)密度は、通常約0.1〜約5.0g/cm
3、実施形態によっては約0.2〜約4.0g/cm
3、及び実施形態によっては約0.5〜約3.0g/cm
3である。
【0018】
粉末に他の成分を加えて、陽極体の構築を容易にすることもできる。例えば、結合剤及び/又は潤滑剤を使用して、陽極体を形成すべく加圧したときに粒子が相互に正確に付着し合うのを確実にすることができる。好適な結合剤として、樟脳、ステアリン酸及びその他の石鹸状の脂肪酸、Carbowax(Union Carbide社)、Glyptal(General Electric社)、ポリビニルアルコール、ナフタリン、植物性ワックス、及びマイクロワックス(精製パラフィン)を挙げることができる。結合剤は、溶媒内で溶解又は分散することができる。例示的な溶媒として、水、アルコールなどを挙げることができる。利用する場合、結合剤及び/又は潤滑剤の割合は、全質量の約0.1重量%〜約8重量%まで様々であってよい。しかしながら、本発明では結合剤及び潤滑剤が必須ではないことを理解されたい。
【0019】
結果として得られた粉末を、いずれかの従来の粉末プレス成形を使用して圧縮することができる。例えば、プレス成形は、ダイと1又は複数のパンチとを使用する単一ステーション圧縮プレスであってもよい。或いは、ダイ及び単一の下方パンチのみを使用するアンビル型圧縮プレス成型を使用することができる。単一ステーション圧縮プレス成型は、単動、複動、フローティングダイ、可動プラテン、対向ラム、ねじプレス、インパクトプレス、加熱プレス、鋳造又は定寸などの様々な能力を有するカムプレス、トグル/ナックルプレス及び偏心/クランクプレスのようないくつかの基本型で利用可能である。圧縮後、結果として得られた陽極体を、正方形、矩形、円形、長円形、三角形、六角形、八角形、七角形、五角形などのあらゆる所望の形状にダイスカットすることができる。陽極体は、容積に対する表面の割合を増やして、ESRを最小化するとともに静電容量の周波数応答を拡げるために、1又はそれ以上の畝、溝、凹部、又は窪みを含むという点において「溝付き」形状を有することもできる。次に、陽極体に、あらゆる結合剤/潤滑剤の全てではないがほとんどを除去する加熱ステップを施すことができる。例えば、通常、陽極体は、約150℃〜約500℃の温度で動作する炉によって加熱される。或いは、例えば、
Bishop他に付与された米国特許第6,197,252号に記載されるように、ペレットを水溶液と接触させることによって結合剤/潤滑剤を除去することもできる。
【0020】
形成されたら、陽極体を焼結する。焼結の温度、雰囲気、及び時間は、陽極の種類、陽極のサイズなどの様々な因子に依存することができる。通常、焼結は、約800℃〜1900℃、実施形態によっては約1000℃〜約1500℃、及び実施形態によっては約1100℃〜約1400℃の温度で、約5分〜約100分間、及び実施形態によっては約30分〜約60分間行われる。必要に応じて、酸素原子が陽極に移動するのを制限する雰囲気内で焼結を行うこともできる。例えば、真空、不活性ガス、水素などの還元性雰囲気内で焼結を行うことができる。還元性雰囲気は、約10Torr〜約2000Torr、実施形態によっては約100Torr〜1000Torr、及び実施形態によっては約100Torr〜約930Torrの圧力とすることができる。水素と(アルゴン又は窒素などの)その他のガスの混合物を使用することもできる。
【0021】
陽極体には、陽極体から縦方向に延びる陽極リードも接続される。陽極リードは、ワイヤ、シートなどの形をとることができ、タンタル、ニオブ、酸化ニオブなどのバルブ金属から形成することができる。リードの接続は、リードを陽極体に溶接すること、或いは(圧縮及び/又は焼結の前などの)陽極体の形成中にリードを埋め込むことなどの公知の技術を使用して行うことができる。
【0022】
陽極はまた、誘電体で被覆される。誘電体は、陽極上及び/又は陽極内に誘電体層が形成されるように焼結陽極を陽極的に酸化(「陽極酸化」)することにより形成することができる。例えば、タンタル(Ta)陽極を五酸化タンタル(Ta
2O
5)に陽極酸化することができる。通常、陽極酸化は、陽極を電解質内に浸漬するなどして最初に陽極に溶液を加えることにより行われる。一般的には、(脱イオン水のような)水などの溶媒を使用する。イオン伝導率を高めるために、溶媒内で解離してイオンを形成できる化合物を使用することができる。このような化合物の例として、例えば、以下で電解質に関して説明するような酸が挙げられる。例えば、(リン酸などの)酸は、陽極酸化溶液の約0.01重量%〜約5重量%、実施形態によっては約0.05重量%〜約0.8重量%、及び実施形態によっては約0.1重量%〜約0.5重量%を構成することができる。必要であれば、酸の混和物を使用することもできる。
【0023】
陽極酸化溶液を電流が通過して誘電体層を形成する。形成電圧の値が誘電体層の厚みを管理する。例えば、必要な電圧に達するまで、最初は電源装置を定電流モードに設定することができる。その後、電源装置を定電位モードに切り換えて、陽極の表面を覆って所望の誘電体の厚みが形成されるのを確実にすることができる。言うまでもなく、パルス又はステップ式定電位法などのその他の公知の方法を使用することもできる。陽極酸化が行われる電圧は、通常、約4〜約250V、実施形態によっては約9〜約200V、及び実施形態によっては約20〜約150Vである。陽極酸化中は、陽極酸化溶液を約30℃又はそれ以上、実施形態によっては約40℃〜約200℃、及び実施形態によっては約50℃〜約100℃などの高い温度に維持することができる。陽極酸化を大気温度以下で行うこともできる。結果として生じる誘電体層を陽極の表面上又はその細孔内に形成することができる。
【0024】
コンデンサ素子は、コンデンサの陰極として機能する固体電解質も含む。例えば、硝酸マンガン(Mn(NO
3)
2)を熱分解することにより二酸化マンガン固体電解質を形成することができる。このような技術は、例えば、
Sturmer他に付与された米国特許第4,945,452号に記載されており、該特許はあらゆる目的によるこの特許への参照によりその全体が本明細書に組み入れられる。
【0025】
或いは、固体電解質を1又はそれ以上の導電性ポリマー層から形成することができる。通常、このような層に使用される(単複の)導電性ポリマーはπ共役であり、酸化又還元後の導電率は、例えば酸化後で少なくとも1μScm−1になる。このようなπ共役導電性ポリマーの例として、例えば、(ポリピロール、ポリチオフェン、ポリアニリンなどの)ポリヘテロ環、ポリアセチレン、ポリ−p−フェニレン、ポリフェノレートなどが挙げられる。特に適した導電性ポリマーは、以下の一般構造を有する置換ポリチオフェンである。
この構造中、
Tは、O又はSであり、
Dは、任意に置換されたC1〜C5のアルキレン基(例えば、メチレン、エチレン、n−プロピレン、n−ブチレン、n−ペンチレンなど)であり、
R
7は、直鎖又は分岐の、任意に置換されたC
1〜C
