特許第5992192号(P5992192)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三井金属鉱業株式会社の特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5992192
(24)【登録日】2016年8月26日
(45)【発行日】2016年9月14日
(54)【発明の名称】パラジウム触媒
(51)【国際特許分類】
   B01J 23/63 20060101AFI20160901BHJP
   B01J 35/10 20060101ALI20160901BHJP
   B01D 53/86 20060101ALI20160901BHJP
   F01N 3/10 20060101ALI20160901BHJP
【FI】
   B01J23/63 A
   B01J35/10 301J
   B01D53/86 100
   F01N3/10 AZAB
【請求項の数】3
【全頁数】14
(21)【出願番号】特願2012-80847(P2012-80847)
(22)【出願日】2012年3月30日
(65)【公開番号】特開2013-208577(P2013-208577A)
(43)【公開日】2013年10月10日
【審査請求日】2014年12月17日
(73)【特許権者】
【識別番号】000006183
【氏名又は名称】三井金属鉱業株式会社
(74)【代理人】
【識別番号】110000707
【氏名又は名称】特許業務法人竹内・市澤国際特許事務所
(72)【発明者】
【氏名】若林 誉
(72)【発明者】
【氏名】柴田 陽介
(72)【発明者】
【氏名】中原 祐之輔
(72)【発明者】
【氏名】安田 清隆
【審査官】 岡田 隆介
(56)【参考文献】
【文献】 特開2003−245523(JP,A)
【文献】 特開2008−168192(JP,A)
【文献】 国際公開第2008/075769(WO,A1)
【文献】 特開2009−241057(JP,A)
【文献】 特開2002−273226(JP,A)
【文献】 特開平08−281107(JP,A)
【文献】 特開平08−099035(JP,A)
【文献】 特開昭60−110335(JP,A)
【文献】 特開平05−184876(JP,A)
【文献】 特開平02−191548(JP,A)
【文献】 米国特許第05556825(US,A)
【文献】 特開平10−235199(JP,A)
【文献】 特表平09−500570(JP,A)
【文献】 特開平08−168675(JP,A)
【文献】 特開平06−099069(JP,A)
【文献】 特開2001−259423(JP,A)
【文献】 特開平07−136518(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B01J 21/00−38/74
B01D 53/73
B01D 53/86−90
B01D 53/94−96
DWPI(Thomson Innovation)
(57)【特許請求の範囲】
【請求項1】
基材と、
触媒活性成分としてのパラジウム、触媒担持体としての無機多孔質体及び助触媒成分としてのセリア(CeO)粒子を含有し、排気ガスに晒される触媒層と、を備えた排気ガス浄化用パラジウム触媒であって、
前記触媒層中に含有されるセリア粒子の含有量に対する、触媒層中に含有されるパラジウムの含有量の質量比率(Pd/CeO)が0.0050〜0.4000であり、
前記触媒層中に含有されるセリア粒子の含有量が5〜40重量%であり、
前記触媒層中に含有されるパラジウムの平均粒子径が2.0nm〜40.0nmであり、
前記触媒層中に含有されるセリア粒子のBET比表面積が85〜111/gであることを特徴とする排気ガス浄化用パラジウム触媒。
【請求項2】
前記パラジウムが、前記触媒層中に0.12〜3.00質量%の割合で含有されることを特徴とする請求項1に記載の排気ガス浄化用パラジウム触媒。
【請求項3】
前記触媒層中にさらにバリウムを含有することを特徴とする請求項1又は2に記載の排気ガス浄化用パラジウム触媒。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、2輪又は4輪自動車などの内燃機関から排出される排気ガスを浄化するために用いることができる触媒、中でも触媒活性種の主成分がパラジウム(Pd)であるパラジウム触媒に関する。
【背景技術】
【0002】
ガソリンを燃料とする自動車の排気ガス中には、炭化水素(THC)、一酸化炭素(CO)、窒素酸化物(NOx)等の有害成分が含まれるため、前記炭化水素(THC)は酸化して水と二酸化炭素に転化させ、前記一酸化炭素(CO)は酸化して二酸化炭素に転化させ、前記窒素酸化物(NOx)は還元して窒素に転化させ、それぞれの有害成分を触媒で浄化する必要がある。
【0003】
このような排気ガスを処理するための触媒(以下「排気ガス浄化触媒」と称する)として、CO、THC及びNOxを酸化還元することができる3元触媒(Three way catalysts:TWC)が用いられており、当該3元触媒は通常、排気パイプのエンジンとマフラーの中間位置にコンバーターの形で取付けられている。
【0004】
このような3元触媒としては、高い比表面積を有する耐火性酸化物多孔質体、例えば高い比表面積を有するアルミナ多孔質体に貴金属を担持し、これを基材、例えば耐火性セラミック又は金属製ハニカム構造で出来ているモノリス型(monolithic)基材に担持したり、或いは、耐火性粒子に担持したりしたものが知られている。
