(58)【調査した分野】(Int.Cl.,DB名)
前記画像処理パイプラインモジュールはさらに、前記複数のカメラにより撮像した画像と前記視差確認測定モジュールからの視差の測定値を用いて、複数の撮像した画像の視差補償を行い、少なくとも1つの高解像度画像を生成するように構成された超解像度モジュールを含む、請求項1に記載のカメラアレイ。
前記超解像度モジュールは、焦点面のような少なくとも1つの距離を選択し、深度マップで焦点面に近接していない深度の少なくとも1つのより高い解像度画像の画素にぼけを適用するように構成される、請求項4に記載のカメラアレイ。
各カメラは、ベイヤーフィルタ、1つ以上の青フィルタ、1つ以上の緑フィルタ、1つ以上の赤フィルタ、1つ以上のシフトされたスペクトルフィルタ、1つ以上の近赤外線フィルタ、および1つ以上のハイパースペクトルフィルタからなる群から選択され、特定の光のスペクトル帯域を通過させるように構成されたスペクトルフィルタを含む、請求項1に記載のカメラアレイ。
少なくとも2つのカメラは赤フィルタを含み、少なくとも2つのカメラは緑フィルタを含み、少なくとも2つのカメラは青フィルタを含む、請求項1に記載のカメラアレイ。
前記複数のカメラは、第1の光のスペクトル帯域を通過させるように構成されたスペクトルフィルタを含む、少なくとも1つの第1のタイプのカメラと、第2の光のスペクトル帯域を通過させるように構成されたスペクトルフィルタを含む、少なくとも1つの第2のタイプのカメラと、を含む、請求項1に記載のカメラアレイ。
異なる種類のフィルタを含む前記カメラの制御回路は、前記カメラが動作パラメータにおける少なくとも1つの差異で動作するように構成される請求項13に記載のカメラアレイ。
前記動作パラメータにおける少なくとも1つの差異は、露出時間、ゲイン、及びバックレベルオフセットからなる群から選択される少なくとも1つの画像化パラメータを含む、請求項14に記載のカメラアレイ。
前記複数のカメラは、異なるタイプのカメラの対称的な分布、及び異なるタイプのカメラの不規則な分布からなる群から選択されるカメラの分布を含む、請求項13に記載のカメラアレイ。
【発明を実施するための形態】
【0020】
ここで、本発明の好ましい実施形態について図面を参照しながら説明する。図面の参照番号は、同一又は機能的に類似する構成要素を示す。また、図面において、各参照番号の最も左の数字は、参照番号が最初に用いられた図面に対応する。
【0021】
実施形態は、異なる画像特性の複数の撮像装置を用いて画像を撮像する分散型の手法の使用に関する。各撮像装置は、撮像装置が他の撮像装置により撮像された他の画像に対してサブ−ピクセル量だけ移動した画像を撮像するような手法で、他の撮像装置から空間的に移動していてもよい。各撮像装置はまた、異なるフィルタを有する分離した光学素子を含み、異なる動作パラメータ(例えば、露出時間)で動作してもよい。解像度が向上した画像を得るために画像が処理されることにより、はっきりとした画像が生成される。各撮像装置は、ウェハレベルオプティクス(WLO)技術を用いて製造された光学素子と関連付けられていてもよい。
【0022】
センサ素子又は画素は、カメラアレイにおける個々の光検出素子を示す。センサ素子又は画素は、とりわけ、従来のCIS(CMOSイメージセンサ)、CCD(電荷結合素子)、高ダイナミックレンジ画素、多重スペクトル画素およびそれらの様々な代替手段を含む。
【0023】
撮像装置は、画素の2次元アレイを示す。各撮像装置のセンサ素子は、類似した物理的特性を有し、同一の光学的な構成要素からの光を受光する。さらに、各撮像装置におけるセンサ素子は、同一のカラーフィルタと関連付けられてもよい。
【0024】
カメラアレイは、単一の構成要素として機能するように設計された撮像装置の集合を示す。カメラアレイは、様々な装置に搭載または実装する単一のチップ上に製造されてもよい。
【0025】
カメラアレイのアレイは、2以上のカメラアレイの集合体を示している。2以上のカメラアレイは、単一のカメラアレイにわたって拡張された機能性を提供するように、連動して動作してもよい。
【0026】
撮像装置の画像特性は、撮像した画像と関連付けられた画像の特性またはパラメータを示している。画像特性は、とりわけ、撮像装置の大きさ、撮像装置に含まれる画素の型、撮像装置の形状、撮像装置と関連付けられたフィルタ、撮像装置の露出時間、撮像装置と関連付けられた開口(アパーチャ)の大きさ、撮像装置と関連付けられた光学素子の構成、撮像装置のゲイン、撮像装置の解像度、および撮像装置の動作時間を含んでいてもよい。
【0027】
(カメラアレイの構造)
図1は、本実施形態に係る、撮像装置1A〜NMを備えるカメラアレイ100の平面図である。カメラアレイ100は、複数の撮像装置1A〜NMを含むように、半導体チップ上に作製される。各撮像装置1A〜NMは、複数の画素(例えば、0.32メガピクセル)を含んでもよい。一実施形態において、撮像装置1A〜NMは、
図1に示すように、格子形式で配置される。他の実施形態において、撮像装置は、非格子形式で配置される。例えば、撮像装置は、円形パターン、ジグザグパターンまたは散乱パターンで配置されてもよい。
【0028】
カメラアレイは、2以上の型の異なる種類の撮像装置を含んでもよく、各撮像装置は、2以上のセンサ要素または画素を含んでもよい。撮像装置のいずれか1つは、異なる画像特性を有していてもよい。あるいは、2以上の異なる型は、同一型の撮像装置が同一の画像特性を共有するものであってもよい。
【0029】
一実施形態において、各撮像装置1A〜NMは、独自のフィルタおよび/または光学素子(例えば、レンズ)を有する。特に、各撮像装置1A〜NMまたは撮像装置群は、光の特定波長を受光するために、スペクトルカラーフィルタと関連付けられていてもよい。例示のフィルタは、ハイパースペクトルが画像化の需要に適合するために、ベイヤー(Bayer)パターン(R、G、Bまたはそれらの補色C、M、Y)で用いられる従来のフィルタ、IR(赤外線)カットフィルタ、近赤外線フィルタ、偏光フィルタおよびカスタムフィルタを含む。いくつかの撮像装置は、信号−ノイズ比が増加するため、可視光全体および近赤外線の両方の受光を許容するために、フィルタを有していなくてもよい。フィルタの正確な数は、カメラアレイにおける撮像装置の数と同様であってもよい。さらに、各撮像装置1A〜NMまたは撮像装置群は、異なる光学的特性(例えば、焦点距離)または異なる大きさの開口を有するレンズを介して光を受光してもよい。
【0030】
一実施形態において、カメラアレイは、他の関連する回路を含む。他の関連する回路は、とりわけ、画像化パラメータを制御する回路および物理的なパラメータを検出するセンサを含んでもよい。制御回路は、露出時間、ゲインおよびバックレベルオフセットのような画像化パラメータを制御してもよい。センサは、動作温度における暗電流を測定するための暗画素を含んでもよい。暗電流は、基板が被害を受ける熱クリープに対するオン・ザ・フライ補償のために測定されてもよい。
【0031】
一実施形態において、画像パラメータを制御する回路は、各撮像装置が独立して、または各撮像装置を同期させた手法において、動作させてもよい。(シャッターのオープンと類似した)カメラアレイにおける様々な撮像装置のための露出期間の開始は、いくつかの撮像装置が光に対して同時に露出される間に、撮像シーンが連続してサンプリングされるために重複する手法において交互になっていてもよい。N回露出/秒で撮像シーンをサンプリングする従来のビデオカメラにおいて、露出時間/サンプリングは、1/N秒に制限される。複数の撮像装置では、複数の撮像装置が交互の手法において画像を撮像するように動作されるため、このように露出時間/サンプリングが制限されることはない。
【0032】
各撮像装置は、独立して動作されうる。全部またはほとんどの動作は、個別化されうる各個別の撮像装置と関連付けられている。一実施形態において、マスター設定がプログラムされ、このようなマスター設定からのずれ(例えば、オフセットまたはゲイン)は、各撮像装置に対して設定される。ずれは、高ダイナミックレンジ、ゲイン設定、積分時間設定、デジタル処理設定またはそれらの組み合わせのような機能を反映してもよい。これらのずれは、特定のカメラアレイのために、低いレベル(例えば、ゲインにおけるずれ)において、または高いレベル(例えば、ISO番号における差異、これは、その後、コンテクスト/マスター制御レジスタにより特定されるようなゲイン、積分時間、またはそれら以外に対するデルタへ自動的に変換される)において特定されうる。マスター値の設定およびマスター値からのずれにより、制御抽出の高いレベルは、多くの動作に対して、単純化したプログラミングモデルを容易にするように達成されうる。一実施形態において、撮像装置に対するパラメータは、対象用途のために適宜固定される。他の実施形態において、撮像装置に対するパラメータは、高度の柔軟性およびプログラミング性を許容するように構成される。
