特許第5989679号(P5989679)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ スリーエム イノベイティブ プロパティズ カンパニーの特許一覧

特許5989679回転整列した成形セラミック研磨粒子を有する被覆された研磨物品及び作製方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5989679
(24)【登録日】2016年8月19日
(45)【発行日】2016年9月7日
(54)【発明の名称】回転整列した成形セラミック研磨粒子を有する被覆された研磨物品及び作製方法
(51)【国際特許分類】
   B24D 3/00 20060101AFI20160825BHJP
【FI】
   B24D3/00 330Z
   B24D3/00 310E
   B24D3/00 310D
   B24D3/00 320A
【請求項の数】2
【全頁数】19
(21)【出願番号】特願2013-554470(P2013-554470)
(86)(22)【出願日】2012年2月1日
(65)【公表番号】特表2014-508652(P2014-508652A)
(43)【公表日】2014年4月10日
(86)【国際出願番号】US2012023477
(87)【国際公開番号】WO2012112305
(87)【国際公開日】20120823
【審査請求日】2015年1月22日
(31)【優先権主張番号】61/443,418
(32)【優先日】2011年2月16日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】505005049
【氏名又は名称】スリーエム イノベイティブ プロパティズ カンパニー
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100128381
【弁理士】
【氏名又は名称】清水 義憲
(74)【代理人】
【識別番号】100162640
【弁理士】
【氏名又は名称】柳 康樹
(72)【発明者】
【氏名】ケイパート, スティーブン ジェイ.
【審査官】 須中 栄治
(56)【参考文献】
【文献】 米国特許出願公開第2009/0145045(US,A1)
【文献】 特表平08−502232(JP,A)
【文献】 特表2009−539638(JP,A)
【文献】 国際公開第2011/005425(WO,A2)
(58)【調査した分野】(Int.Cl.,DB名)
B24D3/00−99/00
(57)【特許請求の範囲】
【請求項1】
表面特徴部をそれぞれ有する複数の成形セラミック研磨粒子を含む、被覆された研磨物品であって、
前記複数の成形セラミック研磨粒子が、研磨層を形成する樹脂性接着剤を含むメークコートによって可撓性裏材に付着し、
前記表面特徴部が、特定のz方向の回転配向を有し、
前記可撓性裏材に付着した少なくとも50%の前記成形セラミック研磨粒子の前記特定のz方向の回転配向が、ランダムではなく、前記表面特徴部のランダムなz方向の回転配向によって生ずるよりも頻繁に前記研磨層で生じる、被覆された研磨物品。
【請求項2】
前記成形セラミック研磨粒子が、2つの対向する実質的に平坦な表面を有するプレートを含む、請求項1に記載の被覆された研磨物品。
【発明の詳細な説明】
【背景技術】
【0001】
研磨粒子及びこれらの研磨粒子から作製される研磨物品は、物品の製造工程において広範な材料及び表面を研磨、仕上げ、又は研削するために有用である。したがって、研磨粒子及び/又は研磨物品のコスト、性能、又は寿命を改善する必要性が引き続き存在する。
【0002】
三角形の研磨粒子及びこれらの三角形の研磨粒子を使用する研磨物品は、米国特許第5,201,916号(バーグ(Berg))、同第5,366,523号(ローウェンホースト(Rowenhorst))、及び同第5,984,988号(バーグ(Berg))に開示されている。一実施形態において、この研磨粒子の形は正三角形を含む。三角形の研磨粒子は、優れた削り取りレートを有する研磨物品の製造に有用である。
【発明の概要】
【課題を解決するための手段】
【0003】
成形研磨粒子は、概して、ランダムに破砕された研磨粒子に勝る優れた性能を有することができる。研磨粒子の形を調整することによって、研磨物品がもたらす性能を調整することが可能である。本発明者らは、成形研磨粒子のz方向の回転配向を更に調整することによって、得られる被覆された研磨物品の削り取り及び仕上げを変更できることを見出した。
【0004】
従来、被覆された研磨物品は、裏材のメーク層上への研磨粒子の静電コーティング(e−コート)、又はメーク層上への研磨粒子のドロップコーティングによって作製されていた。米国特許第2,370,636号に示されるように、静電場を用いて重力に逆らって研磨グレインをメーク層上へと垂直に押し出し、それによって研磨粒子を直立して付着させる従来の静電蒸着法によって、被覆された研磨物品内で研磨粒子のz方向の回転配向を調整することは不可能である。静電場によってコンベヤーベルトから外されたままの粒子の回転はランダムであり、調整されてないため、メーク層に付着した研磨粒子はランダムなz方向の回転配向を有するようになる。同様に、ドロップコーティングされた研磨物品では、粒子がホッパから送り込まれ、重力によってメーク層上に落下するため、粒子のz方向の回転配向はランダムである。
【0005】
金属結合及びダイヤモンド研磨粒子を用いて、剛性の研磨工具を製造する間は、金属ディスクなどの剛性支持体に特定のパターン又はグリッド(gird)でダイヤモンド研磨粒子を付着させるためにスクリーンを用いてよい。しかし、一般にダイヤモンドは、任意の特定のz方向の回転配向を有するようには配向されない。また、スクリーンの孔は、ダイヤモンドがスクリーンの孔に配置されると、ダイヤモンドが任意の方向に回転できるようになっている。米国特許第5,453,106号に記載のように、ダイヤモンドが最大硬度の結晶学的内部方向に対して配向されることもあるが、これまでは、削り取りの向上、又は得られる仕上げの変更のいずれかを行う粒子の表面特徴部に関して、回転整列した成形セラミック研磨粒子が真価を認められることはなかった。
【0006】
