(58)【調査した分野】(Int.Cl.,DB名)
少なくとも測定対象波長の光を含む照明光を測定対象物に照射する照明ファイバと、前記測定対象物で反射および/または散乱した前記照明光の戻り光を受光する複数の検出ファイバとを有する測定プローブと、前記複数の検出ファイバがそれぞれ受光した前記戻り光を検出する複数の検出部とを備えた光学測定装置が前記測定対象物からの前記戻り光を補正する際に使用する複数の校正データを取得する校正装置であって、
前記測定プローブが挿入される挿入部と、
前記測定プローブが前記挿入部に挿入された状態で前記測定プローブの先端から所定の距離離れた位置に配置され、前記照明光の照射面内で前記測定対象波長範囲における光の反射率が一様である標準反射板と、
を備え、
前記標準反射板を構成する材料の散乱平均自由行程は、前記所定の距離における空間コヒーレンス長よりも大きいことを特徴とする校正装置。
前記標準反射板を構成する材料の散乱平均自由行程は、前記空間コヒーレンス長の2倍よりも大きく、かつ、異方性パラメータが0.85以下であることを特徴とする請求項1に記載の校正装置。
前記標準反射板を構成する材料の散乱平均自由行程は、前記空間コヒーレンス長の2倍とほぼ等しく、かつ、異方性パラメータが0.85より大きいことを特徴とする請求項1に記載の校正装置。
前記光学測定装置が前記校正データを取得する際に、前記標準反射板を前記測定プローブの先端側に移動させる駆動部をさらに備えたことを特徴とする請求項1〜3のいずれか一つに記載の校正装置。
前記挿入部は、一端が開口する有底の筒状をなし、前記測定プローブが挿入される挿入口の近傍の位置の内面に光を吸収する光吸収部材が施された光吸収部を有し、底部に前記標準反射板が設けられていることを特徴とする請求項1〜4のいずれか一つに記載の校正装置。
少なくとも測定対象波長の光を含む照明光を測定対象物に照射する照明ファイバと、前記測定対象物で反射および/または散乱した前記照明光の戻り光を異なる角度で受光する複数の検出ファイバとを有する測定プローブと、前記複数の検出ファイバがそれぞれ受光した前記戻り光を検出する複数の検出部とを備えた光学測定装置に対して校正装置を用いて校正データを取得する校正方法であって、
前記校正装置の内部に光を吸収する光吸部材が施された挿入部に対し、前記測定プローブに前記照明光を照射させた際に前記検出部が検出する前記測定プローブの内部反射校正用データを取得する第1のステップと、
前記測定プローブの先端から所定の距離離れた位置に配置され、前記照明光の照射面内で前記測定対象波長範囲における光の反射率が一様である前記校正装置内の標準反射板に対し、前記測定プローブが前記照明光を照射した際に前記検出部が検出する標準反射板校正データを取得する第2のステップと、
を含み、
前記標準反射板を構成する材料の散乱平均自由行程は、前記所定の距離における空間コヒーレンス長よりも大きいことを特徴とする校正方法。
【発明を実施するための形態】
【0020】
以下、図面を参照して、本発明にかかる光学測定装置および校正装置の好適な実施の形態を詳細に説明する。また、図面の記載において、同一の部分には同一の符号を付して説明する。また、図面は、模式的なものであり、各部材の厚みと幅との関係、各部材の比率等は、現実と異なることに留意する必要がある。また、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれる。なお、本実施の形態によって本発明が限定されるものではない。
【0021】
(実施の形態1)
図1は、本発明の実施の形態1にかかる光学測定装置および校正装置の構成を模式的に示すブロック図であり、光学測定装置に校正装置を接続した状態を示す図である。
【0022】
まず、光学測定装置について説明する。
図1に示す光学測定装置1は、散乱体である生体組織等の測定対象物に対して光学測定を行って測定対象物の性状(特性)を測定する本体部2と、本体部2に対して着脱自在であり、被検体内に挿入されるディスポーザブル型の測定プローブ3と、を備える。
【0023】
本体部2は、電源20と、光源部21と、コネクタ部22と、第1検出部23と、第2検出部24と、第3検出部25と、入力部26と、出力部27と、記録部28と、制御部29と、を備える。電源20は、本体部2の各部に電力を供給する。
【0024】