【0033】
一実施形態において、既存の携帯電話および他の携帯装置で使用されるカメライメージセンサのために、カメラアレイは、ドロップイン交換(drop−in replacement)として設計される。この目的のために、カメラアレイは、ほぼ同一の解像度であるが、多くの写真の状況において従来のイメージセンサを超えるカメラアレイの解像度を達成した、従来のイメージセンサと物理的な互換性があるように設計されてもよい。増大したパフォーマンスを利用して、本実施形態のカメラアレイは、従来のイメージセンサと比べて同等またはより高品質の画像を取得するために、より少ない画素を含んでいてもよい。あるいは、撮像装置における画素の大きさは、同等の成果が達成されるものの、従来のイメージセンサの画素と比べて減少してもよい。
【0034】
シリコン領域を増加させずに従来のイメージセンサの行数に一致させるためには、個々の撮像装置に対するロジックオーバーヘッドは、シリコン領域において制約されることが好ましい。一実施形態において、画素制御ロジックの多くは、各撮像装置に適用可能な機能のより小さなセットを備える全てのまたはほとんどの撮像装置に共通な機能の単一集合である。この実施形態において、撮像装置に対する従来の外部インターフェースは、撮像装置にとってデータ出力があまり増加しないために用いられる。
【0035】
一実施形態において、撮像装置を含むカメラアレイは、Mメガピクセルの従来のイメージセンサを置き換える。カメラアレイは、N×Nの撮像装置を含んでおり、各センサは、N
2/Mの画素を含む。カメラアレイの各画素はまた、従来のイメージセンサを置き換えるような同一のアスペクト比を有する。表1は、従来のイメージセンサを置き換える本発明に係るカメラアレイの構成例を一覧表にしたものである。
【表1】
【0036】
表1中の超解像度係数は、推測値であり、実効解像度値は、処理によって達成される実際の超解像度係数を基本とするものとは異なってもよい。
【0037】
カメラアレイにおける撮像装置の数は、とりわけ他の要因として(i)解像度、(ii)視差、(iii)感度、および(iv)ダイナミックレンジに基づいて、求められてもよい。撮像装置の大きさに対する第1の要因は、解像度である。解像度の視点から、撮像装置の数の範囲は、2×2個から6×6個であることが好ましく、これは、6×6個よりも大きいアレイの大きさでは、超解像度処理により再作成されない周波数情報が破壊される可能性があるためである。例えば、2×2個の撮像装置での8メガピクセル解像度は、各撮像装置に2メガピクセルを有するように要求するであろう。同様にして、5×5個の撮像装置での8メガピクセル解像度は、各撮像装置に0.32メガピクセルを有するように要求するであろう。
【0038】
撮像装置の数を制約しうる第2の要因は、視差および閉塞(occlusion)の問題である。撮像された画像における対象物に対して、撮像装置の視野から塞がれる背景シーンの部分は、「閉塞セット」と呼ばれる。2つの撮像装置が2つの異なる位置から対象物を撮像したとき、各撮像装置の閉塞セットは異なる。よって、他の撮像装置ではない一の撮像装置により撮像されたシーン画素が存在しうる。この閉塞の問題を解決するために、撮像装置の所与の型に対する撮像装置の特定の最小セットを含むことが望まれている。
【0039】
撮像装置の数でのより低い限界をもたらす第3の要因は、低光状況における感度の問題である。低い光感度を向上させるために、近赤外線スペクトラムを検出する撮像装置が求められうる。近赤外線撮像装置のような調整を行うために、カメラアレイにおける撮像装置の数は、増加させることが求められうる。
【0040】
撮像装置の大きさを決定する第4の要因は、ダイナミックレンジである。カメラアレイにおいてダイナミックレンジを提供するために、同一のフィルタ型(彩度(chroma)または輝度(luma))のいくつかの撮像装置を提供すると都合がよい。同一フィルタ型の各撮像装置は、その後、異なる開口を同時に動作させてもよい。異なる開口で撮像された画像は、高ダイナミックレンジを生成するように処理されてもよい。
【0041】
これらの要因に基づくと、撮像装置の数は、2×2個から6×6個であることが好ましい。4×4個および5×5個の構成は、2×2個および3×3個の構成よりもより好ましい。これは、4×4個および5×5個の構成が、閉塞問題を解決するために十分な撮像装置の数を提供する可能性があり、感度およびダイナミックレンジが増大するためである。同時に、これらのアレイの大きさから解像度を再生するために要求されるコンピュータへの負荷は、6×6個のアレイにおいて要求されるものと比較して、少量である。一方、6×6個以上のアレイは、光学ズームおよび複数スペクトル画像化のような付加的な特徴を提供するために用いられうる。
【0042】
その他には、輝度サンプリングに貢献する撮像装置の数が考慮される。近赤外線サンプリングに貢献するアレイにおける撮像装置が、達成される解像度を減少させないことを確実にすることにより、近赤外線撮像装置からの情報は、輝度撮像装置により撮像された解像度に追加される。このために、少なくとも50%の撮像装置は、輝度および/または近赤外線スペクトルをサンプリングするために用いられうる。4×4個の撮像装置を有する一実施形態において、4個の撮像装置は、輝度をサンプリングし、4個の撮像装置は、近赤外線をサンプリングし、残りの8個の撮像装置は、2つの彩度(赤および青)をサンプリングする。5×5個の撮像装置を有する他の実施形態において、9個の撮像装置は、輝度をサンプリングし、8個の撮像装置は、近赤外線をサンプリングし、残りの8個の撮像装置は、2つの彩度(赤および青)をサンプリングする。さらに、これらのフィルタを有する撮像装置は、視差による閉塞に対処するために、カメラアレイ内に対称的に配置されてもよい。
【0043】
一実施形態において、カメラアレイにおける撮像装置は、所定の間隔で互いに空間的に離間される。空間的な離間が増加することにより、撮像装置により撮像された画像間での視差は、増加しうる。この増加した視差は、より正確な距離情報が重要であるという利点がある。2つの撮像装置間の離間はまた、人間の目と目の離間に近似するように増加してもよい。人間の目と目の離間に近似させることにより、現実的で立体的な3D画像は、適切な3D表示装置上の得られた画像を表現するように提供されてもよい。
【0044】
一実施形態において、複数のカメラアレイは、空間制約を解消するために、装置上の異なる位置で提供される。カメラアレイの1つは、制限された空間内に適合するように設計されてもよいが、他のカメラアレイは、装置の他の制限された空間において配置されてもよい。例えば、総数で20個の撮像装置が要求されたが、取得可能な空間が、装置のいずれの側にも提供される1×10個のカメラのみしか許容しない場合、それぞれ10個の撮像装置を含む2つのカメラアレイは、装置の両側の取得可能な空間上に配置されてもよい。各カメラアレイは、基板上に作製されてもよく、マザーボードまたは装置の他の部品に固定されてもよい。複数のカメラアレイから収集された画像は、所望の解像度およびパフォーマンスの画像を生成するように処理されてもよい。
【0045】
単一の撮像装置に対する設計は、他の型の撮像装置をそれぞれ含む異なるカメラアレイに適用されてもよい。空間的な距離、カラーフィルタおよび同一のまたは他のセンサとの組み合わせのようなカメラアレイにおける他の変化量は、異なる画像化特性を有するカメラアレイを製造するために変更されてもよい。このように、様々なカメラアレイの組み合わせは、スケールメリットの利益を維持しつつ、製造されてもよい。
【0046】
(ウェハレベルオプティクス集積)
一実施形態において、カメラアレイは、ウェハレベルオプティクス(WLO)技術を用いている。WLO技術は、ガラスウェハ上に光学素子をモールドし、その後に、撮像装置を有する光学素子を直接的にモノリシックの統合モジュールにパッケージ化する。WLO処理は、他の処理と共に、ダイヤモンド−チューンド(diamond−turned)モールドを用いてガラス基板上に各プラスチックレンズ素子を作製する工程を含んでもよい。
【0047】
図2Aは、一実施形態に係るウェハレベルオプティクス210およびカメラアレイ230を備えるカメラアレイアセンブリ200の斜視図である。ウェハレベルオプティクス210は、複数のレンズ素子220を含み、各レンズ素子220は、カメラアレイ230における25個の撮像装置250のうちの1つを担っている。なお、カメラアレイアセンブリ200は、カメラアレイ230全体を覆っている単一の大きなレンズと比べてより狭い空間を占める、より小さいレンズ素子のアレイを有する。
【0048】