本発明者らは、個々の研磨粒子を定位置に保持するための、精密に離隔され、整列された非円形孔を有する精密スクリーンを用いて、特定のz方向の回転配向に研磨粒子の表面特徴部を回転整列させることができることを見出した。表面特徴部を整列させると、この表面特徴部の切削動作を向上できる、又は表面特徴部によって加工対象物にもたらされる仕上げを変更できる。
【0007】
更に、精密スクリーンを用いて、研磨層内の研磨粒子で所定のパターンを生み出すことにより、いずれの特定の回転配向を必要とせずに研磨粒子の密度を調整できる。これらのパターンでは、特に、被覆された裏材上の成形研磨粒子の密度がより高い場合において、静電コーティング法が達成できるよりも著しく多くの三角形の成形研磨粒子の「頂点上向き」配置を被覆された裏材上で達成できる。
【0008】
加えて、所定のパターンを有する、人工的に作製された研磨層を構成でき、裏材及び研磨粒子を貫通するz軸の周りの研磨粒子のz方向の回転配向と共にx方向及びy方向の間隔が調整される。
【0009】
したがって、一実施形態において、本発明は、表面特徴部をそれぞれ有する複数の成形セラミック研磨粒子を含み、複数の成形セラミック研磨粒子は、研磨層を形成する樹脂性接着剤を含むメークコートによって可撓性裏材に付着し、表面特徴部は、特定のz方向の回転配向を有しており、特定のz方向の回転配向は、表面特徴部のランダムなz方向の回転配向に生じるよりも頻繁に研磨層で生じる、被覆された研磨物品に関する。
【図面の簡単な説明】
【0010】
当業者は、この説明があくまで例示的な説明であって、本開示のより広範な観点を制限することを意図するものでなく、それらのより広範な観点が例示的な構築に具現化されていることを理解するであろう。
図1A】成形研磨粒子の一実施形態の平面図及び側面図。
図1B】成形研磨粒子の一実施形態の平面図及び側面図。
図1C】被覆された研磨物品の側面図。
図2A】z方向に回転整列した、図1A及び1Bの成形研磨粒子を有する被覆された研磨物品の一実施形態の平面図。
図2B】z方向に回転整列した、図1A及び1Bの成形研磨粒子を有する被覆された研磨物品の一実施形態の平面図。
図2C図2Aの被覆された研磨物品の作製に用いた、複数の回転整列した孔を有するスクリーンの一部の平面図。
図3A】z方向に回転整列した、図1A及び1Bの成形研磨粒子を有する被覆された研磨物品の別の実施形態の平面図。
図3B】z方向に回転整列した、図1A及び1Bの成形研磨粒子を有する被覆された研磨物品の別の実施形態の平面図。
図3C図3Aの被覆された研磨物品の作製に用いた、複数の回転整列した孔を有するスクリーンの一部の平面図。
図4A】z方向に回転整列した、図1A及び1Bの成形研磨粒子を有する被覆された研磨物品の別の実施形態の平面図。
図4B】z方向に回転整列した、図1A及び1Bの成形研磨粒子を有する被覆された研磨物品の別の実施形態の平面図。
図4C図4Aの被覆された研磨物品の作製に用いた、複数の回転整列した孔を有するスクリーンの一部の平面図。
図5A】z方向に回転整列した、図1A及び1Bの成形研磨粒子を有する被覆された研磨物品の別の実施形態の平面図。
図5B】z方向に回転整列した、図1A及び1Bの成形研磨粒子を有する被覆された研磨物品の別の実施形態の平面図。
図5C図5Aの被覆された研磨物品の作製に用いた、複数の回転整列した孔を有するスクリーンの一部の平面図。
図6】本発明の様々な実施例の研削性能のグラフ。
図7】本発明の様々な実施例の研削性能のグラフ。
図8】被覆された研磨物品を形成する2種類の異なる方法に関する、削り取り対クローズドコート密度(%)のグラフ。 明細書及び図中で繰り返し使用される参照記号は、本開示の同じ又は類似の特徴又は要素を表すことを意図する。
【0011】
定義
本明細書で使用される「含む/備える/具備する(comprise)」、「有する(have)」、及び「含む(include)」という言葉の形態は、法的に同等かつ非限定的である。したがって、記載された要素、機能、工程、又は制限に加えて、記載されていない追加的な要素、機能、工程、又は制限が存在する場合がある。
本明細書で使用される「研磨材分散液」という用語は、成形型のキャビティに導入されるαアルミナに転換可能なαアルミナ前駆体を意味する。この組成物は、揮発性成分が十分に除去されて研磨材分散液の固化が生じるまでの研磨材分散液を指す。
本明細書で使用される「成形セラミック研磨粒子」は、少なくとも部分的に複製された形状を有するセラミック研磨粒子を意味する。成形研磨粒子を製造するための非限定的なプロセスは、所定の形状を有する成形型の中で前駆体研磨粒子を成形する工程、所定の形状を有するオリフィスを通して前駆体研磨粒子を押し出す工程、所定の形状を有する印刷スクリーンの開口部を通して(though)前駆体研磨粒子を印刷する工程、又は前駆体研磨粒子を所定の形状若しくはパターンにエンボス加工する工程を含む。成形セラミック研磨粒子の非限定例としては、米国再発行特許第35,570号、同第5,201,916号、及び同第5,984,998号に開示されるように、三角形プレートなどの成形型、又は実施例が米国特許第5,372,620号に開示されている、Saint−Gobain Abrasivesによって製造された、円形断面を有することが多い、押出細長セラミックロッド/フィラメントで形成された成形研磨粒子が挙げられる。本明細書で使用される成形研磨粒子は、機械的な粉砕作業によって得られる、ランダムな大きさの研磨粒子を除く。
本明細書で使用される「前駆体成形研磨粒子」という用語は、研磨材分散液が成形型のキャビティ内にあるときに、研磨材分散液から十分な量の揮発性成分を除去することによって生成され、成形型のキャビティから取り出して、その後の加工作業中にその成型形状を実質的に保持することができる固化体を形成する、未焼結の粒子を意味する。
本明細書で使用される「成形研磨粒子」という用語は、その研磨粒子の少なくとも一部が、成形前駆体研磨粒子の形成に使用される成形型のキャビティから複製された所定の形状を有する、セラミック研磨粒子を意味する。研磨破片の場合(例えば、米国特許出願公開第2009/0169816号に記載)を除き、成形研磨粒子は、一般に、成形研磨粒子の形成に使用された成形型のキャビティを実質的に複製する、所定の幾何学形状を有することになる。本明細書で使用される成形研磨粒子は、機械的な粉砕作業によって得られる、ランダムな大きさの研磨粒子を除く。