光源部21は、コネクタ部22を介して測定対象物へ照射するインコヒーレント光の照明光を測定プローブ3へ出射する。光源部21は、白色LED(Light Emitting Diode)、キセノンランプ、タングステンランプおよびハロゲンランプのようなインコヒーレント光源と、複数のレンズとを用いて実現される。このようなレンズとしては、たとえば集光レンズやコリメートレンズ等を挙げることができる。光源部21は、所定の波長帯域に含まれる波長成分を有する照明光を出射する。
【0025】
コネクタ部22は、測定プローブ3が着脱自在に接続される。コネクタ部22は、光源部21が出射した照明光を測定プローブ3へ伝播するとともに、測定プローブ3から入射した複数の光をそれぞれ第1検出部23、第2検出部24および第3検出部25へ伝播する。
【0026】
第1検出部23は、測定プローブ3から照射された照明光が測定対象物で反射および/または散乱した照明光の戻り光を検出し、この検出結果を制御部29へ出力する。具体的には、第1検出部23は、測定プローブ3から入射された散乱光のスペクトル成分および強度分布を検出し、この検出結果を制御部29へ出力する。第1検出部23は、分光測定器または受光センサ等を用いて実現される。
【0027】
第2検出部24は、第1検出部23と同一の構成によって実現され、測定プローブ3から照射された照明光が測定対象物で反射および/または散乱した照明光の戻り光を検出し、この検出結果を制御部29へ出力する。
【0028】
第3検出部25は、第1検出部23と同一の構成によって実現され、測定プローブ3から照射された照明光が測定対象物で反射および/または散乱した照明光の戻り光を検出し、この検出結果を制御部29へ出力する。
【0029】
入力部26は、本体部2の起動を指示する指示信号、本体部2による測定対象物S1の測定の開始を指示する指示信号および構成処理を指示する指示信号等の入力を受け付けて制御部29へ出力する。入力部26は、プッシュ式のスイッチやタッチパネル等を用いて実現される。
【0030】
出力部27は、制御部29の制御のもと、本体部2における各種情報、たとえば測定対象物の測定結果を出力する。出力部27は、液晶または有機EL(Electro Luminescence)等の表示ディスプレイおよびスピーカ等を用いて実現される。
【0031】
制御部29は、本体部2の各部に対応する指示情報やデータの転送等を行うことによって、本体部2を統括的に制御する。制御部29は、CPU(Central Processing Unit)等を用いて構成される。制御部29は、演算部291を有する。
【0032】
演算部291は、第1検出部23、第2検出部24および第3検出部25それぞれが検出した検出結果に基づいて、複数の演算処理を行い、測定対象物の性状に関する特性値を算出する。
【0033】
つぎに、測定プローブ3について説明する。
図2は、測定プローブ3の先端を測定プローブ3の長手方向の中心軸を含むように切断した断面を模式的に示す図である。
図3は、測定プローブ3を先端側から見た正面図である。
【0034】
図1〜
図3に示す測定プローブ3は、照明ファイバ31と、第1検出ファイバ32と、第2検出ファイバ33と、第3検出ファイバ34と、ファイバ保持部35と、ロッドレンズ36(光学素子)と、を備える。照明ファイバ31、第1検出ファイバ32、第2検出ファイバ33および第3検出ファイバ34は、それぞれコア径がρ
1およびクラッドの厚みがρ
2の光ファイバを用いて実現される。
【0035】
照明ファイバ31は、コネクタ部22を介して光源部21から入射された照明光を、ロッドレンズ36を介して測定対象物または校正装置4に照射する。
【0036】
第1検出ファイバ32は、照明ファイバ31が照射した照明光であって、ロッドレンズ36を介して測定対象物または校正装置4で反射および/または散乱した照明光の戻り光を検出(受光)して第1検出部23へ伝播する。
【0037】
第2検出ファイバ33は、照明ファイバ31が照射した照明光であって、ロッドレンズ36を介して測定対象物または校正装置4で反射および/または散乱した照明光の戻り光を検出して第2検出部24へ伝播する。
【0038】
第3検出ファイバ34は、照明ファイバ31が照射した照明光であって、ロッドレンズ36を介して測定対象物または校正装置4で反射および/または散乱した照明光の戻り光を検出して第3検出部25へ伝播する。
【0039】