図2Bは、一実施形態に係るカメラアレイアセンブリ250の断面図である。カメラアレイアセンブリ250は、上部レンズウェハ262と、下部レンズウェハ268と、複数の撮像装置が形成される基板278と、スペーサ258,264,270と、を含む。カメラアレイアセンブリ250は、封止部254内でパッケージ化される。上部スペーサ258は、封止部254と上部レンズウェハ262との間に配置される。複数の光学素子288は、上部レンズウェハ262上に形成される。中間スペーサ264は、上部レンズウェハ262と下部レンズウェハ268と間に配置される。他の光学素子対286は、下部レンズウェハ268上に形成される。下部スペーサ270は、下部レンズウェハ268と基板278との間に配置される。スルーシリコンビア274はまた、撮像装置からの信号を伝達する経路に設けられる。上部レンズウェハ262は、光を遮断するために光遮断材料284(例えば、クロム)を部分的にコーティングしてもよい。上部レンズウェハ262の大部分の部材は、下部レンズウェハ268および撮像装置へ光を通過させる開口として機能する光遮断材料284がコーティングされない。
図2Bの一実施形態において、フィルタ282は、下部レンズウェハ268上に形成される。光遮断材料280(例えば、クロム)はまた、光遮断器として機能させるために、下部レンズウェハ268および基板278上にコーティングしてもよい。表面のうち、底面は、裏面再配線層(RDL)および半田ボール276で覆われる。
【0049】
一実施形態において、カメラアレイアセンブリ250は、5×5アレイの撮像装置を含む。カメラアレイアセンブリ250は、幅Wが7.2mmであり、長さが8.6mmである。カメラアレイにおける各撮像装置は、幅Sが1.4mmであってもよい。光学構成要素全体の高さt1は、約1.26mmであり、カメラアレイアセンブリ全体の高さt2は、2mm以下である。
【0050】
図3Aおよび3Bは、xy平面内での大きさの変化に従うレンズ素子の高さの変化を示すブロック図である。
図3Bにおけるレンズ素子320は、
図3Aにおけるレンズ素子310に比べて、1/n倍の大きさである。レンズ素子320の直径L/nが倍数nによって直径Lよりも小さくなるため、レンズ素子320の高さt/nはまた、倍数nによってレンズ素子310の高さtよりも小さくなる。よって、より小さなレンズ素子のアレイを用いることにより、カメラアレイアセンブリの高さを非常に低くすることができる。高さが低くなったカメラアレイアセンブリは、主光線角度の向上、ひずみの低減、色収差の向上のようなより高い光学特性を有するレスアグレッシブレンズを設計するために用いられる。
【0051】
図3Cは、カメラアレイアセンブリの厚さを低減することにより主光線角度(CRA)を向上させることを示している。CRA1は、カメラアレイ全体を覆う単一のレンズに対する主光線角度である。カメラアレイとレンズとの間の距離が増加することにより主光線角度は低減されるが、厚さ制限は、カメラアレイとレンズとの間の距離の増加を制限する。よって、単一レンズ素子を有するカメラアレイに対するCRA1は、大きくなり、その結果、光学的な性能が低下する。CRA2は、他の寸法と同様の厚さで拡大されるカメラアレイにおける撮像装置に対する主光線角度である。CRA2は、従来のカメラアレイのCRA2と同様のまま維持され、主光線角度における向上をもたらさない。しかし、
図3Cに示すような撮像装置とレンズ素子との距離を変更することにより、カメラアレイアセンブリにおける主光線角度CRA3は、CRA1またはCRA2と比べて減少し、その結果、より高い光学的性能が得られる。上述したように、本発明に係るカメラアレイは、厚さの低減が求められており、したがって、レンズ素子およびカメラアレイの距離は、主光線角度を向上させるように増加されてもよい。
【0052】
また、レンズ素子は、各レンズ素子が光の狭帯域に向くように設計するために、広い光スペクトルを占める従来のレンズ素子と比べて、より高いまたは同等の性能を発揮させる、より厳密な設計制限を受け易い。例えば、可視光または近赤外線スペクトルを受光する撮像装置は、この光のスペクトル帯域に特化したレンズ素子を有していてもよい。他の光スペクトルを検出する撮像装置に対して、レンズ素子は、焦点面が光の異なるスペクトル帯域と同一であるために、異なる焦点距離を有していてもよい。異なる光の波長にわたる焦点面のマッチングは、撮像装置において撮像された画像の鮮明さを増加させ、かつ縦色収差を低減させる。
【0053】
小さなレンズ素子の他の利点は、とりわけ、コストの削減、材料使用量の削減、および製造工程の削減を含む。xおよびy次元での大きさがn
2のレンズを提供することにより(したがって、厚さは1/nとなる)、レンズ素子を製造するためのウェハサイズもまた、低減されてもよい。このコストおよび材料使用量の削減は非常に大きい。さらに、レンズ基板の数が低減されると、製造工程の工数が削減され、かつ生産量に付随するコストが削減される。本発明に係るカメラアレイに対する画素の大きさが従来のイメージセンサと実質的に同一となりうるため、撮像装置に対してレンズアレイを検知するように要求する配置の正確さは、通常、従来の撮像装置の場合よりも厳しくはない。
【0054】
一実施形態において、WLO製造工程は、(i)レンズをモールドする前に基板上にレンズ素子遮断部をめっきすることによりレンズ素子遮断部を組み込む工程と、(ii)基板に孔をエッチングして、基板を介してレンズの2面モールドを行う工程と、を含んでいる。基板における孔のエッチングには、プラスチックと基板とでインデックスの不一致が生じないようにするという利点がある。この手法では、全てのレンズ素子に対して自然な遮断を形成する(レンズの周縁を黒く塗ることと同様な)光吸収基板が用いられうる。
【0055】
一実施形態において、フィルタは、撮像装置の一部分である。他の実施形態において、フィルタは、WLOシステムの一部分である。
【0056】
(画像化システムおよび処理パイプライン)
図4は、一実施形態に係る、撮像システム400を示す機能ブロック図である。画像化システム400は、他の構成要素と共に、カメラアレイ410と、画像処理パイプラインモジュール420と、コントローラ440と、を含んでもよい。カメラアレイ410は、上述の
図1および2を参照して詳細を説明したように、2以上の撮像装置を含む。画像412は、カメラアレイ410における2以上の撮像装置により撮像される。
【0057】
コントローラ440は、カメラアレイ410の様々な動作パラメータを制御するハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせである。コントローラ440は、ユーザまたは他の外部構成要素から入力446を受信し、動作信号442を送信して、カメラアレイ410を制御する。コントローラ440はまた、画像処理パイプラインモジュール420へ情報444を送信して、画像412の処理を支援してもよい。
【0058】
画像処理パイプラインモジュール420は、カメラアレイ410から受信した画像を処理するハードウェア、ファームウェア、ソフトウェアまたはこれらの組み合わせである。画像処理パイプラインモジュール420は、例えば、以下の
図5を参照して詳細を説明するように、複数の画像を処理する。処理された画像422は、その後、ディスプレイ、ストレージ、送信部またはさらなる処理へ送信される。
【0059】
図5は、一実施形態に係る画像処理パイプラインモジュール420を示す機能ブロック図である。画像処理パイプラインモジュール420は、他の構成要素と共に、アップストリームパイプライン処理モジュール510と、画像画素相関モジュール514と、視差確認測定モジュール518と、視差補償モジュール522と、超解像度モジュール526と、アドレス変換モジュール530と、アドレス位相オフセット校正モジュール554と、ダウンストリーム色処理モジュール564と、を含んでもよい。
【0060】
アドレス位相オフセット校正モジュール554は、製造工程におけるカメラアレイ特性評価、またはそれに続く再校正処理の間に作成される校正データを記憶する記憶装置である。校正データは、撮像装置における物理的な画素572のアドレスと画像の論理的なアドレス546、548との間のマッピングを示している。
【0061】
アドレス変換モジュール530は、アドレス位相オフセット校正モジュール554に記憶された校正データに基づいて、正規化を行う。特に、アドレス変換モジュール530は、撮像装置における個々の画素の「物理」アドレスを、撮像装置における個々の画素の「論理」アドレス548へ変換する、またはその逆の処理を行う。高解像度処理で解像度が改善された画像を作成するために、個々の撮像装置における対応する画素間の位相差が解像のために必要とされる。超解像度処理は、得られた画像における各画素について、各撮像装置からの入力画素セットが常にマッピングされること、および各撮像装置に対する位相オフセットが得られた画像における画素の位置に対して既知であることの役割を担ってもよい。アドレス変換モジュール530は、一連の処理で、画像412における物理アドレスを得られた画像の論理アドレスへ変換することにより、このような位相差を解消する。