本明細書で使用される「z方向の回転配向」は、粒子がメーク層によって裏材に付着する場合に粒子を貫通し、裏材に対して90度の角度で裏材を貫通する、z軸の周りでの粒子の角回転を指す。
【発明を実施するための形態】
【0012】
傾斜側壁を有する成形研磨粒子
図1A図1B、及び図1Cを参照すると、傾斜側壁22を有する例示的な成形研磨粒子20が示される。傾斜側壁22を有する成形研磨粒子20が作製される材料はセラミックを含み、一実施形態において具体的には、αアルミナを含む。αアルミナ粒子は、ゲル化され、型で成形され、その形状を維持するために乾燥され、か焼され、次いで焼結される酸化アルミニウム一水和物の分散液から作製できる。成形研磨粒子の形状は、粒塊を形成する結合剤(この粒塊は、結合剤中に研磨粒子を含み、次いで研磨粒子は、一定の成形構造体に形成される)を必要とすることなく、保持される。
【0013】
一般に、傾斜側壁22を有する成形研磨粒子20は、第1の面24と、第2の面26とを有する薄型のボディを含み、厚さtを有する。第1の面24及び第2の面26は、少なくとも1つの傾斜側壁22によって相互に連結される。いくつかの実施形態において、複数の傾斜側壁22が存在してよく、各傾斜側壁22の傾斜、つまり角度は、図1Aに示されるものと同じであっても、異なってもよい。
【0014】
いくつかの実施形態において、第1の面24は実質的に平面であり、第2の面26は実質的に平面であるか、又は両面が実質的に平面である。あるいは、面は、2008年12月17日に出願された「Dish−Shaped Abrasive Particles With A Recessed Surface」という表題の米国特許出願公開第2010/0151195号において更に詳述されるように、凹部又は凸部であり得る。更には、2008年12月17日に出願された「Shaped Abrasive Particles With An Opening」という表題の米国特許出願公開第2010/0151201号において更に詳述されるように、これらの面を貫通する開口部又は孔が存在してもよい。
【0015】
一実施形態において、第1の面24及び第2の面26は、相互に実質的に平行である。他の実施形態において、第1の面24及び第2の面26は、1つの面が他の面に対して傾斜しており、各面に接する想像線がある点で交差するように、非平行であってよい。傾斜側壁22を有する成形研磨粒子20の傾斜側壁22は様々であってよく、一般に、第1の面24及び第2の面26の外辺部29を形成する。一実施形態において、第1の面24及び第2の面26の外辺部29は幾何学的形状であるように選択されてよく、第1の面24及び第2の面26は同一の幾何学的形状を有するように選択されてよい。ただし、これらは寸法が異なり、1つの面が他の面よりも大きい。一実施形態において、第1の面24の外辺部29及び第2の面26の外辺部29は、図示される三角形であった。
【0016】
図1B及び図1Cを参照すると、第2の面26と成形研磨粒子20の傾斜側壁22との間の抜き勾配αを変更して、各面の相対的寸法を変化させてもよい。本発明の様々な実施形態において、抜き勾配αは、約90度〜約130度、又は約95度〜約130度、又は約95度〜約125度、又は約95度〜約120度、又は約95度〜約115度、又は約95度〜約110度、又は約95度〜約105度、又は約95度〜約100度であってよい。2008年12月17日に出願された「Shaped Abrasive Particles With A Sloping Sidewall」という表題の米国特許出願公開第2010/0151196号に論じられるように、抜き勾配αの特定の範囲は、傾斜側壁を有する成形研磨粒子から作製された、被覆された研磨物品の研削性能に驚くべき向上をもたらすことが見出された。
【0017】
次に図1Cを参照すると、被覆された研磨物品40が示され、研磨層によって被覆された裏材42の第1の主表面41を有する。研磨層は、メークコート44と、メークコート44によって裏材42に取り付けられた傾斜側壁22を有する複数の成形研磨粒子20とを含む。サイズコート46は、傾斜側壁22を有する成形研磨粒子20を裏材42に更に取り付ける、又は接着するために塗布される。
【0018】
上述したように、傾斜側壁22を有する成形研磨粒子20の大部分は、先細になるか、一方に傾く。これにより、傾斜側壁22を有する成形研磨粒子20の大部分が、裏材42の第1の主表面41に対して90度未満の配向角度βを有するようになる。上述したように、傾斜側壁を有する成形研磨粒子が塗布され、傾斜側壁の方に傾斜することが可能になると、成形研磨粒子の最先端部48は、概して同一の高さhを有する。
【0019】
傾斜配向を更に最適化するために、傾斜側壁を有する成形研磨粒子は、オープンコートの研磨層で裏材に塗布されてよい。静電塗布システム内のクローズドコートの研磨層は、作製機を通過する単一パスにおいて、研磨物品のメークコートに塗布可能な、研磨粒子又は研磨粒子のブレンドの最大重量である。オープンコートは、塗布可能な最大重量(グラム単位)よりも重量が少ない、被覆された研磨物品のメークコートに塗布される研磨粒子又は研磨粒子のブレンドの量である。オープンコートの研磨材層は、研磨粒子による100%未満のメークコート被覆率をもたらすことによって、粒子間に、空き領域及び可視の樹脂層が残されることになる。
【0020】
傾斜側壁を有する成形研磨粒子を、裏材に過度に塗布した場合には、メークコート及びサイズコートの硬化の前に、粒子が傾斜するか、傾くことを可能にする、粒子間の空隙の存在が、不十分になると考えられる。本発明の様々な実施形態において、オープンコート又はクローズドコートの研磨層を有する被覆された研磨物品中の成形研磨粒子の50%超、60%超、70%超、80%超、又は90%超が、90度未満の配向角度βを有して傾くか、傾斜している。精密孔スクリーンを用いると、クローズドコートの密度に近づくか、それに等しい、研磨層内の著しく高い研磨粒子密度において、成形研磨粒子が傾くか、傾斜することをなお可能にしつつ、成形研磨粒子を均一に離隔できる。
【0021】