ファイバ保持部35は、照明ファイバ31、第1検出ファイバ32、第2検出ファイバ33および第3検出ファイバ34それぞれの先端を一直線上または不規則に並べて保持する。具体的には、ファイバ保持部35は、照明ファイバ31、第1検出ファイバ32、第2検出ファイバ33および第3検出ファイバ34の光軸が互いに平行になるように照明ファイバ31、第2検出ファイバ32、第2検出ファイバ33および第3検出ファイバ34を保持する。また、ファイバ保持部35は、照明光の戻り光が異なる角度で入射するように照明ファイバ31、第1検出ファイバ32、第2検出ファイバ33および第3検出ファイバ34をそれぞれ所定の位置で固定する。たとえば、ファイバ保持部35は、照明ファイバ31から照射された照明光の戻りが角度θで第1検出ファイバ32に入射するように保持する照明ファイバ31および第1検出ファイバ32を保持する。ファイバ保持部35は、ガラス、樹脂または金属等を用いて実現される。
【0040】
ロッドレンズ36は、ファイバ保持部35の先端に設けられる。ロッドレンズ36は、所定の透過性を有するガラスやプラスチック等を用いて実現され、照明ファイバ31、第1検出ファイバ32、第2検出ファイバ33および第3検出ファイバ34それぞれの先端と測定対象物または校正装置4との距離が一定となるように円柱状をなす。
【0041】
つぎに、校正装置4について説明する。校正装置4は、容器41と、測定プローブ3の挿入を防止するストッパ部42と、校正処理に用いられる標準反射板43と、を備える。
【0042】
容器41は、筒状をなし、測定プローブ3が挿入可能な挿入部41aと、標準反射板43を収容する収容部41bと、を有する。容器41は、挿入部41aと収容部41bとが一体的に形成される。
【0043】
ストッパ部42は、円環状をなし、収容部41bに設けられる。ストッパ部42は、測定プローブ3が収容部41b内に挿入されることを防止する。ストッパ部42の内径は、測定プローブ3の外径より小さい。ストッパ部42は、測定プローブ3のロッドレンズ36の先端から標準反射板43までの所定の距離Lを一定に維持する。
【0044】
標準反射板43は、測定プローブ3が挿入部41aに挿入された状態で測定プローブ3の先端部から所定の距離L離れた位置に配置される。標準反射板43は、測定プローブ3が照射する照明光の照射面内で測定対象波長範囲における光の反射率が一様である材料を用いて構成される。具体的には、標準反射板43を構成する材料の散乱平均自由行程は、所定の距離Lにおける空間コヒーレンス長よりも大きな値となるように設定される。
【0045】
以上のように構成された光学測定装置1は、校正装置4で校正処理を行った後、
図4に示すように、内視鏡システム5の内視鏡装置51(内視鏡スコープ)に設けられた処置具チャンネル51aを介して測定プローブ3が被検体内に挿入され、照明ファイバ31が測定対象物に照明光を照射し、第1検出ファイバ32、第2検出ファイバ33および第3検出ファイバ34がそれぞれ測定対象物で反射および/または散乱した照明光の戻り光を異なる散乱角度で検出して第1検出部23、第2検出部24および第3検出部25に伝播する。その後、演算部291は、第1検出部23、第2検出部24および第3検出部25がそれぞれ検出した検出結果に基づいて、測定対象物の性状を示す特性値を演算する。
【0046】
つぎに、光学測定装置1の校正項目について詳細に説明する。
図5は、光学測定装置1が検出する干渉パターンを模式的に示す図である。
図6は、光学測定装置1が検出する信号の強度を模式的に示す図である。
図5および
図6において、照明ファイバ31を照明ファイバS、第1検出ファイバ32、第2検出ファイバ33および第3検出ファイバ34をそれぞれ第1検出ファイバd
1、第2検出ファイバd
2および第3検出ファイバd
3として説明する。また、
図5および
図6において、第1検出ファイバd
1および第2検出ファイバd
2が干渉パターンの裾部分の強度に対応し、第3検出ファイバd
3が干渉の影響が無視できる程度の拡散光成分の強度に対応する。また、
図6において、照明ファイバ31を検出ファイバSとした場合において、この検出ファイバSが検出する強度も示している。なお、
図6では、特定の波長に対応する信号値として示している。
【0047】
図5および
図6に示すように、検出ファイバSが検出する信号値は、干渉パターンの最大値に対応するため、強度が最も大きい。さらに、第1検出ファイバd
1および第2検出ファイバd
2がそれぞれ検出する信号値は、検出ファイバS1から同じ距離離れた位置のため、強度が同じになる。また、第3検出ファイバd
3が検出する信号値は、強度が最も小さい。しかしながら、信号値は、検出経路の導光効率のばらつき、および第1検出部23、第2検出部24および第3検出部25それぞれの検出感度のばらつきの影響を受ける。このため、