18のアルキル基(例えば、メチル、エチル、n−又はiso−プロピル、n−,iso−,sec−又はtert−ブチル、n−ペンチル、1−メチルブチル、2−メチルブチル、3−メチルブチル、1−エチルプロピル、1,1−ジメチルプロピル、1,2−ジメチルプロピル、2,2−ジメチルプロピル、n−ヘキシル、n−ヘプチル、n−オクチル、2−エチルヘキシル、n−ノニル、n−デシル、n−ウンデシル、n−ドデシル、n−トリデシル、n−テトラデシル、n−ヘキサデシル、n−オクタデシルなど)、任意に置換されたC
5〜C
12のシクロアルキル基(例えば、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシルなど)、任意に置換されたC
6〜C
14のアリル基(例えば、フェニル、ナフチルなど)、任意に置換されたC
7〜C
18のアラルキル基(例えば、ベンジル、o−,m−,p−トリル,2,3−,2,4−,2,5−,2,6−,3,4−,3,5−キシリル、メシチルなど)、任意に置換されたC
1〜C
4のヒドロキシアルキル基、又はヒドロキシル基であり、
qは、0〜8の、実施形態によっては0〜2の、及び1つの実施形態では0の整数であり、
nは、2〜5,000、実施形態によっては4〜2,000、及び実施形態によっては5〜1,000である。化学基「D」又は「R
7」の置換基の例としては、例えば、アルキル、シクロアルキル、アリル、アラルキル、アルコキシ、ハロゲン、エーテル、チオエーテル、ジスルフィド、スルホキシド、スルホン、スルホネート、アミノ、アルデヒド、ケト、カルボン酸エステル、カルボン酸、カーボネート、カルボキシレート、シアノ、アルキルシラン及びアルコキシシラン基、カルボキシアミド基などが挙げられる。
【0026】
特に適したチオフェンポリマーは、「D」を任意に置換されたC
2〜C
3のアルキレン基とするものである。例えば、このポリマーは、以下の一般構造を有する任意に置換されたポリ(3,4−エチレンジオキシチオフェン)とすることができる。
【0027】
上述したような導電性ポリマーの形成方法は、当業で周知である。例えば、
Merker他に付与された米国特許第6,987,663号には、モノマー前駆体から置換ポリチオフェンを形成するための様々な技術が記載されており、該特許はあらゆる目的によるこの特許への参照によりその全体が本明細書に組み入れられる。例えば、このモノマー前駆体は、以下の構造を有する。
この構造中、T、D、R
7、及びqについては既に定義している。特に適したチオフェンモノマーは、「D」を任意に置換されたC
2〜C
3のアルキレン基とするものである。例えば、以下の一般構造を有する任意に置換された3,4−アルキレンジオキシチオフェンを使用することができる。
この構造中、R
7及びqは、上記で定義した通りである。1つの特定の実施形態では、「q」が0である。3,4−エチレンジオキシチオフェンの1つの商業的に適した例が、Heraeus Clevious社からClevios(商標)Mの名称で市販されている。
Blohm他に付与された米国特許第5,111,327号、及び
Groenendaal他に付与された米国特許第6,635,729号にもその他の好適なモノマーが記載されており、これらの特許は全てあらゆる目的によるこれらへの参照によりその全体が本明細書に組み入れられる。例えば、上記のモノマーのダイマー又はトライマーであるこれらのモノマーの誘導体を使用することもできる。本発明で使用するには、より高分子の誘導体、すなわちモノマーのテトラマー、ペンタマーなどが適している。誘導体は、同一の又は異なるモノマー単位で構成することができ、純粋な形で、及び互いの及び/又はモノマーとの混合物の形で使用することができる。これらの前駆体の酸化形態又は還元形態を使用することもできる。
【0028】
チオフェンモノマーは、酸化触媒の存在下で化学重合される。通常、酸化触媒としては、鉄(III)、銅(II)、クロム(VI)、セリウム(IV)、マンガン(IV)、マンガン(VII)、又はルテニウム(III)カチオンなどの遷移金属カチオンが挙げられる。ドーパントを使用して、導電性ポリマーに過剰電荷を与え、ポリマーの導電性を安定化させることもできる。通常、ドーパントとしては、スルホン酸のイオンなどの無機又は有機アニオンが挙げられる。いくつかの実施形態では、前駆体溶液内で使用する酸化触媒が、(遷移金属などの)カチオン及び(スルホン酸などの)アニオンを含むという点で、触媒機能とドーピング機能の両方を有する。例えば、酸化触媒は、(FeCl
3などの)ハロゲン化(III)鉄又はFe(ClO
4)
3又はFe
2(SO
4)
3などの他の無機酸の鉄(III)塩、並びに有機酸及び有機基を備える無機酸の鉄(III)塩などの鉄(III)カチオンを含む遷移金属塩とすることができる。有機基を有する無機酸の鉄(III)塩の例としては、例えば、(ラウリルサルフェートの鉄(III)塩などの)C
1〜C
20アルカノールの硫酸モノエステルの鉄(III)塩が挙げられる。同様に、有機酸の鉄(III)塩としては、(メタン、エタン、プロパン、ブタン、又はドデカンスルホン酸などの)C
1〜C
20のアルカンスルホン酸の鉄(III)塩、(トリフルオロメタンスルホン酸、ペルフルオロブタンスルホン酸、又はペルフルオロオクタンスルホン酸などの)脂肪族ペルフルオロスルホン酸の鉄(III)塩、(2−エチルヘキシルカルボン酸などの)C
1〜C
20の脂肪族カルボン酸の鉄(III)塩、(トリフルオロ酢酸、又はペルフルオロオクタン酸などの)脂肪族ペルフルオロカルボン酸の鉄(III)塩、(ベンゼンスルホン酸、o−トルエンスルホン酸、p−トルエンスルホン酸、又はドデシルベンゼンスルホン酸などの)C
1〜C
20のアルキル基によって任意に置換された芳香族スルホン酸の鉄(III)塩、(カンファースルホン酸などの)シクロアルカンスルホン酸の鉄(III)塩などが挙げられる。これらの上述した鉄(III)塩の混合物を使用することもできる。本発明で使用するには、鉄(III)−p−トルエンスルホネート、鉄(III)−o−トルエンスルホネート、及びこれらの混合物が特に適している。鉄(III)−p−トルエンスルホネートの商業的に適した例が、H.C.Starck GmbH社から、Clevios(商標)Cの名称で市販されている。
【0029】
様々な方法を利用して、導電性ポリマー層を形成することができる。1つの実施形態では、酸化触媒及びモノマーが、部品上の原位置で重合反応が生じるように順番に又は同時に付加される。導電性ポリマー被覆を形成するために使用できる好適な付加技術としては、スクリーン印刷法、浸漬法、電着塗装法、及び噴霧法が挙げられる。一例として、最初にモノマーを酸化触媒と混合して前駆体溶液を生成することができる。混合物が生成されると、これを部品に付加して重合を可能にすることにより、表面上に導電性被覆を形成できるようになる。或いは、酸化触媒とモノマーを順番に付加することができる。1つの実施形態では、例えば、酸化触媒が(ブタノールなどの)溶媒に溶解され、その後浸漬溶液として付加される。次にこの部品を乾燥させて、ここから溶媒を除去することができる。その後、モノマーを含む溶液にこの部品を浸漬することができる。
【0030】
通常、重合は、使用する酸化剤及び所望の反応時間に応じて、約−10℃〜約250℃、及び実施形態によっては約0℃〜約200℃の温度で行われる。上述したような好適な重合技術は、
Bilerに付与された米国特許第7,515,396号により詳細に記載されている。このような(単複の)導電性被覆を施すためのさらに他の方法が、