理論に束縛されるものではないが、90度未満の配向角度βは、傾斜側壁を有する成形研磨粒子に改善された切削性能をもたらすと考えられる。本発明の様々な実施形態において、被覆された研磨物品の研磨層内の傾斜側壁を有する成形研磨粒子の少なくとも大部分の配向角度βは、約50度〜約85度、又は約55度〜約85度、又は約60度〜約85度、又は約65度〜約85度、又は約70度〜約85度、又は約75度〜約85度、又は約80度〜約85度であってよい。
【0022】
傾斜側壁を有する成形研磨粒子20は、様々な体積縦横比を有してよい。体積縦横比は、体積の重心を貫通する最大断面積を重心を貫通する最小断面積で除した比率として定義される。一部の形状では、最大断面積又は最小断面積は、その形の外部形状に対して平面傾斜しているか、角度がついているか、又は傾斜していてよい。例えば、球体は1.000の体積縦横比を有するが、立方体は1.414の体積縦横比を有する。長さAに等しい各辺、及びAに等しい均一の厚さを有する正三角形の形状の成形研磨粒子は、1.54の体積縦横比を有する。均一の厚さが0.25Aに減少すると、体積縦横比は2.64に増加する。より大きい体積縦横比を有する成形研磨粒子は、改善された切削性能を有すると考えられる。本発明の様々な実施形態において、傾斜側壁を有する成形研磨粒子の体積縦横比は、約1.15超、又は約1.50超、又は約2.0超、又は約1.15〜約10.0、又は約1.20〜約5.0、又は約1.30〜約3.0であってよい。
【0023】
他の好適な成形研磨粒子は、米国特許出願公開第2009/0169816号、同第2010/0146867号、同第2010/0319269号、2009年12月2日に出願された「Dual tapered Shaped Abrasive Particles」という表題の米国特許出願第61/266,000号、2010年4月27日に出願された「Ceramic Shaped Abrasive Particles,Method Of Making The Same」という表題の同第61/328,482号、及び2010年8月4日に出願された「Intersecting Plate Shaped Abrasive Particles」という表題の同第61/370,497号に開示されている。
【0024】
成形セラミック研磨粒子に形成され得る材料としては、既知のセラミック材料、例えば、αアルミナ、炭化ケイ素、アルミナ/ジルコニア、及び炭化ホウ素などの細粒などの物理的前駆体が挙げられる。また、三水和アルミナ、ベーマイト、γアルミナ及び他の遷移相アルミナ、並びにボーキサイトなどの化学的及び/又は形態的前駆体が挙げられる。上記の中で最も有用なものは、典型的には、アルミナ及びその物理的又は化学的前駆体を主成分とするものである。しかしながら、本発明はそれらに限定されるものではなく、様々な複数の前駆体セラミック材料についても適用可能であると理解すべきである。
【0025】
成形セラミック研磨粒子の好適な作製方法は、2008年12月17日に出願された「Method Of Making Abrasive Shards,Shaped Abrasive Particles With An Opening,Or Dish−shaped Abrasive Particles」という表題の米国特許出願公開第2009/0165394号、2009年12月22日に出願された「Transfer Assisted Screen Printing Method Of Making Shaped Abrasive Particles And The Resulting Shaped Abrasive Particles」という表題の米国特許出願第61/289,188号、及び成形セラミック研磨粒子の定義で参照した特許に開示されている。
【0026】
傾斜側壁22を有する成形研磨粒子20との混合に好適な粒子としては、従来の研磨グレイン、希釈グレイン、又は米国特許第4,799,939号及び同第5,078,753号に記載されるもののような、腐食性粒塊が挙げられる。従来の研磨グレインの代表的な例としては、溶融酸化アルミニウム、シリコンカーバイド、ガーネット、溶融アルミナジルコニア、キュービック窒化ホウ素、ダイヤモンドなどが挙げられる。希釈グレインの代表的な例としては、大理石、せっこう、及びガラスが挙げられる。研磨物品中では、傾斜側壁22を有する、異なった形状の成形研磨粒子20のブレンド(例えば、三角形及び正方形)、又は異なる抜き勾配を有する成形研磨粒子20のブレンド(例えば、120度の抜き勾配を有する粒子と混合させた、98度の抜き勾配を有する粒子)を使用できる。
【0027】
傾斜側壁22を有する成形研磨粒子20はまた、表面コーティングを有してもよい。表面被覆は、研磨物品中の研磨グレインと結合剤との接着を改善することで知られており、又は成形研磨粒子20の静電蒸着を支援するために使用することができる。このような表面被覆は、米国特許第5,213,591号、同第5,011,508号、同第1,910,444号、同第3,041,156号、同第5,009,675号、同第5,085,671号、同第4,997,461号、及び同第5,042,991号に記載されている。更に、表面被覆は、成形研磨粒子のキャッピングを防ぎ得る。キャッピングとは、研磨中の加工対象物からの金属粒子が、成形研磨粒子の頂上部に溶接されるようになる現象を表す用語である。上記の機能を発揮する表面被覆は、当業者には既知である。
【0028】
z方向に回転整列した研磨粒子を有する被覆された研磨物品
図1Cを参照すると、被覆された研磨物品40は、裏材42の第1の主表面41上に塗布される結合剤の第1の層(以下、メイクコート44と呼ぶ)を有する裏材42を含む。メークコート44に付着しているか、それに部分的に埋め込まれているのは、複数の成形セラミック研磨粒子であり、一実施形態において、研磨層を形成する傾斜側壁22を有する成形研磨粒子20を含む。傾斜側壁22を有する成形研磨粒子20上には、結合剤の第2の層(以下、サイズコート46と呼ぶ)が塗布される。メークコート44の目的は、傾斜側壁22を有する成形研磨粒子20を、裏材42に固定することであり、サイズコート46の目的は、傾斜側壁22を有する成形研磨粒子20を補強することである。傾斜側壁22を有する成形研磨粒子20の大部分は、先端48又は頂点が裏材42から離れる方向を向くように配向され、成形研磨粒子は、傾斜側壁22上に存在し、示されるように先細になるか又は傾斜している。
