(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5989652
(24)【登録日】2016年8月19日
(45)【発行日】2016年9月7日
(54)【発明の名称】改良されたショットキー整流器
(51)【国際特許分類】
H01L 29/872 20060101AFI20160825BHJP
H01L 29/47 20060101ALI20160825BHJP
【FI】
H01L29/86 301F
H01L29/48 F
【請求項の数】8
【全頁数】10
(21)【出願番号】特願2013-535073(P2013-535073)
(86)(22)【出願日】2011年10月20日
(65)【公表番号】特表2013-545295(P2013-545295A)
(43)【公表日】2013年12月19日
(86)【国際出願番号】US2011057012
(87)【国際公開番号】WO2012054682
(87)【国際公開日】20120426
【審査請求日】2014年9月17日
(31)【優先権主張番号】13/222,249
(32)【優先日】2011年8月31日
(33)【優先権主張国】US
(31)【優先権主張番号】61/405,293
(32)【優先日】2010年10月21日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】508121463
【氏名又は名称】ヴィシェイ ジェネラル セミコンダクター,エルエルシー
【氏名又は名称原語表記】VISHAY GENERAL SEMICONDUCTOR,LLC
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100064908
【弁理士】
【氏名又は名称】志賀 正武
(74)【代理人】
【識別番号】100089037
【弁理士】
【氏名又は名称】渡邊 隆
(74)【代理人】
【識別番号】100110364
【弁理士】
【氏名又は名称】実広 信哉
(72)【発明者】
【氏名】チ−ウェイ・ス
(72)【発明者】
【氏名】フローリン・ウドリー
(72)【発明者】
【氏名】イ−イン・リン
【審査官】
早川 朋一
(56)【参考文献】
【文献】
特開平05−110061(JP,A)
【文献】
特開平10−335633(JP,A)
【文献】
特開2006−269824(JP,A)
【文献】
特開平11−008399(JP,A)
【文献】
米国特許第06191447(US,B1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/337−21/338
H01L 27/095−27/098
H01L 29/775−29/778
H01L 29/80−29/812
H01L 21/28−21/288
H01L 21/44−21/445
H01L 29/40−29/51
(57)【特許請求の範囲】
【請求項1】
第一の導電型を有する半導体の基板と、
前記基板の上に形成され、前記第一の導電型を有し、前記基板よりも低濃度ドープされた第一の層と、
前記基板の上に形成され、前記第一の導電型とは逆の第二の導電型を有する第二の層と、
前記第二の層の上に直接配置された金属層と、
前記金属層の上に形成された第一の電極及び前記基板の裏面に形成された第二の電極と、
前記第一の層の中に形成された少なくとも一つのトレンチと、
前記少なくとも一つのトレンチの底部及び側壁の内側を覆う絶縁層と、
前記少なくとも一つのトレンチを充填する導体とを備え、
前記金属層と前記第二の層との間にショットキーコンタクトが形成されるように前記第二の層が低濃度ドープされていて、
前記少なくとも一つのトレンチが、前記第一の層の中に形成された複数のトレンチを備え、前記第二の層が、全てのトレンチの対ではなくて、選択されたトレンチの対の間においてのみ前記第一の層の中に形成されている、半導体整流器。
【請求項2】
前記第二の層が、前記金属層と前記第二の層との間にオームコンタクトを形成するのに必要なドーピング濃度よりも低いドーピング濃度を有する、請求項1に記載の半導体整流器。
【請求項3】
前記第二の層が前記第一の層の中に形成されていて、前記トレンチの少なくとも一つの面に隣接している、請求項1に記載の半導体整流器。
【請求項4】
前記第二の層が前記トレンチの両面に隣接している、請求項3に記載の半導体整流器。
【請求項5】
シリサイド層が、前記金属層と前記第二の層との間の界面に形成されている、請求項1に記載の半導体整流器。
