【発明が解決しようとする課題】
【0004】
剥離プロファイルは、概して、矯正すべき目に関する外科的介入を実施する前に計算される。この計算の基礎は、実際の状態にある目を検査することである。目のこの検査について、現況技術は、様々な技術、特にトポグラフィ測定機器(いわゆるトポライザ(topolyzers))、波面アナライザ、シャインプルーク(Scheimpflug)機器、ならびに厚み計に精通している。
【0005】
波面アナライザまたはトポグラフィ測定機器を用いた屈折眼科手術は、位置的に正確な治療を可能にするため、角膜の小さな局所構造を明確かつ局所的に的確なやり方で指定するどころか、それらをミリメートル範囲内で有効に解像することがほとんどできない。トポライザを用いても、いわゆるセントラル・アイランドを、つまり、初期のPRKによる以前の完全には成功しなかった処置に由来する場合が多い角膜上の隆起を、ミリメートル範囲内で検出することはほとんど不可能である。
【0006】
現在、剥離中にオンライン方式で所望の剥離プロセスからの偏差を、特に、いわゆる回旋変位またはいわゆる瞳孔中心ずれ(pupil center shift)に基づく偏差を、追跡する試みがなされている。
【0007】
しかし、現在知られているこれらのプロセスでは、概して、局所的な角膜の不規則性を精密に検出し、かかる検出の過程でそのポイントのみにおいて精密に局所的な形で、また剥離の結果を追跡するプロセス中に、レーザ・ビームを当てることは不可能である。
【0008】
いわゆる光コヒーレンス断層撮影法は、生体組織を非接触検査するための測定プロセスとして一時期利用可能であった。例えば、B. Wolfgang Drexler, Journal of Biomedical Optics, 9(1), 42-74, 2004を参照されたい。光コヒーレンス断層撮影法を用いて、特に広帯域照射器を使用して、特に1μm以下の範囲の解像度で、非常に微細な生体構造を検査することができる。
【0009】
EP 1 231 496 A2は、治療レーザが出力、露光時間、およびスポットサイズに関して制御される、目の組織の制御された変更のための光コヒーレンス断層撮影法(OCT)の適用について記載している。治療後の目の組織は、OCTおよび閾値によって、治療していない目の組織と区別される。レーザで成功裡に治療されている目の組織の領域は、OCTによって決定される。
【0010】
US 2007/0282313 A1(Huang他)は、屈折矯正手術におけるトポグラフィ検査の目的でのみOCTを使用することについて記載している。OCTを用いたオンライン制御の光アブレーションに対する言及は見られない。この現況技術では、OCTで得られたトポグラフィ・データは、剥離プログラムの事前計算のみに利用される。
【0011】
EP 0 697 611 A2は、上述のEP 1 231 496 A2に類似したシステムを、眼科手術用顕微鏡のオートフォーカスシステムとともに記載している。角膜に関するトポグラフィ測定が実施されるが、OCTを用いた組織の切除のオンライン制御は行われない。
【0012】
US 2007/0073905 A1は、OCTを使用しておらず、全体として、以前のモデル計算を使用した目に関する外科的介入の現況技術について記載している。
【0013】
WO 2006/087180 A2は、剥離のプロセスについて記載しているが、OCTを使用していない。DE 103 23 422 A1も、OCTの使用について記載しておらず、組織内の光圧力範囲の検出についてのみ記載している。
【課題を解決するための手段】
【0014】
本発明の基礎となる目的は、改善された手術結果を可能にする、冒頭で述べたタイプのシステムを提供することである。
【0015】
この目的のため、本発明は、
a)目の光屈折特性を変更するための第1のレーザと、
b)第1のレーザの放射を目の上へと時間制御および位置制御して案内するための手段と、
c)目に対して光コヒーレンス断層撮影を実施する、第2のレーザを用いた光コヒーレンス断層撮影用のデバイスと、
d)第2のレーザの放射を目の上へと時間制御および位置制御して案内するための手段と、