【0029】
複数の成形セラミック研磨粒子のそれぞれは、図1Cに示されるように、成形セラミック研磨粒子を貫通し、かつ裏材に対して90度の角度で裏材42を貫通する、z軸の周りで特定のz方向の回転配向を有してよい。成形研磨粒子は、第1の面24又は第2の面26の実質的に平坦な面など表面特徴部と共に配向され、z軸の周りの特定の角度位置へと回転される。被覆された研磨物品中の特定のz方向の回転配向は、研磨層形成時の成形研磨粒子の静電コーティング又はドロップコーティングのために、表面特徴部のランダムなz方向の回転配向によって生じるよりも頻繁に生じる。したがって、著しく多数の成形セラミック研磨粒子のz方向の回転配向を調整することにより、被覆された研磨物品の切削速度、仕上がり、又はその両方を、静電コーティング法を用いて製造した成形セラミック研磨粒子とは異なるものにすることができる。本発明の様々な実施形態において、少なくとも50%、51%、55%、60%、65%、70%、75%、80%、85%、90%、95%、又は99%の、研磨層内の成形セラミック研磨粒子は、ランダムに発生せず、整列した粒子の全てについて実質的に同一であり得る、特定のz方向の回転配向を有してよい。他の実施形態において、約50%の成形セラミック研磨粒子は第1の方向に整列してよく、約50%の成形セラミック研磨粒子は第2の方向に整列してよい(図5A、5B)。一実施形態において、第1の方向は、実質的に第2の方向に直交する。
【0030】
表面特徴部は、鋳造、押出成形、スクリーン印刷、又は成形セラミック研磨粒子を成形する他のプロセス中に形成される。非限定的な表面特徴部としては、実質的に平坦な表面、三角形の外辺部、矩形の外辺部、六角形の外辺部、若しくは多角形の外辺部を有する実質的に平坦な表面、凹面、凸面、頂点、孔、隆起部、単数若しくは複数の線、突出部、又は凹部が挙げられてよい。表面特徴部は、切削速度を変更する、成形研磨粒子の摩耗を低減する、又は得られる仕上げを変更するために選択されることが多い。多くの場合、表面特徴部は、縁部、平面、又は先端部であってよく、研磨層内の当該特徴部のz方向の回転配向は、研磨層の動き、加工対象物の動き、及び研削中の加工対象物の表面に対する研磨層の角度を考慮して選択される。
【0031】
ここで図2A、2B〜5A、5Bを参照すると、被覆された研磨ディスク、シート、又はベルトの研磨層内の成形セラミック研磨粒子の様々なパターンが図示されている。これらの図は、図1A、Bに示すように、複数の成形研磨粒子を有する研磨層の平面図を示す。簡略化のために、個々の成形研磨粒子は、メークコートに付着した成形研磨粒子の底部(傾斜側壁)の位置を示す短い線分として示す。シート又はベルトを示す図では、参考のために縦軸50を示す。研削工具上に配置された場合のディスク又はベルトの移動方向を示す矢印も更に示す。
【0032】
ここで図2A、2Bを参照すると、被覆された研磨物品は、ディスク52、又はシート54若しくはベルト54を含んでよい。図2Aでは、被覆された研磨物品はディスクであり、特定のz方向の回転配向は、実質的に平坦な表面56を周囲方向に位置付け、複数の成形セラミック研磨粒子によって生じたパターンは複数の同心円を含む。図2Bでは、被覆された研磨物品はシート54又はベルト54であり、特定のz方向の回転配向により、実質的に平坦な表面56をベルト又はシートの縦軸50に対して約0度の角度で位置付け、複数の成形セラミック研磨粒子によって生じたパターンは複数の平行線を含む。図2Cを参照すると、図2Aのディスク作製時に成形研磨粒子を精密に配置し、回転整列させるための精密有孔スクリーン58が示される。
【0033】
ここで図3A、3Bを参照すると、被覆された研磨物品は、ディスク52、又はシート54若しくはベルト54を含んでよい。図3Aでは、被覆された研磨物品はディスク52であり、特定のz方向の回転配向により、実質的に平坦な表面56を半径方向に(radically)位置付け、複数の成形セラミック研磨粒子によって生じたパターンは複数の同心円を含む。図3Bでは、被覆された研磨物品はシート54又はベルト54を含み、特定のz方向の回転配向により、実質的に平坦な表面56をベルト又はシートの縦軸50に対して約90度の角度で位置付け、複数の成形セラミック研磨粒子によって生じたパターンは複数の平行線を含む。図3Cを参照すると、図3Aのディスク作製時に成形研磨粒子を精密に配置し、回転整列させるための精密有孔スクリーン58が示される。
【0034】
ここで図4A、4Bを参照すると、被覆された研磨物品は、ディスク52、又はシート54若しくはベルト54を含んでよい。図4Aでは、被覆された研磨物品はディスク52であり、特定のz方向の回転配向により、実質的に平坦な表面56をディスクの直径60に対して約45度の角度で位置付け、複数の成形セラミック研磨粒子によって生じたパターンは複数の平行線を含む。図4Bでは、被覆された研磨物品はシート54又はベルト54であり、特定のz方向の回転配向により、実質的に平坦な表面56をベルト又はシートの縦軸50に対して約45度の角度で位置付け、複数の成形セラミック研磨粒子によって生じたパターンは複数の平行線を含む。図4Cを参照すると、図4Aのディスク作製時に成形研磨粒子を精密に配置し、回転整列させるための精密有孔スクリーン58が示される。他の実施形態において、実質的に平坦な表面は、5度、10度、20度、25度、30度、35度、40度、45度、50度、55度、60度、65度、70度、75度、80度、及び85度など0度〜90度の任意の角度で位置付けられてよい。前述の角回転の範囲は、記載値の任意の2つを選択して、上限及び下限を設定できる。
【0035】
ここで図5A、5Bを参照すると、被覆された研磨物品は、ディスク52、又はシート54若しくはベルト54を含んでよい。図5Aでは、被覆された研磨物品はディスク52であり、特定のz方向の回転配向により、約50%の、実質的に平坦な表面56を有する成形研磨粒子を約0度で整列するように位置付け、約50%の、実質的に平坦な表面56を有する成形研磨粒子を約90度の角度で整列するように位置付け、複数の成形セラミック研磨粒子によって生じたパターンは複数の直交直線を含む。図5Bでは、被覆された研磨物品はシート54又はベルト54であり、特定のz方向の回転配向により、約50%の、実質的に平坦な表面56を有する成形研磨粒子を縦軸50に対して約0度で整列するように位置付け、約50%の、実質的に平坦な表面56を有する成形研磨粒子を縦軸50に対して約90度の角度で整列するように位置付け、複数の成形セラミック研磨粒子によって生じたパターンは複数の直交直線を含む。図5Cを参照すると、図5Aのディスク作製時に成形研磨粒子を精密に配置し、回転整列させるための精密有孔スクリーン58が示される。