【請求項6】
前記第二の層が、隣接する前記トレンチの一部の対の間にのみ形成されている、請求項1に記載の半導体整流器。
【請求項7】
TMBSが、前記第二の層を含まないデバイスの部分に存在している、請求項6に記載の半導体整流器。
【請求項8】
前記複数のトレンチが、前記第二の層を含まないTMBSセルを有する整流器の一部にのみ存在していて、前記第二の層が、デバイスの残りの活性領域に平坦構造として存在している、請求項1に記載の半導体整流器。
【発明の詳細な説明】
【技術分野】
【0001】
[関連出願]
本願は2010年10月21日に出願された米国仮出願第61/405293号及び2011年8月31日に出願された米国特許出願第13/222249号の優先権を主張し、これらの文献の全体が参照として本願に組み込まれる。
【背景技術】
【0002】
従来のショットキー整流器は、従来のPINダイオードの代わりとして高速応用において使用されている。従来のショットキー整流器はブロッキング範囲が限定されていて、略200V以下の絶縁破壊電圧を要する応用において主にうまくいっている。ブロッキング電圧の範囲が限定されている主な理由は、高い絶縁破壊におけるオン状態の順電圧降下が顕著に大きくなるからであり、これは、ドリフト領域のドーピング濃度の低下及びこれに付随したドリフト領域の深さの増大によって生じる。結果として、ドリフト領域のオン状態比抵抗は、V
BR2.5に略比例し、ここでV
BRは絶縁破壊電圧である。オン状態抵抗と絶縁破壊電圧との間のこの超線形関係が、ショットキー整流器を高絶縁破壊電圧用の市場に向けるのを難しくしている。また、ショットキーコンタクトに存在する高電場が、障壁低下効果をもたらして、つまりは高ブロッキング電圧における高漏れ電流をもたらす。
【0003】
図1及び
図2はそれぞれ従来のPINダイオード及び従来のショットキー整流器を示す。PINダイオードは、第一の導電型のドーパントで高濃度ドープされた(例えばn+型)高濃度ドープ半導体基板110を含む。エピタキシャルドリフト層120が基板110上に形成されて、第一の導電型のドーパントで低濃度ドープされる(例えばn−型)。高濃度ドープオーム接触層130をドリフト層120の上に形成する。接触層130は、第二の導電型のドーパントで高濃度ドープされる(例えばp+型)。カソード電極150を基板110の裏面に形成して、アノード金属140をオーム接触層130の上に形成する。
【0004】
図2に示される従来のショットキー整流器は、第一の導電型のドーパントで高濃度ドープされた(例えばn+型)高濃度ドープ基板210を含む。PINダイオードと同様に、ドリフト層220が、基板210上に形成され、第一の導電型のドーパントで低濃度ドープされる(例えばn−型)。そして、オーム接触層の代わりに、金属層230をドリフト層220の上に形成する。ショットキーコンタクトが金属層230とドリフト層220との間の界面に形成される。カソード電極250を基板210の裏面に形成し、アノード金属240を金属層230の上に形成する。
【0005】
電場に対するショットキーコンタクトの感受率を低下させるため、トレンチMOS障壁ショットキー(TMBS,Trench MOS Barrier Schottky)デバイスが開発されている。このデバイスの特徴は、その活性領域内の多重トレンチMOSセルであり、表面電場を低減して、漏れ電流の流れに対抗する横障壁を形成する。結果として、オフ状態の漏れ電流が顕著に減る。更に、MOSトレンチは、フィールドプレートとしても機能することによって、誘電破壊を妥協することなく、ドリフト領域のドーピングの僅かな増大を許容する。しかしながら、TMBSデバイスのオン状態の電圧降下は、誘電破壊が300Vを超える高電圧応用では問題となったままである。これは、ショットキー整流器の単極伝導機構が、PIN型ダイオードに特徴的な双極伝導ほどは効果的でないからである。
【発明の概要】
【課題を解決するための手段】
【0006】
本発明によると、半導体整流器が提供される。その整流器は、第一の導電型を有する半導体基板を含む。基板の上に形成される第一の層は、第一の導電型を有し、基板よりも低濃度ドープされる。第二の導電型を有する第二の層が基板の上に形成されて、金属層が第二の層の上に配置される。金属層と第二の層との間にショットキーコンタクトが形成されるように、第二の層は低濃度ドープされる。第一の電極が金属層の上に形成されて、第二の電極が基板の裏面に形成される。
【0007】