【0062】
撮像装置540により撮像された画像412は、アップストリームパイプライン処理モジュール510へ提供される。アップストリームパイプライン処理モジュール510は、1または複数の黒レベル校正及び調整、固定されたノイズ補償、光学PSF(point spread function:点拡がり関数)デコンボリューション、ノイズ削減、並びにクロストーク削減を行ってもよい。アップストリームパイプライン処理モジュール510により画像が処理された後に、画像画素相関モジュール514は、撮像された対象物がカメラアレイへ近づくと、より明瞭となる視差を計数するための計算を行う。特に、画像画素相関モジュール514は、視差を補償するように、異なる撮像装置により撮像された画像の一部を位置合わせする。一実施形態において、画像画素相関モジュール514は、閾値を有する近接する画素の平均値間の差を比較し、この差が閾値を超えた場合には、視差の存在する可能性のフラグを立てる。閾値は、カメラアレイの動作条件の関数として動的に変化してもよい。さらに、近接する画素の平均値の計算はまた、選択された撮像装置の特定の動作条件に適合しており、選択された撮像装置の特定の動作条件を反映してもよい。
【0063】
その後、画像は、視差確認測定モジュール518により処理され、視差を検出および測定する。一実施形態において、視差検出は、ランニング(running)画素相関モニタにより実現される。この動作は、同様の集積時間条件を有する撮像装置にわたる論理画素空間において、実行される。シーンが事実上の無限大である場合には、撮像装置からのデータは、高い相関があり、ノイズに基づく変化量のみに依存する。しかし、対象物がカメラに十分近い場合には、視差効果は、撮像装置間の相関を変化させるように導入される。撮像装置の空間的なレイアウトによると、視差−誘導変化の性質は、常に全ての撮像装置にわたっている。測定制度の制限内で、撮像装置対の間の相関差は、他の撮像装置対の間の相関差および他の撮像装置にわたる相関差を示す。この情報の冗長性は、他の撮像装置対上で同一のまたは類似の計算を行うことにより、高い精度の視差確認および測定を可能にする。他の撮像装置対に視差が存在する場合には、視差は、撮像装置の位置を考慮したシーンのほぼ同一の物理的な位置において生じなければならない。視差の測定は、様々なペア−ワイズ測定のトラックを保つこと、およびサンプルデータに適合する最小二乗(または類似の統計量)として「実際の」視差の差異を計算することにより、同時に実現されてもよい。視差を検出する他の方法は、フレームからフレームまでの垂直および水平高周波数画像素子を検出および追跡するステップを含んでいてもよい。
【0064】
視差補償モジュール522は、超解像度処理により要求された位相オフセット情報の制度よりも大きい視差の差異を導くようなカメラアレイに十分近接した対象物を含む画像を処理する。視差補償モジュール522は、超解像度処理の前に、視差確認測定モジュール518で生成された示唆情報に基づく走査線を用いて、さらに、物理画素アドレスと論理画素アドレスとの間のマッピングを調整する。この処理中に2つのケースが発生する。通常のケースでは、アドレスおよびオフセットの調整は、他の撮像装置において、入力画素が、画像ワイズ対応画素に対応する位置へ移動したときに要求される。この場合には、超解像度処理の前に、視差に対するさらなる処理が要求されることはない。通常ではないケースでは、画素または画素群は、閉塞セットを露出するような手法で移動される。この場合には、視差補償処理は、超解像度処理における閉塞セットの画素が考慮されないことを示すタグ付けされた画素データを生成する。
【0065】
特定の撮像装置に対する示唆の変化が正確に求められた後に、視差情報524は、アドレス変換モジュール530へ送信される。アドレス変換モジュール530は、アドレス位相オフセット校正モジュール554からの校正データ558と共に、視差情報524を用いて、論理画素アドレスの計算に適用される適切なXおよびYオフセットを求める。アドレス変換モジュール530はまた、超解像度処理により作成された結果画像428における画素に対する特定の撮像装置の画素への関連サブピクセルオフセットを求める。アドレス変換モジュール530は、視差情報524を考慮して、示唆を計数する物理アドレス546を提供する。
【0066】
視差補償を行った後に、画像は、以下に詳細を説明するように、超解像度モジュール526により、低解像度画像から高解像度合成画像422を取得するように処理される。高解像度合成画像422は、その後、ダウンストリーム色処理モジュール564へ供給され、ホワイトバランス、カラー補正、ガンマ補正、RGBからYUVへの補正、エッジ認識鮮明化、コントラスト促進および圧縮の動作のうち1または複数の処理が行われる。
【0067】
画像処理パイプラインモジュール420は、画像のさらなる処理のための構成要素を含んでもよい。例えば、画像処理パイプラインモジュール420は、単一の画素検出または画素検出の一群により生じた画像中の異常を補正する補正モジュールを含んでもよい。補正モジュールは、カメラアレイ、カメラアレイとは別の構成要素、または超解像度モジュール526の一部分として、同一のチップ上に統合されていてもよい。
【0068】
(超解像度処理)
一実施形態において、超解像度モジュール526は、撮像装置540により撮像された低解像度画像を処理することによって、高解像度合成画像を生成する。合成画像全体の画像品質は、個々の撮像装置のいずれか1つにより撮像された画像よりも高い。すなわち、個々の撮像装置が相乗的に動作すると、サブサンプリングなしであっても、スペクトルの狭い部分を撮像する個々の撮像装置の能力を用いて、高品質画像にそれぞれ寄与する。超解像度に関連付けられた画像情報は、以下のように表現されてもよい。
【数2】
W
kは、k個の各撮像装置で撮像された、各LR画像(y
k)に対するHRシーン(x)(ぼけ、モーションおよびサブサンプリング)の寄与を示し、n
kは、ノイズ寄与を示す。
【0069】
図6Aから
図6Eは、本発明の実施形態に係る超過像度処理を介して高解像度画像を取得するための様々な撮像装置の構成を示している。
図6Aから
図6Eにおいて、「R」は、赤フィルタを有する撮像装置を示し、「G」は、緑フィルタを有する撮像装置を示し、「B」は、青フィルタを有する撮像装置を示し、「P」は、可視スペクトル全体および近赤外線にわたる検出感度を有する多色撮像装置を示し、「I」は、近赤外線フィルタを有する撮像装置を示す。多色撮像装置は、可視スペクトルおよび近赤外線の全ての部分(例えば、650nmから800nm)からの画像をサンプリングしてもよい。
図6Aの実施形態において、撮像装置の中央の行および列は、多色撮像装置を含む。カメラアレイの残りの領域は、緑フィルタ、青フィルタおよび赤フィルタを有する撮像装置で満たされる。
図6Aの実施形態は、近赤外線スペクトルのみを検出する撮像装置は含んでいない。
【0070】
図6Bの実施形態は、従来のベイヤーフィルタマッピングと類似する構成を有する。この実施形態は、多色撮像装置または近赤外線撮像装置を含んでいない。上述の
図1を参照して詳細を説明したように、
図6Bの実施形態は、個々の画素に対してマッピングされるのではなく各カラーフィルタが各撮像装置に対してマッピングされる点で、従来のベイヤーフィルタの構成とは異なっている。
【0071】
図6Cは、多色撮像装置が対称的な格子縞模様のパターンを形成する実施形態を示している。
図6Dは、4つの近赤外線撮像装置が提供される実施形態を示している。
図6Eは、不規則な撮像装置を備える実施形態を示している。
図6Aから
図6Eの実施形態は、一例に過ぎず、様々な撮像装置のレイアウトが用いられてもよい。
【0072】
多色撮像装置および近赤外線撮像装置を使用することの利点は、これらのセンサが低い照明条件において高い品質の画像を撮像しうることである。多色撮像装置または近赤外線撮像装置により撮像された画像は、標準色撮像装置から取得された画像のノイズ除去のために用いられる。
【0073】
複数の低解像度画像を集合させることによる解像度の増加の根拠は、異なる低解像度画像がわずかに異なる同一シーンの視点を示すという事実に基づいている。LR画像が画素の整数ユニットにより全て移動した場合には、各画像は、その後、実質的に同一の情報を含む。したがって、LR画像において、HR画像を生成するために用いられうる新たな情報は存在しない。実施形態に係る撮像装置では、列または行における各撮像装置が、その近傍の撮像装置からの距離の固定サブピクセルであるように、撮像装置のレイアウトは、プリセットされ、かつ制御されてもよい。ウェハレベル製造およびパッケージ処理は、撮像装置の正確な情報を、超解像度処理で要求されるサブピクセル精度で実現することを許容する。
【0074】