【0036】
メークコート44及びサイズコート46は、樹脂性接着剤を含む。メークコート44の樹脂性接着剤は、サイズコート46の樹脂性接着剤と同じものでも異なるものでもよい。これらのコートに好適な樹脂性接着剤の例としては、フェノール樹脂、エポキシ樹脂、尿素ホルムアルデヒド樹脂、アクリレート樹脂、アミノプラスト樹脂、メラミン樹脂、アクリル化エポキシ樹脂、ウレタン樹脂、及びこれらの組み合わせが挙げられる。樹脂性接着剤に加えて、メークコート44若しくはサイズコート46、又はその両方のコートは、例えば、充填剤、研削助剤、湿潤剤、界面活性剤、染料、顔料、カップリング剤、接着促進剤、及びこれらの組み合わせのような当該技術分野で既知の添加剤を更に含むことができる。充填剤の例としては、炭酸カルシウム、シリカ、タルク、粘土、メタケイ酸カルシウム、ドロマイト、硫酸アルミニウム、及びこれらの組み合わせが挙げられる。
【0037】
好適な可撓性裏材としては、高分子フィルム、金属箔、織物、編布、紙、バルカンファイバー、不織布、発泡体、スクリーン、積層体、及びこれらの組み合わせが挙げられる。可撓性裏材を備える被覆された研磨物品は、シート、ディスク、ベルト、パッド、又はロールの形態であってよい。いくつかの実施形態において、裏材は、被覆された研磨物品をループに形成して好適な研削工具上で作動可能な研磨ベルトを作製できるように、十分に可撓性でなくてはならない。
【0038】
研削助剤は、被覆された研磨物品に塗布されてよい。研削助剤は粒子材料として定義され、その添加が研磨の化学的及び物理的なプロセスに顕著な影響を及ぼし、それによって改善された性能をもたらす。研削助剤は、広範な様々な材料を包含し、また無機系又は有機系であり得る。研削助剤の薬品群の例としては、ワックス、有機ハロゲン化物化合物、ハロゲン化物塩、並びに金属及びその合金が挙げられる。有機ハロゲン化物化合物は、通常、研磨時に分解し、ハロゲン酸又はガス状ハロゲン化物化合物を放出する。そのような材料の例としては、テトラクロロナフタレン、ペンタクロロナフタレンのような塩素化ワックス、及びポリ塩化ビニルが挙げられる。ハロゲン化物塩の例としては、塩化ナトリウム、カリウムクリオライト、ナトリウムクリオライト、アンモニウムクリオライト、テトラフルオロホウ酸カリウム、テトラフルオロホウ酸ナトリウム、フッ化ケイ素、塩化カリウム、塩化マグネシウムが挙げられる。金属の例としては、スズ、鉛、ビスマス、コバルト、アンチモン、カドミウム、鉄、及びチタンが挙げられる。他の研削助剤としては、イオウ、有機イオウ化合物、グラファイト、及び金属硫化物が挙げられる。異なる研削助剤の組み合わせを使用することも本発明の範囲内であり、場合によっては、これによって相乗効果がもたらされることがある。一実施形態において、研削助剤は、クリオライト又はテトラフルオロホウ酸カリウムであった。このような添加剤の量は、所望の性状をもたらすために調整されてよい。
【0039】
サイズコーティングに重ねてスーパーサイズコーティングを用いることも本発明の範囲内である。スーパーサイズコーティングは、典型的に、結合剤及び研削助剤を含有する。結合剤は、フェノール樹脂、アクリレート樹脂、エポキシ樹脂、尿素ホルムアルデヒド樹脂、メラミン樹脂、ウレタン樹脂、及びこれらの組み合わせのような材料から生成することができる。
【0040】
z方向に回転整列した研磨粒子を有する被覆された研磨物品の作製方法
本開示の被覆された研磨物品の作製には、様々な方法を用いてよい。一実施形態において、2011年2月16日に出願された「Electrostatic Abrasive Particle Coating Apparatus and Method」という表題の米国特許出願第61/443399号を有する同時係属中の特許出願に記載のように、静電コーティング法を用いてよい。この特定の方法では、帯電した振動フィーダーを用いて、フィード面から、被覆された裏材の奥にある導電部材へと成形研磨粒子を押出しでよい。いくつかの実施形態において、フィード面は実質的に水平であり、被覆された裏材は実質的に垂直に移動する。驚くべきことに、フィード面と、裏材に接触する導電部材との間の間隙を変化させると、特許出願の図8及び9に示されるように、薄型の三角形プレートを含む成形研磨粒子のz方向の回転配向が、主に機械横方向に整列したプレートから主に縦方向に整列したプレートへと変化することが判明した。
【0041】
成形研磨粒子のz方向の回転配向を達成する別の方法は、成形研磨粒子が、4以下、3以下、2以下、又は1以下の配向など少数の特定の配向の精密有孔スクリーンにのみ収まることができるように、成形研磨粒子を特定のz方向の回転配向に位置付ける精密有孔スクリーンを用いることであってよい。例えば、矩形プレートを含む成形研磨粒子の断面よりもやや大きいだけの矩形開口部は、z方向の回転配向に180度対向する2つの可能な配向のうちの1つに成形研磨粒子を配向する。精密有孔スクリーンは、成形研磨粒子をスクリーンの孔内に位置付けつつ、そのz軸(成形研磨粒子が孔内に位置付けられた場合にスクリーンの表面に対して垂直)の周りを、約30度以下、約20度以下、約10度以下、約5度以下、約2度以下、又は約1度以下回転できるように設計されてよい。
【0042】
成形研磨粒子をz方向に配向してパターン化するように選択された、複数の孔を有する精密有孔スクリーンは、対応する孔パターンを有する第2の精密有孔スクリーン上の接着テープなどの固定部材、第1の精密スクリーン内に粒子を保持するために用いられる静電場、又は反対方向にねじれた、対応する孔パターンを備えて粒子を孔内に挟む、2個の精密有孔スクリーンなどの機械的ロックを有してよい。第1の精密孔スクリーンは成形研磨粒子で充填され、固定部材を用いて孔内の所定の位置に成形研磨粒子を保持する。一実施形態において、積重体内で第1の精密孔スクリーンに揃えられた第2の精密孔スクリーンの表面上の接着テープは、第2の精密孔スクリーンの孔内で露出するテープの表面に貼り付いた第1の精密スクリーンの孔内に成形研磨粒子を留まらせる。