本発明の他の側面によると、整流器の製造方法が提供される。本方法は、第一の導電型の半導体本体を提供するステップと、基板の上に第一の層を形成するステップとを含む。第一の層は、第一の導電型を有し、基板よりも低濃度ドープされる。第二の層が基板の上に形成される。第二の層は第二の導電型を有する。金属層が第二の層の上に形成される。金属層と第二の層との間にショットキーコンタクトが形成されるように、第二の層が低濃度ドープされる。第一の電極が金属層の上に形成されて、第二の電極が基板の裏面に形成される。
【図面の簡単な説明】
【0008】
【
図3】本発明の原理に従って構成されたショットキーダイオードの一実施形態を示す。
【
図4】(a)従来のPINダイオード、(b)従来のショットキー整流器、(C)本発明に係るショットキーダイオードの典型的なオン状態の特性のグラフを示す。
【
図5】(a)従来のPINダイオード、(b)従来のショットキー整流器、(C)本発明に係るショットキーダイオードの典型的な逆回復特性の概略図を示す。
【
図6】トレンチMOS障壁ショットキー(TMBS)設計に基づいたショットキー整流器の代替的な一実施形態を示す。
【
図7】透明領域の異なる注入量に対する
図6に示されるデバイスの出力特性のシミュレーションを示す。
【
図8】異なるp−型注入量に対する
図6に示されるデバイスの過剰な少数キャリア(過剰な正孔)の分布プロファイルを示す。
【
図9】
図6のデバイスのターンオフ過渡期における電流波形の概略図である。
【
図10】
図6に示されるデバイスのオフ状態ブロッキング特性を示す。
【
図11】ショットキー整流器の代替実施形態を示す。
【
図12】ショットキー整流器の代替実施形態を示す。
【発明を実施するための形態】
【0009】
以下説明するように、従来のショットキーダイオード同様に、高速及び低スイッチング損失を提供するが、高い電流性能及び顕著に低いオン状態損失を備えたショットキーダイオード又は整流器デバイスが提供される。
【0010】
図3は、本発明の原理に従って構成されたショットキーダイオードの一実施形態を示す。図示されるように、ショットキーダイオード300は、第一の導電型のドーパントで高濃度ドーピングされた(例えばn+型)高濃度ドープ基板310を含む。エピタキシャルドリフト層320が基板310上に形成され、第一の導電型(のドーパントで低濃度ドープされる例えばn−型)。第二の導電型の低濃度ドープ層330(例えばp−型)がドリフト層320の上に形成される。後述の理由のため、低濃度ドープ層を場合によっては透明層と呼ぶ。透明層330の形成後、シリサイドを形成することのできる金属(例えばニッケル)製の金属層340が堆積される。シリサイドが形成されると、半導体と反応しなかった金属を選択的エッチングで除去する。カソード電極350が基板310の裏面に形成され、アノード金属360が金属層340の上に形成される。
【0011】
所謂透明層330は、その表面においてメタライゼーションとのショットキーコンタクトを形成し、n−型ドリフト層320との界面において低注入効率接合を形成する。従来の整流デバイスとは異なり、本デバイスは、p−透明層/n−ドリフト層の注入とショットキー障壁とによってそれぞれ制御される双極と単極との伝導の組み合わせを有する。ダイオード300は、従来のショットキー整流器と比較して実質的に低いオン状態抵抗と漏れ電流とを有する一方、ダイオードの逆回復中の顕著に速い速度及び低い損失を提供する。
【0012】
図4は、(a)従来のPINダイオード、(b)従来のショットキー整流器、(C)本発明に係るショットキーダイオードの典型的なオン状態の特性のグラフを示す。グラフは、ダイオード300が、異なる特性の曲線を有し(双極伝導及びショットキー限定伝導が生じる領域が異なることによる)、従来のショットキー整流器と比較して顕著に改善されたオン状態性能を提供することを示している。
【0013】
図5は、(a)従来のPINダイオード、(b)従来のショットキー整流器、(C)本発明に係るショットキーダイオードの典型的な逆回復特性の概略図を示す。
【0014】
図5に示されるように、p+注入層及びアノードオームコンタクトを特徴とするPINダイオードでは、過度に高い逆漏れ電流、高い損失及び遅い速度が問題となっている。単極デバイスであるショットキーダイオードは、高速及び低スイッチング損失を提供する。本発明に係るデバイス300は、速度及び損失に関してショットキーダイオードに近いが(
図4に示されるように)、ショットキー整流器よりも高い電流性能及び顕著に低いオン状態損失を保持している。