スペクトル検出素子を異なる撮像装置に分離することの問題は、撮像装置の物理的な分離により生じる視差である。撮像装置が対称的に配置されていることを確実にすることにより、少なくとも2つの撮像装置が、前景(フォアグランド)対象物のエッジ周辺の画素を撮像することができる。このように、前景対象物のエッジ周辺の画素は、閉塞を回避することと同様に、解像度を増加させるように集合されてもよい。他の視差に関する問題は、色のサンプリングである。色のサンプリングの問題は、多色撮像装置における視差情報を用いて、色をフィルタした撮像装置からの色のサンプリング精度を向上させることにより、低減されてもよい。
【0075】
一実施形態において、近赤外線撮像装置は、可視スペクトル撮像装置と比較された、相対輝度差を求めるために用いられる。対象物は、可視スペクトルおよび近赤外線スペクトルにより撮像された画像における差が得られる、異なる材料反射率を有する。低い照明条件において、近赤外線撮像装置は、ノイズ比に対してより高い信号を示す。したがって、近赤外線センサからの信号は、輝度画像を改善するために用いられる。近赤外線画像から輝度画像への細部(ディティール)の転送は、超解像度処理を介して、異なる撮像装置からのスペクトル画像を統合する前に、行われてもよい。このように、シーンについてのエッジ情報は、超解像度処理において効果的に用いられうるエッジ保存画像を構築するように改善されてもよい。近赤外線撮像装置を使用することの利点は、ノイズ(例えば、n)に対する評価の改善がオリジナルのHRシーン(x)のよりよい評価をもたらす式(2)から明らかである。
【0076】
図7は、一実施形態に係る複数の撮像装置により撮像されたLR画像からHR画像を生成する処理を示すフローチャートである。まず、710において、輝度画像、近赤外線画像および彩度画像は、カメラアレイにおける撮像装置により撮像される。その後、714において、撮像された画像上で、撮像装置の物理アドレスから改善された画像の論理アドレスへマッピングするために、正規化が行われる。その後、720において、撮像装置間の空間的な分離による撮像装置の視界における差を解決するために、視差補償が行われる。その後、724において、超解像輝度画像、超解像近赤外線画像、および超解像彩度画像を取得するために、超解像度処理が行われる。
【0077】
その後、728において、照明条件が予め設定されたパラメータよりも優れているか判定する。照明条件が予め設定されたパラメータよりも優れている場合には、処理は、730において、超解像輝度画像に対する超解像近赤外線画像の正規化を続行する。その後、742において、焦点復帰(focus recovery)が行われる。一実施形態では、742において、PSF(point spread function:点拡がり関数)を用いて各チャネル当たりのぼけを修正する焦点復帰が行われる。その後、746において、超解像度画像は、近赤外線画像および輝度画像に基づいて、処理される。その後、750において、合成された画像が構築される。
【0078】
728において、照明条件が予め設定されたパラメータよりも優れていない場合には、734において、超解像近赤外線画像および超解像輝度画像が調整される。その後、738において、超解像輝度画像は、超解像近赤外線画像を用いてノイズ除去される。その後、処理は、742において、焦点復帰が行われるように続行され、照明条件が予め設定されたパラメータよりも優れている場合と同様の処理を繰り返す。その後、処理は終了する。
【0079】
(近赤外線画像を有するカラー画像の画像融合)
CMOS撮像装置のスペクトル応答は、通常、650nmから800nmにわたる近赤外線領域では非常に良く、800nmから1000nmの領域では十分に良い。近赤外線撮像装置は彩度情報を有していないが、近赤外線撮像装置が相対的にノイズフリーであるため、このスペクトル領域における情報は、低い照明条件において有益である。よって、近赤外線撮像装置は、低い照明条件下でのカラー画像のノイズ除去のために用いられる。
【0080】
一実施形態において、近赤外線撮像装置からの画像は、可視光撮像装置からの他の画像と融合される。融合処理の前に、視点の違いを解決するために、近赤外線撮像装置と可視光撮像装置との間で、登録(registration)が行われる。登録処理は、オフラインであり、ワンタイムの処理ステップにおいて行われる。登録が行われた後、近赤外線画像上の輝度情報は、可視光画像上の各格子点に対応する格子点を挿入される。
【0081】
近赤外線画像と可視光画像との画素対応が達成された後、ノイズ除去およびディティール転送処理が実行されうる。ノイズ除去処理により、近赤外線画像から可視光画像への信号情報の転送が、融合画像のSNR全体を向上させることができる。ディティール転送は、近赤外線画像および可視光画像におけるエッジが、融合画像における対象物の可視性全体を向上するように、保存され、かつ強調されることを確実にする。
【0082】
一実施形態において、近赤外線フラッシュは、近赤外線撮像装置により画像を撮像している間の近赤外線光源として機能する。近赤外線フラッシュを用いることの利点は、他の理由と共に、(i)興味のある対象物上への不快な照明を防ぐことができる、(ii)対象物のアンビエント色を防ぐことができる、(iii)赤目効果を防ぐことができることである。
【0083】
一実施形態において、近赤外線のみの通過を許容する可視光フィルタは、近赤外線画像化のための光学系を最適化するために用いられる。可視光フィルタは、光フィルタが近赤外線画像におけるより鮮明なディティールをもたらすために、近赤外線光学系転送機能を向上させる。その後、このディティールは、例えば、Eric P. Bennettらによる「Multispectral Video Fusion」 Computer Graphics (ACM SIGGRAPH Proceedings) (July 25, 2006)に記載されるように、二重両側フィルタ(dual bilateral filter)を用いて可視光画像へ転送され、これは、その全体が本明細書に参照により援用される。
【0084】
(撮像装置において異なる露出によるダイナミックレンジの算出)
自動露出(AE)アルゴリズムは、撮像されるシーンに対する適切な露出を得るために重要となる。AEアルゴリズムの設計は、撮像された画像のダイナミックレンジに影響を及ぼす。AEアルゴリズムは、要求された画像が、カメラアレイの感度範囲のリニア領域の範囲内にあることを許容する露出値を算出する。リニア領域は、この領域内で優れた信号対ノイズ比が得られるため好ましい。露出値が非常に低い場合、写真は、アンダー飽和となり、一方で、露出値が非常に高い場合、写真は、オーバー飽和となる。従来のカメラにおいて、反復処理は、測定された写真輝度と、閾値を下回る予め規定された輝度との差を低減するために必要とされる。この反復処理は、収束に長い時間が要求され、容認できないシャッター遅延をもたらす場合がある。
【0085】
一実施形態において、複数の撮像装置により撮像された画像の写真輝度は、独立して測定される。特に、複数の撮像装置は、異なる露出を有する画像を撮像し、適切な露出を計算するための時間を低減するように設定される。例えば、5×5個の撮像装置を有するカメラアレイにおいて、8個の彩度撮像装置および9個の近赤外線撮像装置が設けられ、各撮像装置は、異なる露出が設定されてもよい。近赤外線撮像装置は、シーンの低い光態様を撮像するために用いられ、彩度撮像装置は、シーンの高い照明態様を撮像するために用いられる。この結果、合計で17の露出が可能となる。各撮像装置に対する露出が因数2による隣接する撮像装置からのオフセットである場合には、例えば、2
17の最大ダイナミックレンジまたは102dBが得られうる。このダイナミックレンジは、8ビット画像出力を有する従来のカメラにおいて達成できる標準的な48dBよりも非常に大きい。
【0086】
各瞬間において、複数の撮像装置それぞれからのレスポンス(アンダー露出、オーバー露出または最適露出)は、それに続く瞬間においてどの程度の露出が必要とされるかに基づいて、分析される。可能な露出範囲において、複数の露出を同時に問い合わせる能力は、一度に一回の露出のみがテストされる場合と比較される検索を促進させる。適切な露出を算出する処理時間を低減することにより、シャッター遅延およびショットとショットのラグが低減されてもよい。
【0087】
一実施形態において、HDR画像は、各露出に対して撮像装置のレスポンスを線形化した後の画像を組み合わせることにより、複数の露出から合成される。撮像装置からの画像は、撮像装置の視点の差を計上するための組み合わせの前に、登録されてもよい。
【0088】
一実施形態において、少なくとも1つの撮像装置は、HDR画像を生成するHDR画素を含む。HDR画素は、高いダイナミックレンジシーンを撮像することに特化した画素である。HDR画素は、他の画素と比べて高い性能を示すが、HDR画素は、低い照明条件において、近赤外線撮像装置と比べて低い性能を示す。低い照明条件における性能を向上させるために、近赤外線撮像装置からの信号は、HDR撮像装置からの信号と共に、異なる照明条件にわたるより優れた品質の画像を実現するために用いられる。