e)コンピュータとを備える屈折眼科手術のシステムであって、そのコンピュータが、
e1)角膜組織を切除する過程で、プログラムに従って、角膜の整形を達成する目的で、第1のレーザと、第1のレーザの放射を目の上へと時間制御および位置制御して案内するための前述の手段とを制御し、
e2)光コヒーレンス断層撮影用のデバイスを制御し、角膜組織の切除の最中に、角膜に対する測定が実施されるようにプログラムされる屈折眼科手術のシステムにおいて、
前記第1のレーザが角膜組織を切除するように適合化され、
前記コンピュータ(C)が、角膜組織の切除の開始前および終了後にも前記角膜(12)に対する測定が実施されるようにプログラムされ、
前記コンピュータ(C)が、
e3)指定条件下で、測定の結果に応じて光コヒーレンス断層撮影を用いて測定に続く角膜組織の切除のためのプログラム・フローを制御
し、
e3’)角膜組織の切除前および切除中に、光コヒーレンス断層撮影の過程で得られる測定結果を表示デバイス(D)上に表示するためにプログラムされ、
入力デバイス(E)が用意され、それを用いてユーザが、前記コンピュータ(C)に、表示される光コヒーレンス・トポグラフィの測定結果の選択範囲(M1、M2)内での前記第1のレーザ(20)による角膜組織の付加的な切除をさせるか、または選択範囲(N)内での角膜組織の切除を低減させることができる、屈折眼科手術のシステムについて教示する。
【0016】
したがって、本発明は、光コヒーレンス断層撮影によって得られる測定の結果が事実上オンライン方式で、外科的介入のプロセスに対して影響を有するような形で、光コヒーレンス断層撮影(OCT)用のモジュールを屈折眼科手術のシステムに統合する。特に、高解像度および高速OCT(HHS−OCT)によって、数MHzから数GHzまでの、特に10GHz以下およびさらには100GHz以下の範囲のスキャン速度によって、また1秒よりも明確に短い測定時間を用いて、非常に高速で解像度がμm範囲内の角膜構造の確認および表示が可能になる。したがって、角膜組織の切除に先立つ初期構造および切除後の角膜の最終構造を検査するだけではなく、中間の治療の進行全体を追跡し、治療中に得られるOCT測定の結果に応じた形で治療を制御することも可能である。
【0017】
本発明によれば、OCTによってガイドされる組織の切除は、特に、UVレーザ(一般的に、エキシマ・レーザ)を用いて達成され、その過程では、角膜の特定範囲が目標にされ、次に、事実上リアルタイム(オンライン)のOCT測定が所望の測定結果を生じるまで、リアルタイム(オンライン)で制御された多数のショットによって角膜組織が切除される。
【0018】
OCTモジュールを屈折矯正手術のシステムに統合することによって、さらに、角膜の特定の不規則性を、特にいわゆるセントラル・アイランドを認識し、それらを治療の際に考慮に入れることが可能である。そのようなセントラル・アイランド、すなわち角膜表面上の不規則な隆起は、数mm以下の範囲の寸法を有し、したがって、屈折矯正手術の過程で従来の測定方法によってそれらを検知することは、ほぼまたは全く不可能であった。そのような不規則性はまた、治療前またはその最中に全くまたはほとんど発見できず、あるいはレーザ制御のために正確にアドレスすることができなかった。同様の見解が、やはり角膜表面で発生することがある、瘢痕の形態の非常に微細な不規則性に当てはまる。
【0019】
広帯域の光コヒーレンス断層撮影を用いて、そのような不規則性は認識可能であり、それに応じて、例えば、セントラル・アイランド(つまり、角膜上の隆起)の領域で、角膜の他の領域よりも局所的に多量の角膜組織が目標の方式で切除され、それによって平滑な表面が全体的に生じ、一方で、上述の瘢痕の場合、これら瘢痕の領域の切除は、結果としてほぼ平滑な角膜表面が同様に生じるように大幅に低減される形で、剥離プロファイルを形成することができる。現況技術では、そのような不規則性が、測定の結果では認識されず、剥離の際に考慮されなかった場合、剥離の過程でほぼ保存され、対応する不規則性が治療後の角膜上または角膜中にも残る結果となった。
【0020】