【0043】
メーク層を有する被覆された裏材は、孔内の成形研磨粒子に対向するメーク層を有する複数の成形研磨粒子を含む第1の精密孔スクリーン面に平行に位置付けられる。したがって、被覆された裏材及び第1の精密孔スクリーンは接触し、成形研磨粒子をメーク層に接着させる。固定部材は、テープで貼られた表面を有する第2の精密孔スクリーンを取り外す、2個の精密孔スクリーンのねじりをほどく、又は静電場を除去するなどして解放される。次に、第1の精密孔スクリーンが取り外されて、被覆された研磨物品上に特定のz方向の回転配向を有する成形研磨粒子が残され、サイズコートの塗布、並びにメークコート及びサイズコートの硬化など従来の加工が更に行われる。
【実施例】
【0044】
本開示の目的及び利点を以下の非限定的な実施例で更に例示する。これらの実施例において列挙されるその特定の材料及び量、並びに他の条件及び詳細は、本開示を過度に制限しないと解釈されるべきである。特に記載のない限り、実施例及び本明細書の残りの部分における全ての部、パーセント、及び比率は、重量による。
【0045】
(実施例1〜4)
米国特許出願公開第2010/0151196号の開示に従って、成形研磨粒子を調製した。成形研磨粒子は、辺長0.068インチ(1.73mm)及び成型型深さ0.012インチ(0.3mm)の正三角形のポリプロピレン成形型のキャビティでアルミナのゾル−ゲルを鋳造して調製した。乾燥及び焼成後、得られた成形研磨粒子は、抜き勾配αが約98度であったことを除いて図1Aに類似であった。焼成した成形研磨粒子は、約0.8mm(辺長)×0.2mm厚であり、30号メッシュのふるいを通過するものであった。
【0046】
直径8インチ×10ミル厚(20.3cm×0.254mm)の円形精密有孔金属スクリーンは、Fotofab Inc.(Chicago,IL)から入手した。フォトリソグラフィー化学エッチングによって精密孔スクリーンを作製した。個々の孔は、矩形リソグラフィー特徴部からエッチングした。エッチングプロセスのために、実際の特徴部は丸みを帯びた角部を有しており、孔はシートの中央部よりも前面及び後面において大きかった。各孔の最大面寸法は、約0.39mm幅×0.8mm長であった。各孔の最狭部分の寸法は、約0.34mm幅×0.7mm長であった。
【0047】
4種類の異なるスクリーンパターンを作製した。それぞれのパターンは、同一の孔密度を有した。第1のスクリーン(図3C(実施例1))は、各孔の長さ寸法が円形の精密孔スクリーンに対して半径方向に配向されている、孔の同心円を有した。第2のスクリーン(図2C(実施例2))は、各孔の長さ寸法が円形の精密孔スクリーンに対して周囲方向に配向されている、孔の同心円を有した。第3のスクリーン(図4C(実施例3))では、孔が、第1の2個のスクリーンの中間の角度で、すなわち、半径方向又は周辺方向のいずれかから45度ずれて配向された孔を有する同心円内にある。第4のスクリーン(図5C(実施例4))は、パターンが中断し得るスクリーンの外側円縁部を除いて、各水平孔が4個の垂直孔に囲まれ、各垂直孔が4個の水平孔に囲まれるように、各列で垂直孔と水平孔とが交互になり、続く列が互いに対してずれている反復パターンを有する矩形アレイ上の孔で作製した。
【0048】
スクリーン孔内で成形研磨粒子を適切に抑制して、配向するためには、全ての孔を整列させて、2個の精密孔スクリーンを互いの上に積重する必要があった。2個の同一の精密孔スクリーンを揃えて保持し、箔テープの小型タブを使用してスクリーンの縁部で固定した。次に、割り出しされたスクリーン積重体の1個のスクリーンの一面を、マスキングテープ(「SCOTCH 233+」、5 3/4インチ(14.6cm)幅、3M Co.(St Paul,MN))で被覆した。割り出しされたスクリーン積重体は、これで成形研磨粒子を受け入れる準備が整った。
【0049】
成形研磨粒子の寸法は、三角形プレートの頂点だけがスクリーン孔に収まるものであり、孔の長軸に平行に配向された場合のみに、成形研磨粒子の頂点が下側スクリーンの孔の底部においてテープの研磨面に接触するものであった。
【0050】
テープで被覆された下側スクリーンとは反対側の、割り出しされたスクリーン積重体の表面にある量の成形研磨粒子を塗布し、割り出しされたスクリーン積重体の底部を軽くたたいた。割り出しされた孔は、頂点が下向き、底部が上向き、かつ孔の長さ方向に配向された成形研磨粒子ですぐに充填された。露出したマスキングテープの接着剤によって頂点で固定された成形研磨粒子が90%超の孔に含まれるまで、同様の方法で追加の成形研磨粒子を塗布した。
【0051】
メーク樹脂は、22.3部のエポキシ樹脂(「HELOXY 48」、Hexion Specialty Chemicals(Houston,TX))及び6.2部のアクリレートモノマー(「TMPTA」、UCB Radcure(Savannah,GA))を混合し、1.2部の光開始剤(「IRGACURE 651」、Ciba Specialty Chemicals(Hawthorne,NY))を追加し、光開始剤が溶解するまで加熱して調製した。51部のレゾールフェノール樹脂(フェノール:ホルムアルデヒドのモル比が1.5:1〜2.1:1である塩基触媒縮合体)、73部の炭酸カルシウム(HUBERCARB、Huber Engineered Materials(Quincy,IL))、及び8部の水を混合しながら加えた。次に、ブラシを用いてこの混合物4.5グラムを、0.875インチ(2.22cm)のセンター穴を有する直径7インチ(17.8cm)×厚さ0.83mmのバルカンファイバーウェブ(「DYNOS Vulcanized Fibre」、DYNOS GmbH(Troisdorf,Germany))に塗布した。次に、被覆された研磨ディスクを、20フィート/分(6.1m/分)でUVランプ下を通過させ、コーティングをゲル化した。
【0052】