図7に示すように、測定プローブ3に対して一様強度の光を照射した場合であっても、第1検出ファイバd
1、第2検出ファイバd
2および第3検出ファイバd
3がそれぞれ検出する信号値が一定にならない(
図8を参照)。このため、
図9に示すように、第1検出ファイバd
1、第2検出ファイバd
2および第3検出ファイバd
3がそれぞれ検出する検出強度が一定となるように校正する必要がある。
【0048】
また、
図10に示すように、照明ファイバ31が照明光を照射する照明領域Aと、第1検出ファイバ32、第2検出ファイバ33および第3検出ファイバ34がそれぞれ照明光の戻り光を検出する検出領域Bとが一致しないため、信号値にばらつきが生じる。たとえば、
図10に示すように、照明ファイバ31が照明光を照射する照明領域Aと、第3検出ファイバ34が照明光の戻り光を検出する検出領域Bとが異なる。このため、光学測定装置1は、測定対象物の検出範囲のずれによる検出信号の補正を行う必要がある。
【0049】
つぎに、校正装置4の標準反射板43について詳細に説明する。校正装置4は、上述した校正項目のため、標準反射板43上の空間的な可干渉度、即ち空間コヒーレンス長Lscに対応して標準反射板43の材料特性が条件(1)または条件(2)を満たすように設定される。
(1):ls
*≧2Lsc、かつ、g≦0.85
(2):ls
*≒2Lsc、かつ、g>0.85
ここで、ls
*は、標準反射板43を構成する材料の散乱平均自由行程を示し、gは、標準反射板43の散乱方向の異方性パラメータを示す。なお、条件(2)において、ls
*/Lsc=1〜3の範囲であればよい。
【0050】
また、
図1に示すように、ロッドレンズ36のファイバ長手方向の長さをR、測定プローブ3の先端から標準反射板43までの距離をLとし、さらにロッドレンズ36の規定波長λにおける屈折率をn、照明ファイバ31のコア径をρ
1とした場合、標準反射板43の検出位置における空間コヒーレンス長Lscは、以下の式(3)によって定義される。
Lsc=λ(R/n+L)/πρ
1 ・・・(3)
【0051】
このように、校正装置4は、条件(1)または条件(2)に基づいて、標準反射板43の散乱平均自由行程ls
*が予め設定されるとともに、条件(1)または条件(2)を満たす空間コヒーレンス長Lscとなるように距離Lを設定、或いは標準反射板43の距離Lを予め設定し、条件(1)または条件(2)を満たす散乱平均自由行程ls
*となるように標準反射板43の材料を調整または選択する。この場合、標準反射板43は、反射率が波長によらず一定である材料が選択される必要があるため、標準反射板43の散乱平均自由行程ls
*が設定されるとともに、条件(1)または条件(2)を満たす空間コヒーレンス長Lscとなるように距離Lが設定される方が好ましい。このとき、標準反射板43を構成する材料の散乱平均自由行程ls
*の値は、正確にわからなくも、第1検出ファイバ32、第2検出ファイバ33および第3検出ファイバ34のいずれかで検出される強度変化を標準反射板43の位置を変化させて検出し、第1検出ファイバ31および第2検出ファイバ32における検出強度の最小値になる位置を距離Lとして設定してもよい。
【0052】
ここで、条件(1)および条件(2)について詳細に説明する。条件(1)および条件(2)は、測定プローブ3からの照明光が標準反射板43で反射および/または散乱され戻り光となって測定プローブ3の先端に形成される干渉パターンの形状が標準反射板43の位置での空間コヒーレンス長Lscと標準反射板43の散乱平均自由行程ls
*とによって定まる(非特許文献2を参照)。
【0053】
図11は、空間コヒーレンス長Lscに対する散乱平均自由行程ls
*の比の値と、見かけの光源サイズαを干渉パターンの半値全幅w(FWHM=Full width at half maximum)で除算した比の値との関係を示す図である。
図12は、半値全幅wについて模式的に示す図である。
【0054】
図11に示すように、標準反射板43の散乱方向の異方性パラメータgが0.85より小さい場合、α/wの値は、ls
*/Lscの値が2を超えるあたりから収束の傾向を示す。また、標準反射板43の散乱方向の異方性パラメータgが0.85以上の場合、α/wの値は、ls
*/Lscの値が2付近で最大値を取る。即ち、ls
*/Lscの値が2付近で最大値になるとき、干渉パターンの半値全幅wが最も小さくなる。
【0055】
このように、最も干渉パターンの半値全幅wが小さくなる条件では、第1検出ファイバ32〜第3検出ファイバ34へ干渉パターンが入射することがなくなり、検出ファイバ位置では、一様強度の光束が得られる。これにより、