本発明によれば、OCTを屈折眼科手術のシステムに統合することで、断面、厚さ、前面および後面に関して、正確な角膜構造を検出し、治療の間それを一時的(瞬間的)に追跡することが可能である。したがって、本発明の特有の構成は、剥離プロセス中(つまり、屈折矯正手術中)に、事実上リアルタイム(オンライン)で、到達している切除段階のために一時的に取得するなど、角膜の個々の一時的なイメージング特性を計算し、このようにしてオンラインで計算されている目のイメージング特性が所望の指定目的に一致しているとき、剥離を精密に終了することを教示している。これによって、同時進行のトポグラフィ測定またはさらには波面測定が絶対的に不要になる。
【0021】
屈折眼科手術のための本発明によるシステムの好ましい構成により、角膜組織の切除前および/またはその最中の光コヒーレンス断層撮影の過程で得られた測定の結果を表示デバイス上に表示するため、コンピュータがプログラムされる。このようにして、治療医は、事実上オンライン方式で、つまり実質的にリアルタイムで、グラフィックで表示される剥離の進行を調べることができる。例えば、角膜の初期形状(介入の開始前の)を線によって(二次元表示の場合)または面によって(三次元表示の場合)、次に、例えば、その下の対応する一時的な角膜構造を、介入の間連続的に、色でコントラストを付けた線または面によって、表示画面上で内科医に対して提示することができる。これに関連して、さらに、コヒーレンス断層撮影を用いてやはり検査することができる、目の内部の角膜表面も内科医に対して光学的に示すことができる。これは、特に、角膜の残りの厚さが過度に薄くなることを回避する助けとなる。水晶体および/または瞳孔など、対象となる治療されている目のさらなる構造も、OCTを用いて検査し、表示デバイス上に表示することができる。
【0022】
上述のプロセスがLASIKの過程で用いられる場合、また、例えばフェムト秒レーザを用いていわゆるフラップ切開が実施される場合、発生する切開は、OCTを用いて追跡し、表示デバイス上に表示することができ、その後に続く角膜組織の剥離の過程で、フラップを折り返した後の、かつ想定される治癒プロセス後の状況を計算し表示することができるような形で、グラフィックで表示された上述の線または面を演算によって確認することができる。
【0023】
本発明の別の好ましい構成により入力デバイスが用意され、それを用いてユーザは、コンピュータに、表示される光コヒーレンス・トポグラフィの測定結果の選択範囲内での第1のレーザによる角膜組織の付加的な切除をさせるか、または、選択範囲内での角膜組織の切除を低減させることができる。
【0024】
本発明はまた、好ましくは10GHzの範囲の、また好ましくは100GHz以上の範囲の繰り返し速度で、フェムト秒放射源を使用するOCTの非常に高速なデバイスを使用することを、特にいわゆるVECSELもしくはVCSEL(垂直外部共振型面発光レーザ(Vertical External Cavity Surface Emitting Lasers))を使用することを教示している。そのような半導体レーザ・ダイオードは、物理的サイズがセンチメートル範囲内であるのにもかかわらず、電気的または光学的にポンピングさせ、非常に高い出力と効率に達することができる。フェムト秒ファイバ・レーザも本発明に用いてもよい。本発明はまた、そのような放射源を、100nm超過1000nm以下の帯域幅と100GHz超過の繰り返し速度をもつフェムト秒スーパーコンティニュームを発生させて使用し、それによって、非常に高い測定速度を達成することができ、つまり、角膜構造の画像を、例えば表示画面上に、剥離処置の過程で一時的に実際に得られる角膜の状態と比較して非常に短い時間遅延で生成することができ、すなわち、角膜の実際の状態が、事実上リアルタイムで(時間遅延なしに)グラフィックで表示され、また、時間遅延なしに演算によって処理されてもよいことを教示している。
【0025】
屈折眼科手術のための本発明によるシステムのさらなる好ましい構成は、従属請求項に記載されている。
【0026】
本発明の例示的実施形態を図面に基づいて以下により詳細に記載する。