Sakata他に付与された米国特許第5,457,862号、
Sakata他に付与された第5,473,503号、
Sakata他に付与された第5,729,428号、及び
Kudoh他に付与された第5,812,367号に記載されており、これらの特許はあらゆる目的によるこれらへの参照によりその全体が本明細書に組み入れられる。
【0031】
原位置付加に加え、導電性ポリマー粒子が分散した形の導電性ポリマー層を施すこともできる。これらの粒子のサイズは様々であってよいが、通常は陽極部品に付着できる表面積を増やすために直径が小さいことが望ましい。例えば、粒子は、約1〜約500ナノメートル、実施形態によっては約5〜約400ナノメートル、及び実施形態によっては約10〜約300ナノメートルの平均直径を有することができる。粒子のD
90値(D
90値以下の直径を有する粒子が、全ての固体粒子の総容積の90%を構成する)は、約15マイクロメートル以下、実施形態によっては約10マイクロメートル以下、及び実施形態によっては約1ナノメートル〜約8マイクロメートルとすることができる。粒子の直径は、超遠心法、レーザ回折法などの公知の技術を使用して測定することができる。
【0032】
別個の対イオンを使用して、置換ポリチオフェンが運ぶ正電荷の影響を弱めることにより、導電性ポリマーの微粒子形態への形成を促進することができる。場合によっては、ポリマーが構造単位内に陽及び陰電荷を有し、陽電荷が主鎖上に位置し、陰電荷が、任意にスルホネート基又はカルボキシレート基などの化学基「R」の置換基上に位置するようにすることもできる。主鎖の陽電荷を、化学基「R」上に任意に存在するアニオン基で部分的又は全体的に飽和させることができる。全体的に見れば、これらの場合、ポリチオフェンはカチオン性、中性、さらにはアニオン性であってもよい。にもかかわらず、これらは全て、ポリチオフェン主鎖が陽電荷を有しているためカチオン性ポリチオフェンとみなされる。
【0033】
対イオンは、モノマーアニオンであっても、又はポリマーアニオンであってもよい。ポリマーアニオンは、例えば、(ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸などの)ポリマーカルボン酸、(ポリスチレンスルホン酸(「PSS」)、ポリビニルスルホン酸などの)ポリマースルホン酸などとすることができる。酸もまた、ビニルカルボン酸及びビニルスルホン酸と、アクリル酸エステル及びスチレンなどの他の重合可能モノマーとのコポリマーなどのコポリマーとすることができる。同様に、好適なモノマーアニオンとして、例えば、C
1〜C
20のアルカンスルホン酸(例えば、ドデカンスルホン酸)、脂肪族ペルフルオロスルホン酸(例えば、トリフルオロメタンスルホン酸、ペルフルオロブタンスルホン酸、又はペルフルオロオクタンスルホン酸)、C
1〜C
20の脂肪族カルボン酸(例えば、2−エチルヘキシルカルボン酸)、脂肪族ペルフルオロカルボン酸(例えば、トリフルオロ酢酸、又はペルフルオロオクタン酸)、C
1〜C
20のアルキル基によって任意に置換された芳香族スルホン酸(例えば、ベンゼンスルホン酸、o−トルエンスルホン酸、p−トルエンスルホン酸、又はドデシルベンゼンスルホン酸)、シクロアルカンスルホン酸(例えば、カンファースルホン酸又はテトラフルオロボレート、ヘキサフルオロホスフェート、パークロレート、ヘキサフルオロアンチモネート、ヘキサフルオロアルセネート又はヘキサクロロアンチモネート)などのアニオンが挙げられる。特に適した対イオンは、ポリマーカルボン酸又は(ポリスチレンスルホン酸(「PSS」)などの)ポリマースルホン酸のようなポリマーアニオンである。このようなポリマーアニオンの分子量は、通常、約1,000〜約2,000,000、及び実施形態によっては約2,000〜約500,000である。
【0034】
これらを使用する場合、所定の層におけるこのような対イオンの置換ポリチオフェンに対する重量比は、通常約0.5:1〜約50:1、実施形態によっては約1:1〜約30:1、及び実施形態によっては約2:1〜約20:1である。上記の重量比で参照した置換ポリチオフェンの重量は、重合中に完全な変換が行われると仮定した場合、使用するモノマーの計量部分を示す。
【0035】
分散液は、ポリマー層の付着特性をさらに向上させて分散液中の粒子の安定性も高めるために、1又はそれ以上の結合剤を含むこともできる。結合剤は、例えばポリビニルアルコール、ポリビニルピロリドン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリ酪酸ビニル、ポリアクリル酸エステル、ポリアクリル酸アミド、ポリメタクリル酸エステル、ポリメタクリル酸アミド、ポリアクリロニトリル、スチレン/アクリル酸エステル、酢酸ビニル/アクリル酸エステル及びエチレン/酢酸ビニルコポリマー、ポリブタジエン、ポリイソプレン、ポリスチレン、ポリエーテル、ポリエステル、ポリカーボネート、ポリウレタン、ポリアミド、ポリイミド、ポリスルホン、メラミン・ホルムアミド樹脂、エポキシ樹脂、シリコン樹脂又はセルロースなどの本質的に有機性のものとすることができる。結合剤の付着力を高めるために架橋剤を使用することもできる。このような架橋剤として、例えば、メラミン化合物、マスクドイソシアネート又は3−グリシドキシプロピルトリアルコキシシラン、テトラエトキシシラン及びテトラエトキシシラン・ハイドロライゼートなどの官能性シラン、或いはポリウレタン、ポリアクリレート又はポリオレフィンなどの架橋可能ポリマー、及びこれに続く架橋が挙げられる。(水などの)分散剤、界面活性物質などの、当業で公知のその他の成分を分散液に含めることもできる。
【0036】
必要であれば、所望の被覆厚が得られるまで、上述した付加ステップの1又はそれ以上を繰り返すことができる。いくつかの実施形態では、一度に比較的薄い被覆層しか形成されない。全体的な目標被覆厚は、一般にコンデンサの所望の特性によって様々であってよい。通常、結果的に得られる導電性ポリマー被覆は、約0.2マイクロメートル(「μm」)〜約50μm、実施形態によっては約0.5μm〜約20μm、及び実施形態によっては約1μm〜約5μmの厚みを有する。なお、被覆厚は、必ずしも部品上の全ての位置で等しいとは限らない。とは言うものの、一般に平均被覆厚は上記の範囲内に収まる。
【0037】
導電性ポリマー被覆は、任意にヒーリング処理することができる。ヒーリング処理は、導電性ポリマー層を各々付加した後、又は被覆全体を付加した後に行うことができる。いくつかの実施形態では、電解質溶液内に部品を浸漬し、その後、電流が予め選択したレベルに低下するまで溶液に定電圧を印加することにより、導電性ポリマーをヒーリング処理することができる。必要であれば、このようなヒーリング処理を複数のステップで行うことができる。例えば、電解質溶液を、(エタノールなどの)アルコール溶媒にモノマー、触媒、又はドーパントを入れた希薄溶液とすることができる。必要であれば、被覆を洗浄して、様々な副生物、過剰試薬などを除去することもできる。
【0038】