【0015】
従来のPINダイオード及びショットキー整流器の両方と比較して有利なオン状態性能と逆回復損失との間のトレードオフが、ドリフト領域内に少数キャリア(正孔)を注入し、プラズマ(ドーピングレベル以上の濃度の準中性平衡の過剰な電子及び正孔)の形成を許容する透明層330によって、可能になる。しかしながら、プラズマの注入は、ショットキーコンタクトによって制限され、更に、透明層330の‘透明度’によって更に制御される。透明層300をより低濃度でドープすることによって、透明度が増大して、より高い割合の電子流がこれを貫通してアノードコンタクトに達することを許容する。これは、オン状態におけるプラズマ形成を少なくして、結果として、より速い逆回復応答をもたらす。透明層のドーピングを増やすが、ショットキーコンタクトを保持すること(言い換えると、オームコンタクトに特有の顕著なトンネリングを抑制すること)によって、スイッチング損失の増大と引き換えに、オン状態性能の更なる増大と共に、プラズマレベルを増大させることができる。このトレードオフについては後で更に説明する。
【0016】
本発明の代替的な一実施形態では、上述のトレンチMOS障壁ショットキー(TMBS)設計に基づいたショットキー整流器が提供される。このデバイスは、その活性領域内の多重トレンチMOSセルを特徴としていて、表面電場を減らして、漏れ電流の流れに対抗する横障壁を生成する。本発明のこの実施形態の一例が
図6に示されている。
【0017】
図6のTMBSダイオード400は、高濃度ドープのn+型半導体ウェーハ401を含み、その上に、低濃度ドープのn−型エピタキシャル層402が形成されている。このエピタキシャル層には開口が形成されていて、例えばトレンチ状である。伝導領域403が開口内に形成され、例えば、ドープされたポリシリコン製である。絶縁層404が、各伝導領域と対応する開口の(例えばトレンチ)の壁との間に配置される。絶縁層404は、例えば、熱酸化によって形成可能であり、開口が、コンフォーマルな堆積によってポリシリコンで充填されて、これに平坦化ステップが続き得る。次に、透明領域410(この例ではp−型)を、例えば注入法又は拡散法を用いて形成することができる。例えば、一実施形態では、透明領域は注入によって形成され、これに急速アニーリングが続き、透明領域410のドーピング量及び接合深さを制御するための光ドライブインも続く可能性がある。上述のように、透明領域410のドーピング濃度(又は電荷量)は、オン状態電圧とターンオフエネルギー損失との間の適切なトレードオフを求めるように適切に調整され得る。
【0018】
透明領域410を形成した後、エピタキシャル層402の上及びトレンチ内のポリシリコン充填領域の上にシリサイド層415を形成することができる金属(例えばニッケル)を堆積させる。シリサイドが形成されると、半導体と反応しなかった金属を選択的エッチングによって除去する。その後、アノード金属407が金属層415の上面に形成されて、カソード金属408が基板401の下面に形成される。
【0019】
図7は、透明領域410における異なる注入量に対するp−TMBSデバイスの出力特性のシミュレーションを示す。見て取れるように、透明領域410の注入量が増大すると、250A/cm
2の電流密度(つまり動作電流密度)におけるオン状態電圧降下が小さくなる。透明層のドーピングレベル又はドーピング量の増大の効果は、p−透明層/n−ドリフト領域の注入効率を増大させ、又は透明度を低下させるというものである。しかしながら、低電流密度においては、その傾向が逆転する。何故ならば、P/N接合の内蔵電位(V
bi)が以下の式で表されるからである:
V
bi=(KT/q)×ln(N
dN
a/n
i2) 式(1)
【0020】
ここで、Kはボルツマン定数、Tはケルビン単位での温度、qは電子の電荷、N
dはN側の電子密度、N
aはP側の正孔密度である。N
aを大きくすると、V
biが大きくなり、内蔵障壁を超えるまではP/N接合が電流を流すのを難しくする。
【0021】
異なるp−型注入量に対するp−TMBSデバイスの過剰少数キャリア(過剰正孔)の分布プロファイルが
図8に示されている。過剰正孔濃度(プラズマと等価)は、透明層のp−型注入量と共に増大して、これが、ドーピングレベルでオン状態電圧が変化する理由である。また、p−型ドーピング量が最も高いケースDは、最大の過剰正孔濃度を特にドリフト領域の中間において有している点に留意されたい。中間領域の過剰キャリアは、過渡プロセスにおいて最後に除去されることが知られているので、この領域に正孔が少ないほど、ターンオフスイッチング速度が速くなる。実際、ケースDに対する注入量は1×10
