【実施例】
【0049】
以下、本発明を下記実施例及び比較例に基づいてさらに詳述する。
【0050】
(実施例1)
多孔質γ-アルミナ5質量部と、セリア粒子粉末(BET比表面積20m
2/g)85質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
φ40mm×L60mm(100セル):担体容積0.0754Lのステンレス製メタルハニカム基材を、前記スラリー中に浸漬し、引き上げて過剰なスラリーをエアーガンで吹き払った後、大気雰囲気下600℃で3時間焼成してコート層を形成した。このとき、コート層の量は
ハニカム基材1L当り150gであった。
このようにして得られたコート層付きハニカム基材を、硝酸Pd溶液中に浸漬させて余分な液滴をエアーガンで吹き払い、大気雰囲気下600℃で3時間焼成して触媒層を形成してPd触媒を得た。このとき、触媒層の量はハニカム基材1Lに対して150gであり、Pdの量はハニカム基材1Lに対し0.18gであった。
【0051】
なお、表中のPd量、Rh量、CeO
2量などは、製造時の配合量を示したものであるが、触媒を製造後に測定した場合の含有量と同じ値である(他の実施例・比較例についても同様)。
【0052】
(実施例2)
多孔質γ-アルミナ35質量部と、セリア粒子粉末(BET比表面積20m
2/g)55質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し0.18gであった。
【0053】
(実施例3)
多孔質γ-アルミナ50質量部と、セリア粒子粉末(BET比表面積40m
2/g)40質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し0.30gであった。
【0054】
(実施例4)
多孔質γ-アルミナ63質量部と、セリア粒子粉末(BET比表面積87m
2/g)27質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し1.00gであった。
【0055】
(実施例5)
多孔質γ-アルミナ63質量部と、セリア粒子粉末(BET比表面積100m
2/g)27質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し1.00gであった。
【0056】
(実施例6)
多孔質γ-アルミナ63質量部と、セリア粒子粉末(BET比表面積55m
2/g)27質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し1.00gであった。
【0057】
(実施例7)
多孔質γ-アルミナ63質量部と、セリア粒子粉末(BET比表面積63m
2/g)27質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し1.00gであった。
【0058】
(実施例8)
多孔質γ-アルミナ63質量部と、セリア粒子粉末(BET比表面積85m
2/g)27質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し1.00gであった。
【0059】
(実施例9)
多孔質γ-アルミナ63質量部と、セリア粒子粉末(BET比表面積94m
2/g)27質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し1.00gであった。
【0060】
(実施例10)
多孔質γ-アルミナ77質量部と、セリア粒子粉末(BET比表面積111m
2/g)13質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し2.00gであった。
【0061】
(実施例11)
多孔質γ-アルミナ85質量部と、セリア粒子粉末(BET比表面積120m
2/g)5質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し2.70gであった。
【0062】
(実施例12)
多孔質γ-アルミナ87質量部と、セリア粒子粉末(BET比表面積130m
2/g)3質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し3.00gであった。
【0063】
(実施例13)
多孔質γ-アルミナ85質量部と、セリア粒子粉末(BET比表面積129m
2/g)5質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し3.75gであった。
【0064】
(実施例14)
多孔質γ-アルミナ85質量部と、セリア粒子粉末(BET比表面積127m
2/g)5質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し4.50gであった。
【0065】
(比較例1)
多孔質γ-アルミナ2質量部と、セリア粒子粉末(BET比表面積16m
2/g)90質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で8質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し0.05gであった。
【0066】
(比較例2)
多孔質γ-アルミナ2質量部と、セリア粒子粉末(BET比表面積4m
2/g)90質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で8質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し0.18gであった。
【0067】
(比較例3)
多孔質γ-アルミナ89.5質量部と、セリア粒子粉末(BET比表面積130m
2/g)0.5質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し0.60gであった。
【0068】
(比較例4)
多孔質γ-アルミナ90質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し6.00gであった。
【0069】
(参考例1)
多孔質γ-アルミナ56.6質量部と、セリア粉末(BET比表面積19m
2/g)20質量部と、ジルコニア粉末13.4質量部と、無機系バインダとしてアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
φ40mm×L60mm(100セル):担体容積0.0754Lのステンレス製メタルハニカム基材を前記スラリー中に浸漬し、引き上げて過剰なスラリーをエアーガンで吹き払った後、大気雰囲気下600℃で3時間焼成してコート層を形成した。このとき、コート層の量はハニカム基材1L当り150gであった。
このようにして得られたコート層付きハニカム基材を、硝酸Pdと硝酸Rhの混合溶液中に浸漬させて余分な液滴をエアーガンで吹き払い、大気雰囲気下600℃で3時間焼成してハニカム基材1Lに対して1.50gのPdと0.15gのRhを担持し、Pd/Rh触媒を得た。
【0070】
<Pd粒子径評価方法>
実施例1〜14、比較例1〜4及び参考例1で得たPd触媒について、公知手法であるCOパルス吸着法(T.Takeguchi、S.Manabe、R.Kikuchi、K.Eguchi、T.Kanazawa、S.Matsumoto、Applied Catalysis A:293(2005)91.)に従って、触媒層中に存在するPd1g当たりの比表面積を測定し、Pd粒子を球体とした場合の直径を、Pd粒子数及びPd密度から算出した値をPd平均粒子径(但し、表には「Pd粒子径」と表示)とした。
【0071】
<BET比表面積評価方法>
実施例1〜14、比較例1〜4及び参考例1で使用したセリア粉末のBET比表面積を、ユアサアイオニクス(株)製QUADRASORBSI装置を使用してガス吸着法によりで測定した。
【0072】
<単体浄化性能評価方法(T50-CO、T50-HC)>
次の表1に示す模擬排気ガスを、実施例1〜14、比較例1〜4及び参考例1で得たPd触媒(φ40×L60-100cpsi)に流通させ、100℃〜500℃における出口ガス成分をCO/HC分析計を用いて測定した。得られた測定結果より、50%浄化率に到達する温度(T50-CO、T50-HC)を求めた。
そして、参考例1の浄化性能と比較して、浄化性能が悪いものを「×:poor」と評価し、浄化性能が良いものを「○:good」、さらに良いものを「○○」、より一層良いものを「○○○」と評価した。
【0073】
【表1】
【0074】
【表2】
【0075】
上記実施例及びこれまで発明者が行った試験結果を総合すると、触媒活性成分としてのパラジウムを、助触媒成分としてのセリア(CeO
2)粒子上に所定の割合で担持させることにより、すなわち、触媒中に含有されるセリア粒子の含有量に対する、触媒中に含有されるパラジウムの含有量の質量比率(Pd/CeO
2)が0.0014〜0.6000となるように担持させることにより、高SV(空間速度)下の燃料リッチ雰囲気下において、CO及びTHCを効率良く浄化することができるようになることが分かった。
また、この際、触媒活性成分としてのパラジウムは、平均粒子径1.0nm〜83.0nmのパラジウムが好ましく、助触媒成分としてのセリア(CeO
2)粒子としては、BET比表面積が20〜130m
2/gであるセリア(CeO
2)粒子であるのが好ましいことも分かった。