図11で示される半値全幅wと散乱媒質の散乱特性(ls
*/Lscおよびg)との関係から半値全幅wが最も小さくなる条件として、条件(1)または条件(2)を導くことができる。
【0056】
また、
図11および
図12に示す見かけの光源サイズαは、
図13のように、照明ファイバ31のコア径ρ
1を分子とし、照明ファイバ31から標準反射板43までの距離Lと、ロッドレンズ36の長さRをロッドレンズ36の屈折率nで除算した値R/nとの和を分母として表される量であり、以下の式(4)で表す。
α=ρ
1/(R/n+L) ・・・(4)
式(4)のαが小さいとき(α<0.1)、αは
図13に示す角度α’[rad]と等しくなる。従って、
図11の縦軸α/wは、照明ファイバ31のコアρ
1に相当する角度範囲αに干渉パターンの半値全幅wがどれくらい収まっているかを表す指標と言える。
【0057】
図14は、α/w=1の場合であり、干渉パターンの半値全幅wに相当する干渉ピークが、照明ファイバ31のコアρ
1内に収まる場合に相当する図である。
【0058】
図14に示すように、光学測定装置1は、干渉パターンの裾が第1検出ファイバ32および第2検出ファイバ33それぞれのコアに入らないようになる条件も考慮する。この条件は、半値全幅wの2倍(2w)に相当する位置よりも、検出ファイバ32のコアが外側に位置する。具体的には、干渉パターンの裾が第1検出ファイバ32および第2検出ファイバ33それぞれのコアに入らないことが重要である。なお、
図14においては、α/w=1の場合を示したが、半値全幅wが照明ファイバ31のコアρ
1内にある必要はない。たとえば、α/w=1でない場合、半値全幅wが第1検出ファイバ32および第2検出ファイバ33それぞれのコアに入らなければよい。このような状況は、第1検出ファイバ32〜第3検出ファイバ34および照明ファイバ31のクラッドの厚みが厚い場合である。
【0059】
また、
図3に示すように、照明ファイバ31のコア径がρ
1、クラッドの厚み(以下、「クラッド厚」という)がρ
2である場合、半値全幅wは、以下の条件(5)を満たす。
(5):(ρ
1+4ρ
2)/(R/n+L)>2w
【0060】
これに対して、
図15に示すように、照明ファイバ31のコア径をρ
1、クラッド厚をρ
2、第1検出ファイバ32、第2検出ファイバ33および第3検出ファイバ34それぞれのコア径をρ
3、クラッド厚をρ
4とした場合、半値全幅wは、以下の条件(6)を満たす。
(6):(ρ
1+2ρ
2+2ρ
4)/(R/n+L)>2w
【0061】
このように、測定プローブ3は、各ファイバの導光性を維持するため、クラッドの厚みが厚く設定されるので、上記の条件(5)または条件(6)を満たす。
【0062】
つぎに、光学測定装置1が実行する校正処理を含む演算処理について説明する。
図16は、光学測定装置1が実行する校正処理を含む演算処理の概要を示すフローチャートである。なお、以下において、chが各検出ファイバの番号を示し、λが波長を示す。
【0063】
図16に示すように、光学測定装置1は、校正装置4の挿入部41a内で内部反射校正データBA(ch,λ)を取得する(ステップS101)。具体的には、光学測定装置1は、校正装置4の挿入部41a内で照明ファイバ31に照明光を照射させることによって、第1検出部23、第2検出部24および第3検出部25が検出した測定プローブ内の内部反射校正データを取得する。
【0064】
続いて、光学測定装置1は、測定プローブ3の先端がストッパ部42に当接した状態で標準反射板43の標準反射板校正データIS(ch,λ)を取得する(ステップS102)。具体的には、光学測定装置1は、測定プローブ3のロッドレンズ36の先端がストッパ部42に当接した状態で照明ファイバ31が標準反射板43に照明光を照射することによって、第1検出部23、第2検出部24および第3検出部25がそれぞれ検出した標準反射板43の標準反射板校正データを取得する。
【0065】
その後、光学測定装置1は、測定対象物の計測データT(ch,λ)を取得する(ステップS103)。具体的には、光学測定装置1は、は、照明ファイバ31が測定対象物に照明光を照射することによって、第1検出部23、第2検出部24および第3検出部25がそれぞれ検出した計測データを取得する。
【0066】
続いて、演算部291は、計測データT(ch,λ)を、内部反射校正データBA(ch,λ)および標準反射板校正データIS(ch,λ)を用いて校正後データS(ch,λ)に変換する(ステップS104)。具体的には、演算部291は、以下の式(7)によって、計測データT(ch,λ)を校正後データS(ch,λ)に変換する。