必要であれば、コンデンサは、当業で公知のように他の層を含むこともできる。例えば、誘電体と固体電解質の間に、比較的絶縁性の高い樹脂性材料(天然又は合成)で作製したような保護被覆を任意に形成することができる。このような材料は、約10Ω/cmを越える、実施形態によっては約100を越える、実施形態によっては約1000Ω/cmを越える、実施形態によっては約1×10
5Ω/cmを越える、及び実施形態によっては約1×10
10Ω/cmを越える特異的な抵抗率を有することができる。本発明で利用できるいくつかの樹脂性材料としては、以下に限定されるわけではないが、ポリウレタン、ポリスチレン、(グリセライドなどの)不飽和又は飽和脂肪酸のエステルなどが挙げられる。例えば、好適な脂肪酸のエステルとして、以下に限定されるわけではないが、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、エレオステアリン酸、オレイン酸、リノール酸、リノレン酸、アレウリチン酸、シェロール酸などのエステルが挙げられる。これらの脂肪酸のエステルは、結果として生じる被膜を安定層に迅速に重合できるようにする「乾性油」を形成するために比較的複雑な組み合わせで使用する場合、特に有用であることが判明している。このような乾性油として、モノグリセリド、ジグリセリド、及び/又はトリグリセリドを挙げることができ、これらはそれぞれ1つ、2つ、及び3つのエステル化された脂肪酸アシル残基を含むグリセロール骨格を有する。例えば、使用できるいくつかの好適な乾性油として、以下に限定されるわけではないが、オリーブ油、アマニ油、ヒマシ油、キリ油、大豆油、及びシェラックが挙げられる。これらの及びその他の保護被覆材料は、Fife他に付与された米国特許第6,674,635号にさらに詳細に記載されており、該特許はあらゆる目的によるこの特許への参照によりその全体が本明細書に組み入れられる。
【0039】
部品に(グラファイトなどの)カーボン層及び銀層をそれぞれ施すこともできる。銀被覆は、例えば、コンデンサのための半田付け可能な導体、接触層、及び/又は電荷コレクタとして機能することができ、カーボン被覆は、銀被覆の固体電解質との接触を制限することができる。このような被覆は、固体電解質の一部又は全部を覆うことができる。
【0040】
一般的に言えば、このコンデンサ素子は、従来の固体電解コンデンサで多くの場合使用されるような、素子を封入する樹脂を実質的に含まない。とりわけ、コンデンサ素子を封入すると、極限環境、すなわち(約175℃を超えるような)高温及び/又は(約35ボルトを超えるような)高電圧において不安定性を招く恐れがある。
【0041】
II.
ハウジング
上述したように、コンデンサ素子は、ハウジング内に密封される。ハウジングを形成するためには、金属、プラスチック、セラミックなどのあらゆる様々な異なる材料を使用することができる。例えば、1つの実施形態では、ハウジングが、タンタル、ニオブ、アルミニウム、ニッケル、ハフニウム、チタン、銅、銀、(ステンレスなどの)鋼、(導電性酸化物などの)これらの合金、及び(導電性酸化物で被覆された金属などの)これらの複合体などの金属の1又はそれ以上の層を含む。別の実施形態では、ハウジングが、窒化アルミニウム、酸化アルミニウム、酸化ケイ素、酸化マグネシウム、酸化カルシウム、ガラスなど、並びにこれらの組み合わせなどのセラミック材料の1又はそれ以上の層を含むことができる。
【0042】
ハウジングは、円筒形、D字形、矩形、三角形、角柱形などのあらゆる所望の形状を有することができる。例えば、
図1〜
図3を参照すると、ハウジング122及び並置されたコンデンサ素子120a及び120bを含むコンデンサアセンブリ100の1つの実施形態を示している。この特定の実施形態では、ハウジング122が概ね矩形である。通常、ハウジング及びコンデンサ素子は、素子を内部キャビティ内に容易に収容できるように同じ又は同様の形状を有する。例えば、図示の実施形態では、ハウジング122とコンデンサ素子120a及び120bが概ね矩形である。
【0043】
一般に、コンデンサ素子をハウジング内に配置する態様は、コンデンサ素子が振動力を受けたときに層間剥離する可能性を低下させるように選択される。例えば、図示の実施形態では、コンデンサ素子120a及び120bは、コンデンサ素子120aの側面403aが、コンデンサ素子120bの側面403bに隣接して位置するとともにこの方向を向くように、またコンデンサ素子120aの側面405aが、コンデンサ素子120bの側面405bから離れた方向を向くように並置される。コンデンサ素子120a及び120bは、互いに隣接して並置されることに加え、水平構成で配向された主要面(例えば、面積が最も広い面)を有するようにも位置合わせされる。例えば、コンデンサ素子120a及び120bの各々は、これらの幅(−x方向)及び長さ(−y方向)によって定められた平面内に延びる主要面181及び183を有する。このように、これらのコンデンサ素子の主要面は概ね同一平面上に存在し、コンデンサ素子が接続されたハウジング122の長さと同じ方向(例えば、−y方向)に延びる。これにより、コンデンサ素子とハウジングの間の接触面積を増やす能力を含む様々な利点が得られ、このことが、コンデンサ素子が受ける振動力により良好に耐える役に立つ。言うまでもなく、コンデンサ素子の主要面が同一平面上に存在せず、−z方向又は−x方向などの一定方向において互いに垂直になるようにコンデンサ素子を配置することもできると理解されたい。コンデンサ素子は、同じ方向に延びる必要もない。
【0044】
必要に応じ、本発明のコンデンサアセンブリは、比較的高い容積効率を示すことができる。このような高効率を容易にするために、通常、コンデンサ素子は、ハウジングの内部キャビティの容量の大部分を占める。例えば、コンデンサ素子は、ハウジングの内部キャビティの約30容量パーセント又はそれ以上、実施形態によっては約50容量パーセント又はそれ以上、実施形態によっては約60容量パーセント又はそれ以上、実施形態によっては約70容量パーセント又はそれ以上、実施形態によっては約80容量パーセント〜約98容量パーセント、及び実施形態によっては約85容量パーセント〜97容量パーセントを占めることができる。このため、通常、ハウジングが定めるコンデンサ素子のいくつかの寸法と内部キャビティの寸法の差分は比較的小さい。
【0045】
例えば、
図3を参照すると、コンデンサ素子120aは、ハウジング122が定める内部キャビティ126の長さと比較的似通った長さ(陽極リード6の長さを除く)を有することができる。例えば、陽極の長さの内部キャビティの長さに対する比率は、約0.40〜1.00、実施形態によっては約0.50〜約0.99、実施形態によっては約0.60〜約0.99、及び実施形態によっては約0.70〜約0.98である。コンデンサ素子120aは、約5ミリメートル〜約10ミリメートルの長さを有することができ、内部キャビティ126は、約6ミリメートル〜約15ミリメートルの長さを有することができる。同様に、コンデンサ素子120aの高さ(−z方向)の内部キャビティ126の高さに対する比率も、約0.40〜1.00、実施形態によっては約0.50〜約0.99、実施形態によっては約0.60〜約0.99、及び実施形態によっては約0.70〜約0.98であることができる。例えば、コンデンサ素子120aの高さを約0.5ミリメートル〜約2ミリメートルとして、内部キャビティ126の高さを約0.7ミリメートル〜約6ミリメートルとすることができる。