成形研磨粒子で充填された、割り出しされたスクリーン積重体から2個の精密孔スクリーンを接合している箔テープのタブを外した。孔内の成形研磨粒子自体は、2個のスクリーンを割り出しするのに十分であった。樹脂側を上向きにして、メーク樹脂で被覆されたファイバーディスクを平坦な表面に配置した。成形研磨粒子で充填された、割り出しされたスクリーン積重体をファイバーディスクの中心に置き、メーク樹脂と接触するように無機物含有面を配置した。アセンブリを固定させつつ、成形研磨粒子を含む下側の精密孔スクリーンからテープで貼られた表面を有する上側の精密孔スクリーンを慎重に取り外し、成形研磨粒子を解放した。次に、ファイバーディスクのメーク樹脂面から慎重に下側の精密孔スクリーンを持ち上げた。この結果、スクリーンの孔によって確立されたz方向の回転配向を概ね維持しつつも、成形研磨粒子が頂点上向きの状態でメーク樹脂に移動した。各ディスクに移動した成形研磨粒子の重量は、3.5グラムであった。メーク樹脂は熱硬化させた(90℃で90分間、その後105℃で3時間)。次に、従来の氷晶石含有フェノールサイズ樹脂で各ディスクを被覆し、硬化させた(90℃で90分間、その後105℃で16時間)。
【0053】
出来上がった被覆された研磨ディスクは、試験前に周囲湿度で1週間、その後50%のRHで2日間均衡化させた。
【0054】
比較例A
比較例Aは、静電コーティングによって成形研磨粒子を塗布し、したがって成形研磨粒子がランダムなz方向の回転配向を有したことを除いて、実施例1〜4と同一に調製した。
【0055】
研削試験方法
以下の手順を用いて1018中炭素鋼を研削することにより、様々なディスクの研削性能を評価した。評価用の直径7インチ(17.8cm)の研磨ディスクを、7インチ(17.8cm)の平滑なディスクパッド平面皿(3M Company(St.Paul,Minnesota)から入手した「821197 Hard Black」)を装備した回転研削盤に取り付けた。次に、研磨盤を稼動させて、12ポンド(5.4kg)の荷重下の、0.75×0.75in(1.9×1.9cm)の予め計量された1018スチールバーの末端面を付勢した。この荷重下でのこの加工対象物に対する研削盤の結果的な回転速度は、5000rpmであった。この加工対象物を、これらの条件下で10秒研削インターバル(パス)で研磨した。それぞれの10秒インターバルの後、加工対象物を室温まで冷却させ、計量して、研磨動作による削り取りを測定した。試験結果は、それぞれのインターバルでのインクリメンタルな削り取り、及び取り除かれた合計削り取りとして報告した。試験の終点は、削り取りが初期削り取り値の20%を下回った時点で決定した。試験は、全ての実施例に対して8ポンド(3.6kg)の荷重で繰り返した。所望により、好適な設備を用いて試験を自動化することができる。
【0056】
【表1】

試験結果を表1に示す。図6は、12ポンド(53.4N)の荷重下での様々な実施例ディスク及びe−コーティングされた対照ディスクの削り取り結果をプロットしたものであり、図7は、8ポンド(35.6N)の荷重下での様々な実施例ディスク及びe−コーティングされた対照ディスクの削り取り結果をプロットしたものである。上述したように、実質的に平坦な表面のz方向の回転配向を変化させると、様々な実施例ディスクの切削速度に著しく影響した。
【0057】
(実施例5)
実施例5では、有孔スクリーンを用いて、スクリーンコーティングされた研磨ディスク内で三角形の成形研磨粒子を頂点上向き配向に調整し、ステンレス鋼での合計削り取りについて静電コーティングされた(e−コーティングされた)対照研磨ディスクと比較した。有孔スクリーンに配置された三角形の成形研磨粒子の重量は様々であり、様々な重量の三角形の成形研磨粒子のe−コーティングされた対照ディスクと比較した。この実施例では、単純な28号織り金網ふるい用スクリーンを用いて、三角形の成形研磨粒子を適切な頂点上向き配向に整列させた。三角形の粒子は、辺長110ミル(2.79mm)、成型型深さ28ミル(0.71mm)、及び抜き勾配98度の正三角形のポリプロピレン成形型のキャビティからアルミナのゾル−ゲルを成形して調製した。乾燥及び焼成後、得られた三角形の成形研磨粒子は、約0.110インチ(2.8mm)の辺長、約0.012インチ(0.3mm)の厚さ、及び−20+26号メッシュのふるいサイズを有した。
【0058】
これらのスクリーンコーティングされた研磨ディスクについては、三角形の成形研磨粒子の回転整列は調整されず、スクリーンの孔ではランダムなz方向の回転配向が許された。しかし、有孔スクリーンでは、研磨層内の約100%の三角形の研磨グレインが、確実に裏材から離れる方向に頂点を向けた。e−コーティングされたサンプルではクローズドコート密度(%)が増加するにつれて、より多くの三角形の成形研磨粒子が頂点で研磨層に付着するようになり、その結果、研磨する加工対象物に対して水平な表面を示す。図8に示されるように、スクリーンコーティングされたディスクは、75パーセント超のクローズドコート密度(%)において著しく高い削り取りを有した。本発明の様々な実施形態において、スクリーンコーティングされたディスクは、約75〜約100%又は約80〜約98%のクローズドコート密度(%)を有してよい。これらの密度において、三角形プレートを含む、著しくより多くの成形研磨粒子が、メーク層から離れる方向に頂点を向けた三角形の底部によってメーク層に付着し、被覆された研磨物品の合計削り取りを著しく向上させる。
【0059】
当業者は、より具体的に添付の「特許請求の範囲」に記載した本開示の趣旨及び範囲から逸脱せずに、本開示への他の修正及び変更を行うことが可能である。多様な実施形態の観点を多様な実施形態の他の観点と一部若しくは全て相互交換すること又は組み合わせることが可能であると理解されたい。上述の出願において引用された、参照、特許、又は特許出願は、一貫した方法で全体が参照により本明細書に組み込まれる。これらの組み込まれた参照と本出願との間に部分的に不一致又は矛盾がある場合、先行する記述の情報が優先するものとする。当業者が「特許請求の範囲」の開示を実行することを可能にするために与えられた先行する記述は、本請求項及びそれと等しい全てのものによって定義される本開示の範囲を限定するものと解釈されるべきではない。
図1A
図1B
図1C
図2A
図2B
図2C
図3A
図3B
図3C
図4A
図4B
図4C
図5A
図5B
図5C
図6
図7
図8