【0089】
一実施形態において、HDR画像は、例えば、Paul Debevecらによる「Recovering High Dynamic Range Radiance Maps from Photographs」 Computer Graphics (ACM SIGGRAPH Proceedings), (August 16, 1997)に記載されるように、処理することにより複数の撮像装置により撮像された画像を処理することによって得られ、これは参照によりその全体が本明細書に援用される。撮像装置を用いて複数の露出を同時に撮像する能力は、低減しうる、または除去されうるシーンにおける対象物の動きによって生じる生成物(artifacts)のために有利となる。
【0090】
(複数の撮像装置によるハイパースペクトル画像化)
一実施形態において、複数のスペクトル画像は、複数の撮像装置により描画され、シーンにおける対象物の区分け、または認識を容易にする。スペクトル反射率はほとんどの実世界の対象物においてスムーズに変化するため、スペクトル反射率は、複数のカラーフィルタを有する撮像装置を用いて複数のスペクトル次元におけるシーンを撮像することにより、および主成分分析(Principal Components Analysis:PCA)を用いて撮像された画像を解析することにより、推定されてもよい。
【0091】
一実施形態において、カメラアレイにおける撮像装置の1/2は、基本的なスペクトル次元(R、GおよびB)においてサンプリングすることに充てられ、残りのカメラアレイにおける撮像装置の1/2は、シフトされた基本的なスペクトル次元(R’、G’およびB’)においてサンプリングすることに充てられる。シフトされた基本的なスペクトル次元は、特定の波長(例えば、10nm)による基本的なスペクトル次元からシフトされる。
【0092】
一実施形態において、画素対応および非線形補間は、シーンのサブピクセルでシフトされた視野を占めるように行われる。その後、シーンのスペクトル反射率は、例えば、J.P.S. Parkkinen, J. Hallikainen and T. Jaaskelainen, 「Characteristic Spectra of Munsell Colors」 J. Opt. Soc. Am., A 6:318 (August 1989)に記載されるように、一連の直交スペクトル基底関数を用いて合成されてもよく、これは参照によりその全体が本明細書に援用される。基底関数は、相関行列のPCAにより導かれる固有ベクトルであり、相関行列は、例えば、シーンの各点におけるスペクトルを再構成する実世界材料の広範囲のスペクトル分布を示すマンセル・カラー・チップ(総数1257)により測定された、スペクトル反射率を記憶しているデータベースから導かれる。
【0093】
一見すると、カメラアレイにおける異なる撮像装置を介してシーンの異なるスペクトル画像を撮像することは、より高い次元のスペクトルのサンプリングに対して解像度を交換するように思われる。しかし、いくつかの失われた解像度は、回復しうる。複数の撮像装置は、各撮像装置の各サンプリンググリッドが他方からシフトするサブピクセルによりオフセットされた、異なる次元にわたってシーンをサンプリングする。一実施形態において、撮像装置の2つのサンプリンググリッドが重複することはない。つまり、全ての撮像装置からの全てのサンプリンググリッドの重複は、高密度で、おそらく非均一な、点のモンタージュである。散乱データ補間方法は、例えば、Shiaofen Fangらによる「Volume Morphing Methods for Landmark Based 3D Image Deformation」 by SPIE vol. 2710, proc. 1996 SPIE Intl Symposium on Medical Imaging, page 404−415, Newport Beach, CA (February 1996)に記載されるように、各スペクトル画像に対する、この非均一な各サンプルにおけるスペクトル密度を求めるために用いられてもよく、これは参照によりその全体が本明細書に援用される。このように、異なるスペクトルフィルタを用いて、シーンをサンプリングする処理における特定量の解像度の損失は、回復されうる。
【0094】
上述したように、画像区分および対象物認識は、対象物のスペクトル反射率を求めることにより容易になる。この状況は、カメラのネットワークを用いて、一のカメラから他のカメラへの操作可能領域から対象物が移動したときに対象物を捕捉する、セキュリティ用途において頻繁に生じる。各領域は、異なるカメラにより撮像された各画像における異なる外観を対象物に持たせうる、独自の照明条件(蛍光灯、白熱灯、D65等)を有していてもよい。ハイパースペクトルモードにおいて、これらのカメラが画像を撮像した場合、全ての画像は、対象物の認識性能を向上するために、同一の光源へ変換されてもよい。
【0095】
一実施形態において、複数の撮像装置を有するカメラアレイは、医療診断画像を提供するために用いられる。診断試料の全てのスペクトルデジタル画像は、医師および医療従事者が診断結果において、より高い確証を認識できるため、正確な診断に寄与する。カメラアレイにおける撮像装置は、全てのスペクトルデータを提供するためにカラーフィルタが設けられてもよい。このようなカメラアレイは、例えば、Andres W. Martinezらによる「Simple Telemedicine for Developing Regions: Camera Phones and Paper−Based Microfluidic Devices for Real−Time, Off−Site Diagnosis」Analytical Chemistry (American Chemical Society) (April 11, 2008)に記載されるように、診断情報を撮像し、遠隔地へ送信するために、携帯電話に実装されてもよく、これは参照によりその全体が本明細書に援用される。さらに、複数の撮像装置を含むカメラアレイは、創傷や、発疹や、他の症状の画像キャプチャの信頼性を向上させるために、大きな被写界深度を画像に提供してもよい。
【0096】
一実施形態において、狭スペクトルバンドパスフィルタを有する小型撮像装置(例えば、20〜500画素を含む)は、シーンにおける周囲の特徴およびローカル光源を生成するために用いられる。小型撮像装置を用いることにより、露出およびホワイトバランス特定は、より速い速度で、より正確に求められる。スペクトルバンドパスフィルタは、通常のカラーフィルタ、または、約400nmの可視スペクトルに及ぶカメラアレイの数を許容する適切なバンドパス幅の回折素子であってもよい。これらの撮像装置は、より高いフレームレートおよび得られたデータ(その画像内容を用いても、または用いなくてもよい)で、同一のカメラアレイにおける他のより大きな撮像装置の露出およびホワイトバランスを制御するために情報を処理するように動作する。小型撮像装置はまた、カメラアレイ内に散在されてもよい。
【0097】
(複数の撮像装置を用いた光学ズーム実装)
一実施形態において、カメラアレイにおける撮像装置のサブセットは、望遠レンズを含む。撮像装置のサブセットは、非望遠レンズを有する撮像装置と同様な他の画像化特性を有していてもよい。この撮像装置のサブセットからの画像は、組み合わされ、超解像度望遠レンズを形成するために超解像度処理される。他の実施形態において、カメラアレイは、異なるズーム倍率を提供する2以上の倍率のレンズが装備された2以上の撮像装置のサブセットを含む。
【0098】
カメラアレイの実施形態は、超解像度を介した画像の収集により、その最終的な解像度を達成しうる。3倍の光学ズームを有する5×5個の撮像装置を提供した場合を例に取ると、17個の撮像装置が輝度(G)をサンプリングし、8個の撮像装置が彩度(RおよびB)をサンプリングするために用いられた場合、17個の輝度撮像装置は、17個の撮像装置のセットにおいていずれか1つの撮像装置により達成されるどの解像度よりも4倍以上高い解像度を許容する。撮像装置の数が5×5個から6×6個に増加した場合には、追加で11個のさらなる撮像装置が利用可能となる。3倍ズームレンズが取り付けられた、8メガピクセルの従来の画像センサと比べると、3倍ズームにおいて、追加した11個のうち8個の撮像装置が輝度(G)のサンプリングのために設けられ、残りの3個の撮像装置が彩度(RおよびB)および近赤外線のサンプリングのために設けられたとき、従来の画像センサの60%の解像度が達成される。この大幅な減少は、彩度サンプリング(または近赤外線サンプリング)と輝度サンプリングとの比である。より高い解像度で彩度画像を再サンプリングするための彩度(および近赤外線)画像以前の認識として、3倍ズームでの超解像度輝度画像を用いることにより、減少した彩度と輝度とのサンプリング比は、若干オフセットされる。