【0046】
決して必須ではないが、コンデンサ素子を、後で回路内に一体化するために共通の陽極終端及び陰極終端をハウジングの外部に形成するようにしてハウジングに取り付けることができる。終端の特定の構成は、目的の用途に依存することができる。例えば、1つの実施形態では、コンデンサアセンブリを、表面実装可能であり、なおかつ依然として機械的に強固であるように形成することができる。例えば、コンデンサ素子の陽極リードを、外部の表面実装可能な(パッド、シート、プレート、フレームなどの)陽極及び陰極終端に電気的に接続することができる。このような終端は、ハウジングを貫いて延び、コンデンサと接続することができる。一般に、終端の厚み又は高さは、コンデンサアセンブリの厚みを最小限に抑えるように選択される。例えば、終端の厚みは、約0.05ミリメートル〜約1ミリメートル、実施形態によっては約0.05ミリメートル〜約0.5ミリメートル、及び約0.1ミリメートル〜約0.2ミリメートルとすることができる。必要であれば、当業で公知のように、終端の表面をニッケル、銀、金、スズなどで電気メッキして、最終部品を回路基板に確実に実装できるようにすることができる。1つの特定の実施形態では、(単複の)終端にニッケル及び銀フラッシュをそれぞれ堆積させ、実装面もスズ半田層でメッキする。別の実施形態では、さらに導電性を高めるために、(銅合金などの)ベース金属層上に(金などの)薄い外側金属層を施したものを(単複の)終端に堆積させる。
【0047】
いくつかの実施形態では、ハウジングの内部キャビティ内に接続部材を使用して、機械的に安定した形で終端への接続を容易にすることができる。例えば、再び
図1を参照して分かるように、コンデンサアセンブリ100は、第1の部分167及び第2の部分165から形成された接続部材162を含むことができる。接続部材162は、外部終端と同様の導電材料から形成することができる。第1の部分167及び第2の部分165は、一体要素であっても、或いは直接又は(金属などの)追加の導電要素を介してともに接続された別個の要素であってもよい。図示の実施形態では、各コンデンサ素子のリード6が延びる(−y方向などの)横方向に概ね平行な平面内に第2の部分165が設けられる。第1の部分167は、リード6が延びる縦方向に概ね垂直な平面内に設けられるという意味で「直立」している。このようにして、第1の部分167がリード6の水平方向の動きを制限して、使用中の表面接触及び機械的安定性を高めることができる。必要に応じて、コンデンサ素子のリード6の周囲に(Teflon(商標)ウォッシャーなどの)絶縁材料7を使用することもできる。
【0048】
第1の部分167は、それぞれのコンデンサ素子120a又は120bの陽極リード6に接続された実装領域(図示せず)を有することができる。この領域は、リード6の表面接触及び機械的安定性をさらに高めるために「U字形状」を有することができる。この領域のリード6への接続は、溶接、レーザ溶接、導電性接着剤などの様々な公知の技術のいずれかを使用して行うことができる。例えば、1つの特定の実施形態では、この領域が陽極リード6にレーザ溶接される。しかしながら、選択した技術に関わらず、第1の部分167は、陽極リード6を実質的に水平な配置に保持してコンデンサアセンブリ100の寸法安定性をさらに高めることができる。
【0049】
再び
図1を参照すると、接続部材162及びそれぞれのコンデンサ素子120a又は120bが、それぞれ陽極終端127及び陰極終端129を介してハウジング122に接続された本発明の1つの実施形態を示している。陽極端子127は、ハウジング122内に位置して接続部材162に電気的に接続された第1の領域127a、及びハウジング122の外部に位置して実装面201を提供する第2の領域127bを含む。同様に、陰極終端129は、ハウジング122内に位置してコンデンサ素子120の固体電解質に電気的に接続された第1の領域129a、及びハウジング122の外部に位置して実装面203を提供する第2の領域129bを含む。なお、このような領域部分は、その全体がハウジングの内部又はハウジングの外部に位置する必要はない。
【0050】
図示の実施形態では、ハウジングの外壁123内に導電性トレース127cが延びて、第1の領域127aと第2の領域127bを接続する。同様に、ハウジングの外壁123内に導電性トレース129cが延びて、第1の領域127aと第2の領域127bを接続する。これらの導電性トレース及び/又は終端領域は、分離していても又は一体化していてもよい。これらのトレースは、ハウジングの外壁を貫いて延びることに加え、外壁の外部などの他の場所に位置することもできる。言うまでもなく、本発明は、所望の終端を形成するために導電性トレースを使用することに決して限定されるものではない。
【0051】
使用する特定の構成に関わらず、終端127及び129のコンデンサ素子120a及び120bへの接続は、溶接、レーザ溶接、導電性接着剤などのいずれかの公知の技術を用いて行うことができる。1つの特定の実施形態では、例えば、導電性接着剤131を使用して、接続部材162の第2の部分165を陽極終端127に接続する。同様に、導電性接着剤133を使用して、コンデンサ素子120の陰極を陰極終端129に接続する。導電性接着剤は、樹脂組成物を含む導電性金属粒子から形成することができる。金属粒子は、銀、銅、金、プラチナ、ニッケル、亜鉛、ビスマスなどとすることができる。樹脂組成物は、(エポキシ樹脂などの)熱硬化性樹脂、(酸無水物などの)硬化剤、及び(シラン結合剤などの)結合剤を含むことができる。
Osako他に付与された米国特許出願公開第2006/0038304号に好適な導電性接着剤が記載されており、該特許出願はあらゆる目的によるこの特許への参照によりその全体が本明細書に組み入れられる。
【0052】
任意に、コンデンサ素子の後面、前面、上面、下面、(単複の)側面、又はこれらのあらゆる組み合わせなどの1又はそれ以上の面に接触させてポリマー拘束物(polymeric restrain)を配置することもできる。ポリマー拘束物は、コンデンサ素子がハウジングから層間剥離する可能性を低下させることができる。この点、このポリマー拘束物は、振動力を受けた場合でもコンデンサ素子を比較的一定の位置に保持するが、ヒビが入るほど強くはないある程度の強度を有することができる。例えば、この拘束物は、約25℃の温度で測定した場合、約1メガパスカル〜約150メガパスカル(「MPa」)、実施形態によっては約2MPa〜約100MPa、実施形態によっては約10MPa〜約80MPa、及び実施形態によっては約20MPa〜約70MPaの引張強度を有することができる。拘束物は、通常は導電性でないことが望ましい。
【0053】