S(ch,λ)
=(T(ch,λ)−BA(ch,λ))/(IS(ch,λ)
−BA(ch,λ)) ・・・(7)
【0067】
以上説明した本発明の実施の形態1によれば、測定プローブ3が挿入部41aに挿入された状態で測定プローブ3の先端部から所定の距離L離れた位置に配置され、照射面内で測定対象波長範囲における光の反射率が一様であるとともに、反射特性が安定した標準反射板43と、を備え、標準反射板43が所定の距離Lを用いて定められる空間コヒーレンス長Lscよりも標準反射板43を構成する材料の散乱平均自由行程が大きく設定される。この結果、煩雑な複数の校正項目を一つの動作で容易に取得することができる。
【0068】
(実施の形態2)
つぎに、本発明の実施の形態2について説明する。本実施の形態2は、校正装置の構成が上述した実施の形態1にかかる校正装置と異なる。このため、以下においては、本実施の形態2にかかる校正装置の構成を説明する。なお、上述した実施の形態1にかかる光学測定装置1および校正装置4と同一の構成には同一の符号を付して説明する。
【0069】
図17は、本実施の形態2にかかる校正装置の断面を模式的に示す図である。
図17に示す校正装置6は、略直方体の容器61と、測定プローブ3の挿入を防止するストッパ部62と、を備える。
【0070】
容器61は、測定プローブ3が挿入可能な挿入部61aと、内面が標準反射部材で構成された収容部61bと、を有する。
【0071】
ストッパ部62は、円環状をなし、収容部61b内に設けられる。ストッパ部62は、測定プローブ3が収容部61b内に挿入されることを防止する。ストッパ部62の内径は、測定プローブ3の外径より小さい。ストッパ部62は、測定プローブ3のロッドレンズ36の先端から収容部61bの底面までの距離Lを一定に維持する。
【0072】
以上説明した本発明の実施の形態2によれば、測定プローブ3を校正装置6の挿入部61aに挿入するだけで、煩雑な複数の校正項目を1回の操作で容易に行うことができる。
【0073】
なお、本発明の実施の形態2では、球状に形成してもよい。
図18は、本実施の形態2の変形例にかかる校正装置の断面を模式的に示す図である。
図18に示す校正装置7は、略球状をなす容器71と、測定プローブ3の挿入を防止するストッパ部72と、を備える。
【0074】
容器71は、測定プローブ3が挿入可能な挿入部71aと、内面が標準反射部材で構成された収容部71bと、を有する。
【0075】
以上説明した本発明の実施の形態2にかかる変形例によれば、測定プローブ3を校正装置7に挿入するだけで、煩雑な複数の校正項目を1回の操作で容易に行うことができる。
【0076】
(実施の形態3)
つぎに、本発明の実施の形態3について説明する。本実施の形態3は、校正装置の構成が異なる。このため、以下においては、本実施の形態3にかかる校正装置の構成について説明する。なお、上述した実施の形態1にかかる光学測定装置1および校正装置4と同一の構成には同一の符号を付して説明する。
【0077】
図19は、本実施の形態3にかかる校正装置の断面を模式的に示す図である。
図19に示す校正装置8は、容器81と、ストッパ部42と、標準反射板43と、を備える。
【0078】
容器81は、測定プローブ3が挿入可能な挿入部81aと、標準反射板43を収容する収容部81bと、を有する、容器81は、挿入部81aと収容部81bとが一体的に形成される。
【0079】
挿入部81aは、内面に光を反射しない部材または光源部21が出射する光の波長を吸収する光吸収部材が施された光吸収部81cを有する。具体的には、光吸収部81cは、黒塗りが施されている。
【0080】
このように構成された校正装置8を用いて行う校正処理について説明する。
図20は、光学測定装置1が校正装置8を用いて行う校正処理の概要を模式的に示す図である。
【0081】
図20に示すように、まず、光学測定装置1は、照明ファイバ31が挿入部81a内の光吸収部81cで照明光を照射した際に、第1検出部23、第2検出部24および第3検出部25がそれぞれ検出した内部反射校正データを取得する(
図20(a)→
図20(b))。この場合、光学測定装置1は、ユーザが測定プローブ3を挿入部81a内の途中で挿入を停止させたとき、内部反射校正データを取得してもよい。さらに、演算部291は、測定プローブ3がストッパ部42に当接するまで、内部反射校正データを連続的に取得し、取得した内部反射校正データの中から最小強度を示すデータを校正処理に用いる内部反射校正データとして選択してもよい。