【0099】
6×6個の撮像装置では、従来の画像センサの解像度と同等の解像度は、1倍ズームにおいて達成される。3倍ズームにおいて、3倍ズームが装備された従来の画像センサの解像度の60%と同等の解像度は、同一の撮像装置により得られる。また、3倍ズームにおける解像度を有する従来の画像センサと比べて3倍ズームにおける輝度解像度は、減少している。しかし、減少した輝度解像度は、従来の画像センサの光学系が、クロストークおよび光学収差によって、3倍ズームにおいて性能が低減しているということによりオフセットされる。
【0100】
複数の撮像装置により達成されるズーム動作は、以下の利点を有している。第1に、達成されたズームの質は、レンズ素子が焦点距離における各変化に対して調整されうることによって、従来の画像センサにおいて達成されるどのズームよりも非常に高い。従来の画像センサにおいて、光学収差および像面湾曲は、固定された焦点距離に対する収差のみの補正を必要とする固定されたレンズ素子よりも可動素子を有するズームレンズのほうが非常に困難であり、レンズの動作範囲全体にわたって補正される必要がある。また、撮像装置における固定されたレンズは、所与の高さに対する固定された主線角度(chief ray angle)を有し、可動ズームレンズを有する従来の画像センサと同様ではない。第2に、撮像装置は、光学追跡高さの過大な増加なしに光学ズームレンズのシミュレーションを可能にする。低減された高さは、ズーム機能を有するカメラアレイであっても薄いモジュールの実装を可能にする。
【0101】
いくつかの実施形態に係るカメラアレイにおける光学ズームの特定の基準を裏付けるように要求されたオーバーヘッドは、表2に示される。
【表2】
【0102】
一実施形態において、撮像装置における画素は、最も広い角度視野から最大倍率へのスムーズなズーム機能を提供するために所望されたズーム量に対応する大きさおよび解像度を有する出力画像上にマッピングされる。得られる画像情報は、画像の中央領域がその外部の領域よりも高い解像度を有するものであるため、高い倍率のレンズが、低い倍率のレンズとして同一の視野の中心を有するとみなせる。3以上の明確な倍率の場合には、異なる解像度のネスト領域(nested regions)は、中央に向かって増加する解像度が設けられてもよい。
【0103】
最大の望遠効果を有する画像は、望遠レンズが装備された撮像装置の超解像度能力により求められた解像度を有している。最も広い視野を有する画像は、以下の2つの手法のうち少なくとも1つでフォーマットされうる。第1に、広視野画像は、広角レンズを有する撮像装置のセットにより求められた解像度である均一な解像度を有する画像としてフォーマットされてもよい。第2に、広視野画像は、画像の中央部分の解像度が望遠レンズを装備した撮像装置のセットの超解像度能力により求められた高解像度画像としてフォーマットされてもよい。低解像度領域において、画像領域当たりの低減された画素の数は、多数の「デジタルな」画素にわたってスムーズに補間される。このような画像において、画素情報は、高い解像度領域から低い解像度領域への移行がスムーズに行われるように、処理され、補間されてもよい。
【0104】
一実施形態において、不均衡な数の画素が各画像の中央部分に集中するので、ズームは、アレイレンズの一部または全部に樽状の歪みを導入することにより達成される。この実施形態において、各画像は、樽状の歪みを除去するように処理されるべきである。広角画像を生成するために、中央に近い画素は、外側の画素がスーパーサンプリングされることに対して、サブサンプリングされる。ズームが行われると、撮像装置の周辺における画素は、次第に廃棄され、撮像装置の中央近傍の画素のサンプリングが増加する。
【0105】
一実施形態において、ミップマップフィルタは、光学素子の特定のズーム範囲(例えば、カメラアレイの1×および3×ズームスケール)間であるズームスケールにおいて描画される画像を許容するように設けられる。ミップマップは、ベースライン画像を伴う、最適化された画像セットが予め計算される。3×ズーム輝度画像と関連付けられた画像セットは、3×から1×へ下がったベースラインスケールから生成されうる。この画像セットにおける各画像は、3×ズーム画像のベースラインのバージョンであるが、低減された詳細度である。所望のズームレベルでの画像の描画は、(i)1×ズームで画像を撮り、かつ所望のズームレベルに対するシーンの範囲を計算する(例えば、出力画像を作成するために、ベースライン画像においてどの画素が、要求されたスケールにおいて描画されるために必要であるか)、(ii)シーンの範囲セットにおける各画素に対して、3×ズーム輝度画像によりカバーされた画像における画素であるか否かを判定する、(iii)3×ズーム輝度画像において得られる画素である場合には、その後、出力画像を作成するために、最も近接する2つのミップマップ画像を選択し、かつ2つのミップマップ画像から対応する画素を(平滑化フィルタを用いて)補間する、(iv)3×ズーム輝度画像において得られる画素でない場合には、その後、出力画像を作成するために、1×輝度画像のベースラインから画素を選択し、かつ所望のスケールへスケールアップする、によって、ミップマップを用いて達成される。ミップマップを用いることにより、スムーズな光学ズームは、2つの所与の個別のレベル間(例えば、1×ズームと3×ズーム)のどの点でシミュレートされてもよい。
【0106】
(ビデオ画像の撮像)
一実施形態において、カメラアレイは、高フレーム画像シーケンスを生成する。カメラアレイにおける撮像装置は、撮像画像とは独立して動作されうる。従来の画像センサと比べて、カメラアレイは、フレームレートをN倍に上げた(Nは撮像装置の数)画像を撮像してもよい。さらに、各撮像装置に対するフレームピリオドは、低光状況下での動作を向上させるように重複してもよい。解像度を増加させるために、撮像装置のサブセットは、高解像度の画像を作成するために、同期された手法で動作してもよい。この場合、最大フレームレートは、同期された手法において動作された撮像装置の数により低減される。高速ビデオフレームレートは、通常ビデオレートでのスローモーションビデオ再生を可能にする。
【0107】
一例として、2つの輝度撮像装置(緑色撮像装置または近赤外線撮像装置)、2つの青色撮像装置および2つの緑色撮像装置は、高解像度1080p画像を得るために用いられる。4つの輝度撮像装置(2つの緑色撮像装置および2つの近赤外線撮像装置、または3つの緑色撮像装置および1つの近赤外線撮像装置)と共に、1つの青色撮像装置および1つの赤色撮像装置の置換を用いて、彩度撮像装置は、1080pのビデオに対して120フレーム/秒を達成するようにアップサンプリングされうる。高フレームレートの撮像機器に対しては、フレームレートの数は、直線的にスケールアップしてもよい。標準解像度(480p)の動作に対して、240フレーム/秒のフレームレートは、同一のカメラアレイを用いて達成されてもよい。
【0108】
高解像度画像センサ(例えば、8メガピクセル)を有する従来の撮像機器は、低解像度画像(例えば、1080p30、720p30および480p30)を撮像するために、ビニング(binning)またはスキッピング(skipping)を用いる。ビニングでは、撮像装置における列および行は、ノイズを低減している間に目的とするビデオ解像度を達成するために、電荷、電圧または画素ドメインにおいて補間される。スキッピングでは、センサの電力消費を抑制するために、列および行がスキップされる。これらの技術の双方により画質が抑制される。
【0109】
一実施形態において、カメラアレイにおける撮像装置は、ビデオ画像を撮像するように選択的に作動される。例えば、9個の撮像装置(1個の近赤外線撮像装置を含む)が、1080p(1920×1080画素)画像を得るために用いられてもよいが、6個の撮像装置(1個の近赤外線撮像装置を含む)が、720p(1280×720画素)画像を得るために用いられてもよく、または、4個の撮像装置(1個の近赤外線撮像装置を含む)が、480p(720×480画素)画像を得るために用いられてもよい。撮像装置と、目的とするビデオ画像との間の一対一の画素対応精度が存在するため、従来のアプローチよりも高い解像度が達成される。さらに、撮像装置のサブセットのみが画像を撮像するように達成されるため、非常に大きな電力の節約も達成される。例えば、1080pでは、電力消費の60%の低減が達成され、480pでは、電力消費の80%の低減が達成される。
【0110】