上述した所望の強度特性を有するあらゆる様々な材料を使用することができるが、本発明での使用には、硬化性の熱硬化性樹脂が特に適していることが判明している。このような樹脂の例として、例えば、エポキシ樹脂、ポリイミド、メラミン樹脂、尿素ホルムアルデヒド樹脂、ポリウレタン、シリコンポリマー、フェノール樹脂などが挙げられる。例えば、いくつかの実施形態では、拘束物に1又はそれ以上のポリオルガノシロキサンを使用することができる。これらのポリマーに使用されるケイ素結合有機基は、一価の炭化水素及び/又は一価のハロゲン化炭化水素基を含むことができる。通常、このような一価の基は、1個〜約20個の炭素原子、好ましくは1個〜10個の炭素原子を有し、以下に限定されるわけではないが、アルキル(例えば、メチル、エチル、プロピル、ペンチル、オクチル、ウンデシル、及びオクタデシル)、シクロアルキル(例えば、シクロヘキシル)、アルケニル(例えば、ビニル、アリル、ブテニル、及びヘキセニル)、アリル(例えば、フェニル、トリル、キシリル、ベンジル、及び2−フェニルエチル)、及びハロゲン化炭化水素基(例えば、3,3,3−トリフロオロプロピル、3−クロロプロピル、及びジクロロフェニル)により例示される。通常は、有機基の少なくとも50%、及びより好ましくは少なくとも80%がメチルである。このようなメチルポリシロキサンの例として、例えば、ポリジメチルシロキサン(「PDMS」)、ポリメチル水素シロキサンなどを挙げることができる。さらに他の好適なメチルポリシロキサンとしては、ジメチルジフェニルポリシロキサン、ジメチル/メチルフェニルポリシロキサン、ポリメチルフェニルシロキサン、メチルフェニル/ジメチルシロキサン、ビニルジメチル終端ポリジメチルシロキサン、ビニルメチル/ジメチルポリシロキサン、ビニルジメチル終端ビニルメチル/ジメチルポリシロキサン、ジビニルメチル終端ポリジメチルシロキサン、ビニルフェニルメチル終端ポリジメチルシロキサン、ジメチルヒドロ終端ポリジメチルシロキサン、メチルヒドロ/ジメチルポリシロキサン、メチルヒドロ終端メチルオクチルポリシロキサン、メチルヒドロ/フェニルメチルポリシロキサンなどを挙げることができる。
【0054】
オルガノポリシロキサンは、ポリマーにある程度の親水性を与える、ヒドロキシ、エポキシ、カルボキシル、アミノ、アルコキシ、メタクリル、又はメルカプト基などの1又はそれ以上のペンダント及び/又は終端極性官能基を含むこともできる。例えば、オルガノポリシロキサンは、少なくとも1つのヒドロキシ基、及び任意に1分子当たり平均少なくとも2つのケイ素結合ヒドロキシ基(シラノール基)を含むことができる。このようなオルガノポリシロキサンの例として、例えば、ジヒドロキシポリジメチルシロキサン、ヒドロキシ−トリメチルシロキシポリジメチルシロキサンなどが挙げられる。
Kleyer他に付与された米国特許出願公開第2003/0105207号にヒドロキシ修飾オルガノポリシロキサンのその他の例が記載されており、該特許はあらゆる目的によるこの特許への参照によりその全体が本明細書に組み入れられる。ジメトキシポリジメチルシロキサン、メトキシ−トリメチルシロキシポリジメチルシロキサン、ジエトキシポリジメチルシロキサン、エトキシートリメチルシロキシーポリジメチルシロキサンなどのアルコキシ修飾オロガノポリシロキサンを使用することもできる。さらに他の好適なオルガノポリシロキサンには、少なくとも1つのアミノ官能基で修飾されたものがある。このようなアミノ官能基ポリシロキサンの例として、例えば、ジアミノ官能基ポリジメチルシロキサンが挙げられる。
Plantenberg他に付与された米国特許出願公開第2010/0234517号には、オルガノポリシロキサンのための他の様々な好適な極性官能基も記載されており、該特許はあらゆる目的によるこの特許への参照によりその全体が本明細書に組み入れられる。
【0055】
ポリマー拘束物としての使用には、エポキシ樹脂も特に適している。例えば、好適なエポキシ樹脂の例として、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、臭素化エポキシ樹脂及びビフェニル型エポキシ樹脂、環状脂肪族エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、シクロペンダジエン型エポキシ樹脂、複素環式エポキシ樹脂などの、グリシジルエーテル型エポキシ樹脂が挙げられる。
Osako他に付与された米国特許出願公開第2006/0038304号、及び
Chackoに付与された米国特許第7,554,793号には、さらに他の好適な導電性接着樹脂が記載されており、これらの特許はあらゆる目的によるこれらへの参照によりその全体が本明細書に組み入れられる。
【0056】
必要であれば、ポリマー拘束物に硬化剤を使用して、硬化を促進する役に立てることもできる。通常、硬化剤は、拘束物の約0.1重量パーセント〜約20重量パーセントを構成する。例示的な硬化剤として、例えば、アミン、過酸化物、無水化物、フェノール化合物、シラン、酸無水化物化合物及びこれらの組み合わせが挙げられる。好適な硬化剤の具体的な例には、ジシアンジアミド、1−(2シアノエチル)2−エチル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、エチルシアノプロピルイミダゾール、2−メチルイミダゾール、2−フェニルイミダゾール、2−エチル−4−メチルイミダゾール、2−ウンデシルイミダゾール、1−シアノエチル−2−メチルイミダゾール、2,4−ジシアノ−6,2−メチルイミダゾリル−(1)−エチル−s−トリアジン、及び2,4−ジシアノ−6,2−ウンデシルイミダゾリル−(1)−エチル−s−トリアジン、イミダゾリウム塩(1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテート、2−メチルイミダゾリウムイソシアヌレート、2−エチル−4−メチルイミダゾリウムテトラフェニルボレート、及び2−エチル−1,4−ジメチルイミダゾリウムテトラフェニルボレートなど)などがある。さらに他の有用な硬化剤として、トリブチルホスフィン、トリフェニルホスフィン、トリス(ジメトキシフェニル)ホスフィン、トリス(ヒドロキシプロピル)ホスフィン、及びトリス(シアノエチル)ホスフィンなどのホスフィン化合物、テトラフェニルホソホニウム−テトラフェニルボレート、メチルトリブチルホスホニウム−テトラフェニルボレート、及びメチルトリシアノエチルホスホニウムテトラフェニルボレートなどのホスホニウム塩、2,4,6−トリス(ジメチルアミノメチル)フェノール、ベンジルメチルアミン、テトラメチルブチルグアニジン、N−メチルピペラジン、及び2−ジメチルアミノ−1−ピロリンなどのアミン、トリエチルアンモニウムテトラフェニルボレートのようなアンモニウム塩、1,5−ジアザビシクロ[5,4,0]−7−ウンデセン、1,5−ジアザビシクロ[4,3,0]−5−ノネン、及び1,4−ジアザビシクロ[2,2,2]−オクタンなどのジアザビシクロ化合物、テトラフェニルボレート、フェノール塩、フェノールノボラック塩、及び2−エチルヘキサン酸塩、及びその他などのジアザビシクロ化合物の塩などが挙げられる。
【0057】