【0082】
続いて、光学測定装置1は、照明ファイバ31が標準反射板43に照明光を照射した際に、第1検出部23、第2検出部24および第3検出部25が検出した標準反射板校正データを取得する(
図20(b))。好ましくは、演算部291は、ストッパ部42に測定プローブ3の先端が当接した際に、第1検出部23、第2検出部24および第3検出部25が検出した最大強度を示すデータを標準反射板構成データとして選択する。
【0083】
以上説明した本発明の実施の形態3によれば、測定プローブ3を校正装置8の挿入部81aに挿入する1回の操作だけで、複数の校正項目を同時に行うことができる。これにより、煩雑な作業を軽減することができるとともに、校正処理時における測定プローブ3の破損および校正データの取り忘れを防止することができる。
【0084】
また、本発明の実施の形態3によれば、簡易な構成で複数の校正項目を同時に行うことができる。
【0085】
なお、本発明の実施の形態3では、モータ等の駆動部によって標準反射板43の位置を移動可能に設け、測定プローブ3から標準反射板43までの距離を調整しながら、光学測定装置1が標準反射板校正データと内部反射校正データとを測定してもよい。
【0086】
(実施の形態4)
つぎに、本発明の実施の形態4について説明する。本実施の形態4は、校正装置の構成が異なる。このため、以下においては、本実施の形態4にかかる校正装置の構成について説明する。なお、上述した実施の形態1にかかる光学測定装置1および校正装置4と同一の構成には同一の符号を付して説明する。
【0087】
図21は、本実施の形態4にかかる校正装置の断面を模式的に示す図である。
図21に示す校正装置9は、容器91と、ストッパ部42と、標準反射板43と、を備える。
【0088】
容器91は、測定プローブ3が挿入される挿入部91aと、標準反射板43を収容する収容部91bと、を有する。収容部91bは、挿入部91aと収容部91bとが一体的に形成される。挿入部91aは、筒状をなし、一部を湾曲して収容部91bに接続される。
【0089】
このように構成された校正装置9を用いて校正処理を行う場合、光学測定装置1は、挿入部91aの湾曲する前で内部反射補正データを取得する。この際、測定プローブ3から出射された照明光が標準反射板43に照射されないので、測定プローブ3に照明光の戻り光の影響を防止することができる。
【0090】
以上説明した本発明の実施の形態4によれば、挿入部91aの一部を湾曲しているので、内部反射補正の校正時に標準反射板43からの戻り光の影響を防止することができるので、正確な校正処理を行うことができる。
【0091】
なお、本発明の実施の形態4では、挿入部91aの湾曲の角度が略90度であったが、測定プローブ3の正面に標準反射板43が見えない程度に湾曲していればよく、操作性を確保するために、湾曲の角度を適宜変更してもよい。
【0092】
なお、本発明の実施の形態4では、モータ等の駆動部によって標準反射板43の位置を移動可能に設け、測定プローブ3から標準反射板43までの距離を調整しながら、光学測定装置1が標準反射板校正データと内部反射校正データとを測定してもよい。
【0093】
(実施の形態5)
つぎに、本発明の実施の形態5について説明する。本実施の形態5は、校正装置の構成が異なる。このため、以下においては、本実施の形態5にかかる校正装置の構成について説明する。なお、上述した実施の形態1にかかる光学測定装置1および校正装置4と同一の構成には同一の符号を付して説明する。
【0094】
図22および
図23は、本実施の形態5にかかる校正装置の断面を模式的に示す図である。
図22および
図23に示す校正装置10は、容器101と、ストッパ部42と、標準反射板43と、シャッタ102と、駆動部103と、を備える。
【0095】
容器101は、測定プローブ3が挿入される挿入部101aと、標準反射板43を収容する収容部101bと、を有する。容器101は、挿入部101aおよび収容部101bが一体的に形成される。また、挿入部101aには、シャッタ102が進退可能に挿入可能な孔101cが設けられている。さらに、挿入部101aには、ストッパ部42が設けられている。
【0096】
シャッタ102は、円をなし、測定プローブ3が照射する照明光を遮蔽する。シャッタ102は、光吸収部材等を用いた黒色板を用いて構成される。
【0097】