ビデオ画像を撮像するために近赤外線撮像装置を用いる利点は、近赤外線撮像装置からの情報が、各ビデオ画像からノイズを除去するために用いられうるためである。このように、実施形態のカメラアレイは、低い光感度を示し、非常に低い照明条件において動作可能である。一実施形態において、超解像度処理は、高解像度ビデオ画像を得るために、複数の撮像装置からの画像で行われる。近赤外線撮像装置からの画像の結合を伴う、超解像度処理のノイズ低減特性は、非常にノイズが小さい画像が得られる。
【0111】
一実施形態において、高ダイナミックレンジ(HDR)ビデオ撮像は、より多くの撮像装置の作動により可能である。例えば、5×5個のカメラアレイで作動する1080pのビデオ撮像モードにおいて、9個のカメラのみが作動する。16個のカメラのサブセットは、非常に高いダイナミックレンジを有するビデオ出力を達成するために、2または4つのセットにおける停止により、露出オーバーおよび露出アンダーとなりうる。
【0112】
(複数の撮像装置に対する他の用途)
一実施形態において、複数の撮像装置は、シーンにおける対象物との距離の推定に用いられる。画像における各点との距離についての情報が、画像成分のxおよびy座標における範囲と共に、カメラアレイにおいて取得できるため、画像成分の大きさは、求められうる。さらに、物理的なアイテムの絶対的な大きさおよび形状が、他の参照情報なしに測定されうる。例えば、足の画像を撮ることができ、得られた情報は、適切な靴のサイズの正確な推定に用いられてもよい。
【0113】
一実施形態において、被写界深度の低減は、距離情報を用いたカメラアレイにより撮像された画像においてシミュレーションされる。本発明に係るカメラアレイは、非常に増加した被写界深度を有する画像を作成する。しかし、長い被写界深度は、ある用途では望ましくない場合がある。このような場合、特定の距離またはいくつかの距離は、画像に対する「ベストフォーカス」距離として選択されてもよく、視差情報からの距離(z)情報に基づいてもよく、画像は、例えば、シンプルなガウスぼかしを用いて、画素それぞれをぼかすことができる。一実施形態において、カメラアレイから得られる深度マップは、トーンマッピングアルゴリズムが、レベルを導くために、深度情報を用いたマッピングを行うこと可能にするために使用され、それにより、3D効果を強調または誇張する。
【0114】
一実施形態において、異なる大きさの開口は、開口ダイバーシティ(aperture diversity)を得るために設けられる。開口の大きさは、被写界深度に対する直接的な関係を有する。しかし、小規模なカメラにおいて、開口は、一般的に、カメラアレイに届く光と同等の光を許容するために、可能な限り大きくなる。異なる撮像装置は、異なる大きさの開口を介して光を受光してもよい。大きな被写界深度を作成するための撮像装置に対して、開口は、低減されるが、他の撮像装置は、受光する光を最大にするために大きな開口を有していてもよい。異なる開口サイズのセンサ画像からの画像を結合することにより、大きな被写界深度の画像は、画質を犠牲にすることなく、取得されうる。
【0115】
一実施形態において、本発明に係るカメラアレイは、視点におけるオフセットから撮像された画像に基づいて、再び焦点合わせされる。従来のプレノプティックカメラとは異なり、本発明のカメラアレイから得られる画像は、解像度の過度の損失に悩まされることはない。しかし、本発明に係るカメラアレイは、プレノプティックカメラと比べて、再び焦点合わせするスパース(sparse)データ点を作成する。スパースデータ点を解消するために、スパースデータ点からのデータを再び焦点合わせするように補間が行われてもよい。
【0116】
一実施形態において、カメラアレイにおける各撮像装置は、異なる重心(centroid)を有する。すなわち、各撮像装置の光学系は、各撮像装置に対する視野が、わずかに重複するが、大部分が、大きな視野の明確なタイルを構成するように設計され、配置される。各タイルからの画像は、単一の高解像度画像を描画するために、共にパノラマ式にステッチされる
【0117】
一実施形態において、カメラアレイは、分離した基板上に形成されてもよく、空間的に分離した同一のマザーボード上に実装されてもよい。各撮像装置上のレンズ素子は視野の隅が基板に対する垂線をわずかに包含するように、配置されてもよい。よって、他の撮像装置に対して90度回転した各撮像装置を有するマザーボードに4個の撮像装置が実装された場合、視野は、4つのわずかに重複したタイルとなる。これは、WLOレンズ素子の単一の設計を許容し、かつ撮像装置のチップがパノラマ画像の異なるタイルを撮像するために用いられることを許容するものである。
【0118】
一実施形態において、1または複数の撮像装置のセットは、重複した視野を有するパノラマ画像を作成するようにステッチされた画像を撮像するように配置されるが、他の撮像装置または撮像装置のセットは、タイル表示された画像を生成した、視野を包含する。この実施形態は、異なる特性を有する撮像装置に対して異なる効果的な解像度を提供する。例えば、彩度解像度よりも高い輝度解像度を有することが望ましい。よって、いくつかの撮像装置のセットは、パノラマ式にステッチされた視野を有する輝度を検出してもよい。少数の撮像装置は、輝度撮像装置のステッチされた視野を包含する視野を有するクロミナンス(chorominance)を検出するために用いられてもよい。
【0119】
一実施形態において、複数の撮像装置を有するカメラアレイは、マザーボードが画像のアスペクト比を変えるために手動で折り曲げられてもよいように、フレキシブルなマザーボード上に実装される。例えば、撮像装置のセットは、マザーボードの静止状態において、撮像装置のすべての視野がほぼ同一であるように、フレキシブルなマザーボード上の水平線において実装されてもよい。4個の撮像装置が存在する場合、ディティールの半分の大きさである被写体画像におけるディティールが個々の撮像装置により解決されうるため、個々の撮像装置それぞれの二重解像度を有する画像が得られる。垂直円筒の一部を形成するようにマザーボードが折り曲げられた場合、撮像装置は、外側を向く。部分的に折り曲げられると、被写体画像の幅は、2重になるが、被写体画像における各点が4つの撮像装置よりも2つの視野にあるため、解決されうるディティールは、低減される。最大折り曲げにおいて、被写体画像は、4倍広くなるが、被写体画像において解決されうるディティールは、さらに低減される。
【0120】
(オフライン再構成および処理)
画像化システム400により処理される画像は、フラッシュ装置またはハードディスクのような記憶装置上の画像データの保存前または保存と共に、プレビューされてもよい。一実施形態において、画像またはビデオデータは、当初カメラアレイにより撮像された、十分なライトフィールドデータセットおよび他の有益な画像情報を含む。他の従来のフィルムフォーマットもまた、用いられうるであろう。記憶された画像またはビデオは、再生されてもよく、様々な有線または無線通信方法で他の装置へ転送されてもよい。
【0121】
一実施形態において、ツールは、リモートサーバによりユーザへ提供される。リモートサーバは、画像またはビデオに対する、リポジトリおよびオフライン処理エンジンの双方として機能してもよい。また、一般のFlikr、Picasaweb、Facebook等のような写真共有コミュニティの一部として圧縮されたアプレットは、画像をインタラクディブに、個々にまたは協同して操作されることを許容しうる。さらに、画像編集プログラムへのソフトウェアプラグインは、デスクトップおよびラップトップのようなコンピュータ装置上での撮像機器400により生成された画像を処理するために提供されてもよい。
【0122】
本明細書に記載された様々なモジュールは、コンピュータ内に記憶されたコンピュータプログラムにより選択的に動作された、または再構成された汎用コンピュータを備えてもよい。このようなコンピュータプログラムは、例えば、それらに限定されてないが、フロッピーディスク(登録商標)、光学ディスク、CD−ROM、磁気光学ディスク、リードオンリーメモリ(ROM)、ランダムアクセスメモリ(RAM)、EPROM、EEPROM、磁気又は光学カード、特定用途向け集積回路(ASIC)、または電子的な命令を記憶するために好ましいいずれかの媒体のような、いずれかのディスクを含む、コンピュータ可読媒体に記憶されてもよく、それぞれがコンピュータシステムバスに接続されてもよい。さらに、本明細書に示すコンピュータは、単一のプロセッサを含んでもよく、計算能力を増強させるために設計した複数のプロセッサを用いたアーキテクチャであってもよい。
【0123】
本発明の特定の実施形態および用途が本明細書に示され、説明されているが、本発明は、本明細書に開示された明確な構成および要素に限定されるものではないことが理解されるべきであり、様々な改良、変更および変形が、係属中の特許請求の範囲に規定された本発明の趣旨および範囲から逸脱せずに、本発明の方法および装置の配置、動作、および詳細においてなされうることが理解されるべきである。