光開始剤、粘度調整剤、懸濁助剤、色素、応力低減剤、結合剤(シラン結合剤など)、非導電性充填剤(粘土、シリカ、アルミナなど)、安定剤などの、さらに他の添加剤を使用することもできる。好適な光開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインn−プロピルエーテル、ベンゾインイソブチルエーテル、2,2ジヒドロキシ−2−フェニルアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2,2−ジエトキシ−2−フェニルアセトフェノン、2,2−ジエトキシアセトフェノン、ベンゾフェノン、4,4−ビスジアリルアミノベンゾフェノン、4−ジメチルアミノ安息香酸、4−ジメチルアミノ安息香酸アルキル、2−エチルアントラキノン、キサントン、チオキサントン、2−クロロチオキサントンなどを挙げることができる。使用した場合、通常、このような添加剤は、総組成物の約0.1重量パーセント〜約20重量パーセントを構成する。
【0058】
例えば、再び
図1〜
図3を参照すると、コンデンサ素子120の上面181及び後面177に接触させてポリマー拘束物197を配置した1つの実施形態を示している。各素子のための単一の拘束物を示しているが、別個の拘束物を使用して同じ機能を達成することもできると理解されたい。実際のところ、より一般的には、あらゆる数のポリマー拘束物を使用して、コンデンサ素子のあらゆる所望の面に接触させることができる。複数の拘束物を使用する場合、これらを互いに接触させても又は物理的に分離したままにしてもよい。例えば、1つの実施形態では、コンデンサ素子120aの上面181及び前面179に接触する第2のポリマー拘束物(図示せず)を使用することができる。第1のポリマー拘束物197及び第2のポリマー拘束物(図示せず)は、互いに接触しても又は接触しなくてもよい。さらに別の実施形態では、ポリマー拘束物が、他の面とともに又はこれらの代わりに、コンデンサ素子120aの下面183及び/又は側面403a及び405aに接触することもできる。
【0059】
どのように施すかにかかわらず、通常は、ポリマー拘束物をハウジングの少なくとも1つの面に接触させて、起こり得る層間剥離に対してコンデンサ素子をさらに機械的に安定化させる役に立てることが望ましい。例えば、拘束物は、1又はそれ以上の側壁、外壁、蓋部などの内面に接触することができる。例えば、
図1〜
図3では、ポリマー拘束物197が、ハウジング122の内面107及び109に接触している。ハウジングと接触するとは言うものの、ハウジングが定めるキャビティの少なくとも一部を空けて、不活性ガスがキャビティ内を流れて酸素と固体電解質の接触を制限できるようにすることが望ましい。例えば、通常は、キャビティ容量の少なくとも約5%、及び実施形態によってはキャビティ容量の約10%〜約50%がコンデンサ素子及びポリマー拘束物によって占められていない状態を保つ。
【0060】
所望の方法で接続したら、結果として得られたパッケージを密封する。例えば、再び
図1〜
図3を参照すると、ハウジング122は、コンデンサ素子120a及び120bをハウジング122内に配置した後に側壁124及び525の上面上に配置された蓋部125を含むこともできる。蓋部125は、セラミック、金属(鉄、銅、ニッケル、コバルトなど、並びにこれらの合金)、プラスチックなどから形成することができる。必要であれば、蓋部125と側壁124及び525の間に密封部材187を配置して、良好な密封を行う役に立てることができる。例えば、1つの実施形態では、密封部材が、ガラス対金属シール、Kovar(登録商標)リング(Goodfellow Camridge社)などを含むことができる。一般に、側壁124及び525の高さは、蓋部125が汚染されないように、蓋部125がコンデンサ素子120a及び120bのいずれの面にも接触しないようにされる。任意のポリマー拘束物197は、蓋部125と接触しても又は接触しなくてもよい。所望の位置に配置したら、(抵抗溶接、レーザ溶接などの)溶接、半田付けなどの公知の技術を使用して、蓋部125を側壁124及び525に対して密封する。
【0061】
通常、密封は、使用中に固体電解質が酸化しないようにするために、少なくとも1つの不活性ガスを含む気体雰囲気中で行われる。不活性ガスとして、例えば、窒素、ヘリウム、アルゴン、キセノン、ネオン、クリプトン、ラドンなど、並びにこれらの混合物を挙げることができる。通常、不活性ガスは、約50重量%〜約100重量%、実施形態によっては約75重量%〜約100重量%、及び実施形態によっては約90重量%〜約99重量%などのように、ハウジング内の雰囲気の大部分を構成する。必要であれば、比較的少量の、二酸化炭素、酸素、水蒸気などの非不活性ガスを使用することもできる。しかしながら、このような場合、通常、非不活性ガスは、ハウジング内の雰囲気の15重量%又はそれ以下、実施形態によっては10重量%又はそれ以下、実施形態によっては約5重量%又はそれ以下、実施形態によっては約1重量%又はそれ以下、及び実施形態によっては約0.01重量%〜約1重量%を構成する。例えば、(相対湿度によって示される)水分含量は、約10%又はそれ以下、実施形態によっては約5%又はそれ以下、実施形態によっては約1%又はそれ以下、及び実施形態によっては約0.01〜約5%であることができる。
【0062】
なお、説明した実施形態は例示にすぎず、本発明では他の様々な構成を使用することができる。例えば、同様の接続部材を使用して、上述した実施形態を陽極及び陰極端子に接続する。しかしながら、この構成は決して必須ではなく、個々の異なるコンデンサ素子に様々な異なる接続機構のいずれかを使用することができる。同様に、異なる終端を使用することもできる。例えば、1つの実施形態では、表面実装可能な外部終端の代わりに端子ピンを使用することができる。このようなピンは、任意にハウジングの外壁を貫いて延びる。
【0063】
本発明の結果、コンデンサアセンブリは、高温及び高電圧環境にさらされた場合でも、優れた電気的特性を示すことができる。例えば、このコンデンサアセンブリは、漏れ電流が1mAに達するまで印加電圧を3ボルトずつ増分させることにより求められるような、約35ボルト又はそれ以上、実施形態によっては約50ボルト又はそれ以上、実施形態によっては約60ボルト又はそれ以上、及び実施形態によっては約60ボルト〜約100ボルトなどの比較的高い「絶縁破壊電圧」(コンデンサが機能しなくなる電圧)を示すことができる。同様に、このコンデンサは、やはり高電圧用途でよく見られる比較的高いサージ電流に耐えることもできる。例えば、ピークサージ電流は、約40アンペア又はそれ以上、実施形態によっては約60アンペア又はそれ以上、及び実施形態によっては約120アンペア〜約250アンペアなどの、定格電圧の約2倍又はそれ以上になり得る。
【0064】
同様に、静電容量は、1平方センチメートル当たり約1ミリファラド(「mF/cm2」)又はそれ以上、実施形態によっては約2mF/cm
2又はそれ以上、実施形態によっては約5mF/cm
2〜約50mF/cm
2、及び実施形態によっては約8mF/cm
2〜約20mF/cm
2になり得る。静電容量は、120Hzの動作周波数及び25℃の温度で求めることができる。また、このコンデンサアセンブリは、比較的高い割合の湿潤静電容量を示すこともでき、これにより雰囲気湿度の存在下でのコンデンサの静電容量の損失及び/又は変動がごくわずかなものとなる。この性能特性は、次式によって定められる「乾燥対湿潤静電容量割合」により定量化される。
乾燥対湿潤静電容量=(1−([湿潤−乾燥]/湿潤))×100
【0065】