15cm
−2であり、これは、p−注入というよりも、p+注入と見なされるものである。この場合、トンネリングに起因して、そのコンタクトが最早ショットキーコンタクトではなくてオームコンタクトであるので、このデバイスは事実上PINダイオードである。
【0022】
図9は、ターンオフの過渡期における電流波形の概略図である。注入量が高くなるほど、ターンオフ時間が長くなっている様子が示されている。しかしながら、ドリフト領域のキャリア濃度が非常に低いと(例えばケースAのように)、伝導率変調の影響は些細なものであり、オン状態電圧は、電流密度250A/cm
2において1.5V以上となることがわかる(
図7を参照)。
【0023】
デバイスのオフ状態ブロッキング特性を示す
図10に示されるように、ショットキーコンタクトの下にp−透明層が存在することは、逆漏れ電流を減らすのに役立つ。アノード電極にPN接合が存在することは、高電場における障壁低下の効果に対するショットキーコンタクトの耐性を増強する。従って、p−型注入されていないデバイスが最も高い漏れ電流を有することがわかる。一方、他のデバイスは、p−透明層の注入量が最も低い場合であっても、逆漏れ電流を顕著に減らす効果を有する。
【0024】
まとめると、ショットキーコンタクト及び透明アノードに基づいた構造が本願において提供される。例として(i)p−平坦構造及び(ii)p−TMBSの二つの実施形態を与えた。これらの構造は、従来の解決策に対して以下の複数の利点を提供する:(1)透明層の存在によって、少数キャリアをドリフト層内に注入することができて、プラズマの存在(伝導率変調)によってドリフト領域の低効率を低下させて、オン状態電圧を低下させることができる; (2)透明層は浅く、低濃度でドープされていて、制限された領域にしか存在しないので、少数キャリアの注入も制限される。これは、オン状態電圧とスイッチング速度との間のトレードオフのより良い制御を与える; (3)高電流密度におけるプラズマの更なる制限は、p−透明層とメタライゼーションとの間に形成されたショットキー障壁の存在に起因するものである; (4)透明層が、電場によってショットキーコンタクトが影響を受けることを防止することができて、障壁低下効果が軽減されて、漏れ電流が低く保たれるようになる。
【0025】
本発明の他の実施形態が
図11及び
図12に示されている。
図11は、透明層410(この例ではp−型でドープされている)がデバイスの一部(例えば、セクション/エリア/セル)にのみ挿入されている様子を示す。例えば、この例では、透明層は、隣接するMOSトレンチの一部の対の間にのみ配置されていて、他の対の間には配置されていない。透明層を含まないデバイスの他の部分には、従来のTMBSが存在している。この実施形態では、その構造は、従来のTBMSと並列に効果的に集積された透明ショットキーダイオードである。
図12は
図11の変形例であり、トレンチが従来のTMBSセル内にのみ存在している一方で、透明層410が、デバイスの活性領域の残りの部分に平坦構造として存在している。
【0026】
[実施例]
図6の実施形態に示される透明層を、トレンチの周囲の領域に配置する。透明層は、適切なp−型ドーパントを用いた注入及び/又は拡散によって形成可能である。注入で有機される結晶の損傷を最少化するため、注入エネルギーが低く保たれ得る(例えば25KeV)。注入ステップにはアニーリングステップ(例えば950℃の温度で60分間にわたる)が続き得て、半導体表面が、高品質のショットキーコンタクトを形成するのに十分平滑であるようにする。選択された設計及びレベル(ブロッキング電圧性能、漏れ電流、ターンオフ速度)に応じて、構造の主な層の幾何学的寸法及び伝導率は以下のように与えられる:
(1)p−濃度: 1×10
13cm
−3〜5×10
18cm
−3
(2)p−深さ: 0.05μm〜10μm
(3)トレンチ深さ: 0.5μm〜10.0μm
(4)トレンチ幅: 0.5μm〜5.0μm
(5)メサ幅(つまり、隣接するトレンチの間隔): 0.3μm〜30.0μm
(6)N−ドリフト領域幅: 5μm〜200μm
(7)N−ドリフト領域濃度: 5×10
12cm
−3〜5×10
17cm
−3
【符号の説明】
【0027】
300 ショットキーダイオード
310 基板
320 エピタキシャルドリフト層
330 透明層
340 金属層
350 カソード
360 アノード