駆動部103は、シャッタ102を孔101cに対して進退可能に駆動する。駆動部103は、DCモータやステッピングモータ等を用いて構成される。
【0098】
このように構成された校正装置10を用いて光学測定装置1が実行する校正処理について説明する。まず、光学測定装置1は、内部反射校正データを取得する。この場合、
図22に示すように、シャッタ102は、測定プローブ3が照射する照明光の光軸上に配置され、測定プローブ3が照射する照明光を遮蔽する。
【0099】
続いて、校正装置10は、駆動部103を駆動させて、シャッタ102を挿入部101aの孔101cから退避させる(
図23を参照)。
【0100】
その後、光学測定装置1は、標準反射板43に照明光を照射することによって、標準反射板校正データを取得する。
【0101】
以上説明した本発明の実施の形態5によれば、自動で光学測定装置1の校正項目を切り替えることができるので、1度の操作で複数の校正項目を容易に行うことができる。
【0102】
(実施の形態6)
つぎに、本発明の実施の形態6について説明する。本実施の形態6は、校正装置の構成が異なる。このため、以下においては、本実施の形態6にかかる校正装置の構成について説明する。なお、上述した実施の形態1にかかる光学測定装置1および校正装置4と同一の構成には同一の符号を付して説明する。
【0103】
図24は、本実施の形態6にかかる校正装置の断面を模式的に示す図である。
図24に示す校正装置11は、内部に空間を有し、挿入部111aを介して測定プローブ3が挿入される収容部111bと、挿入部111aに設けられ、測定プローブ3の挿入を防止するストッパ部42と、所定の軸を中心に回転する回転板112と、回転板112を回転させる駆動部113と、内面に光吸収部材が施され、内部反射校正データを取得する際に用いられる第1の容器114と、ストッパ部42から距離L離れた標準反射板43を収容した第2の容器115と、を備える。
【0104】
このように構成された校正装置11を用いて光学測定装置1が実行する校正処理について説明する。まず、光学測定装置1は、測定プローブ3を挿入部111aに挿入する。この場合、校正装置11は、駆動部113が駆動することによって、回転板112が回転し、挿入部111aの位置に第1の容器114が移動する。これにより、光学測定装置1は、内部反射校正データを取得することができる。
【0105】
続いて、校正装置11は、駆動部113が駆動することによって、回転板112が回転し、挿入部111aの位置に第2の容器115が移動する。これにより、光学測定装置1は、標準反射板校正データを取得することができる。
【0106】
以上説明した本発明の実施の形態6によれば、自動で光学測定装置1の校正項目を切り替えることができるので、煩雑な作業を行うことなく、一度の操作で校正処理のデータを取得することができる。
【0107】
なお、本発明の実施の形態6では、測定プローブ3と第1の容器114または第2の容器115との位置関係を相対的に変更することができればよく、たとえば挿入部111aを収容部111bの主面に対して回転可能に設けてもよい。
【0108】
(実施の形態7)
つぎに、本発明の実施の形態7について説明する。本実施の形態7は、測定プローブに校正装置が装着された状態で校正処理が実行される。このため、以下においては、本実施の形態7にかかる校正装置の構成について説明する。なお、上述した実施の形態1にかかる光学測定装置1および校正装置4と同一の構成には同一の符号を付して説明する。
【0109】
図25は、本実施の形態7にかかる校正装置に光学測定装置の測定プローブを装着した状態の断面を模式的に示す図である。
図25に示す校正装置12は、有底の直方体をなし、測定プローブ3から所定の距離L離れた位置に標準反射板43を有する。また、校正装置12は、測定プローブ3の先端を外力から保護する。
【0110】
このように構成された校正装置12は、光学測定装置1によって標準反射板校正データを取得された後、測定プローブ3から取り外される。その後、光学測定装置1は、内部に光吸収部材が施された容器に照明光を照射することによって、内部反射校正データを取得する。
【0111】
以上説明した本発明の実施の形態7によれば、測定プローブ3から標準反射板43までの所定の距離Lのばらつきを防止することができ、より正確な校正処理を行うことができる。
【0112】
なお、本発明の実施の形態7では、内視鏡装置51の処置具チャンネル51aが光吸収空間として使用できる場合、光学測定装置1は、内視鏡装置51の処置具チャンネル51a内で内部反射補正データを取得してもよい。