本発明のコンデンサアセンブリは、例えば、約80%又はそれ以上の、実施形態によっては約85%又はそれ以上の、実施形態によっては約90%又はそれ以上の、及び実施形態によっては約92%〜100%の乾燥対湿潤静電容量割合を示すことができる。
【0066】
このコンデンサアセンブリは、100kHzの動作周波数で測定した場合、約50オーム未満、実施形態によっては約25オーム未満、実施形態によっては約0.01〜約10オーム、及び実施形態によっては約0.05〜約5オームの等価直列抵抗(「ESR」)を有することができる。また、一般に絶縁体を介して1つの導体から隣接する導体へ流れる電流のことを意味する漏れ電流を比較的低レベルに維持することができる。例えば、本発明のコンデンサの正規化した漏れ電流の数値は、実施形態によっては約1μA/μF
*V未満、実施形態によっては約0.5μA/μF
*V未満、及び実施形態によっては約0.1μA/μF
*V未満であり、この場合μAはマイクロアンペアであり、μF
*Vは静電容量と定格電圧の積である。
【0067】
高温でかなりの時間が経過した後でも、上述したような電気的特性を維持することができる。例えば、この値を、100℃〜約250℃、実施形態によっては約100℃〜約225℃、及び実施形態によっては約100℃〜約225℃の温度(例えば100℃、125℃、175℃、又は200℃)で、約100時間又はそれ以上、実施形態によっては約300時間〜約3000時間、及び実施形態によっては約400時間〜約2500時間(例えば、500時間、600時間、700時間、800時間、900時間、1000時間、1100時間、1200時間、又は2000時間)にわたって維持することができる。
【0068】
以下の実施例を参照することにより、本発明をより良く理解することができる。
【0069】
試験手順
等価直列抵抗(ESR)
Kelvinリードを付したKeithley3330Precision LCZメータを使用して2.2ボルトのDCバイアス及び0.5ボルトのピーク間正弦波信号で等価直列抵抗を測定することができる。動作周波数は100kHzであり、温度は23℃±2℃であった。
【0070】
静電容量
Kelvinリードを付したKeithley3330Precision LCZメータを使用して2.2ボルトDCバイアス及び0.5ボルトのピーク間正弦波信号で静電容量を測定した。動作周波数は120Hzであり、温度は23℃±2℃であった。
【0071】
振動試験:
部品を10Hz〜2,000Hzの周波数範囲全体にさらし、その後10Hzに戻し、20分で逆にした。この周期を3方向のそれぞれで12回(合計36回)実行し、合計約12時間にわたって動きが加わるようにした。振動振幅は、10Hzからそれよりも高いクロスオーバー周波数までは3.0mmとし、その後2,000Hzまで20g加速させた。10個のコンデンサのサンプルを試験プレート上に半田付けしてこの試験を行った。
【実施例1】
【0072】
液体電解質内で、タンタル陽極(4.80mm×5.25mm×2.60mm)を30Vで150μFに陽極酸化した。次に、陽極全体をポリ(3,4−エチレンジオキシチオフェン)(「PEDT」)分散液(Clevious(商標)K、固体含有量1.1%)中に浸漬することにより導電性ポリマー皮膜を形成した。次に、この部品を125℃で20分間乾燥させた。この処理を10回繰り返した。その後、
図3に示すように、部品をPEDT分散液(2.8%の固体含有量)中に0.1mm/sの速度で浸漬して、分散液が部品の段部に達するようにした。この部品を分散液中に10秒間放置し、125℃で30分間乾燥させ、その後室温まで冷却した。この処理を5回繰り返した。次に、この部品を黒鉛及び銀で被覆した。銅ベースのリードフレーム材料を使用して組み立て工程を終了した。銀接着剤を使用して、コンデンサ素子の下面に単一の陰極接続部材を取り付けた。次に、コンデンサ素子のタンタルワイヤを陽極接続部材にレーザ溶接した。
【0073】
上述した方法で2つのコンデンサ素子を形成し、次にそれぞれのリードフレームの陽極及び陰極接続部材を、長さ11.00mm、幅12.50mm、及び厚み5.40mmのセラミックハウジングの内部に位置する金の陰極終端に接着し、金の陽極終端に溶接した。ハウジングは、セラミックハウジングの底部の内部上に金メッキ半田パッドを有していた。陰極の接続に使用する接着剤は、銀ペースト(EPO−Tek E3035)であり、この接着剤を、リードフレーム部分と金メッキ半田パッドの間にのみ塗布した。陽極接続に使用する溶接は抵抗溶接であり、リードフレーム部分とセラミックハウジングの金メッキ半田パッドの間に190Wのエネルギーを90msにわたって印加した。次に、アセンブリを対流式リフロー炉内に入れてペーストを半田付けした。リフロー後、コンデンサ素子の陽極及び陰極部分の上部を覆ってポリマー拘束物材料(Dow Corning(登録商標)736耐熱シーラント)を付加し、165℃で1.5時間乾燥させた。その後、容器の上部を覆って、長さ9.95mm、幅4.95mm、及び厚み0.10mmのKovar(登録商標)の蓋部を、セラミックハウジングのシールリング(厚み0.30mmのKovar(登録商標)リング)上に密接に配置して、蓋部の内面と取り付けたコンデンサの外面が直接接触しないようにした。結果として得られたアセンブリを溶接チャンバ内に配置し、窒素ガスで120分間パージした後にシールリングと蓋部の間をシーム溶接した。シーム溶接後は、追加のバーンイン処理又はヒーリング処理は行わなかった。このようにして複数の部品(50個)を作成した。
【実施例2】
【0074】
液体電解質内で、タンタル陽極(4.80mm×10.50mm×2.60mm)を30Vで150μFに陽極処理した。次に、陽極全体をポリ(3,4−エチレンジオキシチオフェン)(「PEDT」)分散液(Clevious(商標)K、固体含有量1.1%)中に浸漬することにより導電性ポリマー皮膜を形成した。次に、この部品を125℃で20分間乾燥させた。この処理を10回繰り返した。その後、部品をPEDT分散液(2.8%の固体含有量)中に0.1mm/sの速度で浸漬して、分散液が段部に達するようにした。この部品を分散液中に10秒間放置し、125℃で30分間乾燥させ、その後室温まで冷却した。この処理を5回繰り返した。次に、この部品を黒鉛及び銀で被覆した。その後、上述した方法と同じ方法で、コンデンサ素子から複数の部品(50個)を形成した。
【0075】
次に、実施例1及び2の部品の、25℃の温度における上述したような「振動試験」の前後の電気的性能(すなわち、静電容量(「CAP」)及び等価直列抵抗(「ESR」))を試験した。以下に中間結果を示す。
【0076】
この表に示すように、単一の大型の陽極(長さ10.5mm)を含む実施例2のコンデンサアセンブリは、実施例1で使用したより小型の多陽極アセンブリ(5.25mmの長さ)よりも極限状態において不安定であった。
【0077】
当業者であれば、本発明の思想及び範囲から逸脱することなく本発明のこれらの及びその他の修正及び変更を行うことができる。また、様々な実施形態の態様を、全部又は一部の両方の形で置き替えできることを理解されたい。さらに、当業者であれば、上述の説明は例示を目的としたものにすぎず、以下に添付する特許請求の範囲にさらに記載するように本発明を限定することを意図するものではないことが理解できよう。