【0005】
この種の3元触媒において、貴金属は、排気ガス中の炭化水素を酸化して二酸化炭素と水に変換し、一酸化炭素を酸化して二酸化炭素に変換する一方、窒素酸化物を窒素まで還元する機能を有しており、この両反応に対する触媒作用を同時に有効に生じさせるためには、燃料と空気の比(空燃比)を一定に(理論空燃比に)保つのが好ましい。
自動車等の内燃機関は、加速、減速、低速走行、高速走行等の運転状況に応じて空燃比は大きく変化するため、酸素センサー(ジルコニア)を用いてエンジンの作動条件によって変動する空燃比(A/F)を一定に制御している。しかし、このように空燃比(A/F)を制御するだけでは、触媒が十分に浄化触媒性能を発揮することができないため、触媒層自身にも空燃比(A/F)を制御する作用が求められる。そこで、空燃比の変化に起因して発生する触媒の浄化性能の低下を触媒自体の化学的作用により防止する目的で、触媒活性成分である貴金属に助触媒を加えた触媒が用いられている。
【0006】
このような助触媒として、還元雰囲気では酸素を放出し、酸化雰囲気では酸素を吸収する酸素ストレージ能(OSC:Oxygen Storage capacity)を有する助触媒(「OSC材」と称する)が知られている。例えばセリア(酸化セリウム、CeO2)や、セリア−ジルコニア複合酸化物などが、酸素ストレージ能を有するOSC材として知られている。
【0007】
セリア(CeO2)は、排気ガス中の酸素分圧の高低に依存して酸化セリウム中の付着酸素及び格子酸素の脱離及び吸収を行うことができ、CO、THC及びNOxを効率よく浄化できる空燃比の範囲(ウインドウ)を拡大するという特性を有している。つまり、排気ガスが還元性である場合には、酸化セリウムは酸素を脱離させて〔CeO2→CeO2-x+(x/2)O2〕排気ガス中に酸素を供給して酸化反応を生じさせ、一方排気ガスが酸化性である場合には、逆に酸化セリウムは酸素欠損に酸素を取り込んで〔CeO2-x+(x/2)O2→CeO2)排気ガス中の酸素濃度を減少させて還元反応を生じさせる。このように酸化セリウムは、排気ガスの酸化性、還元性の変化を小さくする緩衝剤としての機能を果たし、触媒の浄化性能を維持する機能を有している。
また、このようなセリアにジルコニアを固溶させたセリア−ジルコニア複合酸化物は、酸素ストレージ能(OSC)がさらに優れているため、OSC材として多くの触媒に加えられている。
【0008】
セリアやセリア−ジルコニア複合酸化物などのOSC材を用いた3元触媒については、従来から次のような発明が開示されている。
【0009】
例えば特許文献1(特開平6−219721号公報)には、新規な触媒特性をもつ金属−金属酸化物触媒として、金属酸化物粒子中に金属粒子を均一に含む触媒であって、貴金属としてPt、Pd、Rh、Auの何れかを含み、金属酸化物としてCeO2 を含む触媒が開示されている。
【0010】
特許文献2(特開2011−140011号公報)には、低温を含む広い範囲の温度でCO酸化活性を示し得るCO酸化触媒として、CeO担体粒子にPdを担持し、酸化性雰囲気で850〜950℃の範囲の温度で加熱処理してなるCO酸化触媒が開示されている。
【0011】
特許文献3(特開平10−277394号公報)には、炭化水素、一酸化炭素及び窒素酸化物の変換率が良好であると共に、卓越した耐熱性及び耐老化性を有する、パラジウムのみを含有する触媒として、不活性基材上に、a)微細で、安定化された活性酸化アルミニウム、b)少なくとも1種の微細な酸素貯蔵成分、c)並びに付加的に高分散性酸化セリウム、酸化ジルコニウム及び酸化バリウム、及びd)唯一の触媒作用貴金属としてのパラジウムから成る1層の触媒作用を有する塗膜層を有する自動車排気ガス触媒が開示されている。
【0012】
特許文献4(特開2005−224792号公報)には、Al、Ce、Zr、Y及びLaを含む複合酸化物系のサポート材にPdを担持させた3元触媒として、上記サポート材におけるAl原子モル数Aに対するCe、Zr、Y及びLa合計の原子モル数Bの比BAが1/48以上1/10以下であり、Pdの一部は金属状態であり、残部が酸化物の状態である触媒が開示されている。
【0013】
特許文献5(特表2010−521302号公報)には、酸化アルミニウムと、ロジウムで触媒活性化されてなるセリウム/ジルコニウム混合酸化物と、パラジウムで触媒活性化されてなるセリウム/ジルコニウム混合酸化物とからなる触媒層の表面を、酸化ストロンチウム又は酸化バリウムで被覆してなる構成の3元触媒が開示されている。
【先行技術文献】
【特許文献】
【0014】
【特許文献1】特開平6−219721号公報
【特許文献2】特開2011−140011号公報
【特許文献3】特開平10−277394号公報
【特許文献4】特開2005−224792号公報
【特許文献5】特表2010−521302号公報
【発明の概要】
【発明が解決しようとする課題】
【0015】
2輪及び4輪自動車の走行時には、酸化反応が有利となる酸素過剰条件(リーンバーン条件)と、還元反応が有利となる燃料過剰条件(リッチバーン条件)が、走行条件に呼応して、交互に繰り返し出現する。そのため、排気ガス用触媒としては、酸素過剰条件(リーンバーン条件)及び燃料過剰条件(リッチバーン条件)のいずれの条件下でも一定以上の触媒性能を発揮する必要がある。特に二輪自動車の場合には、燃料リッチ雰囲気下でエンジンの回転数を高めて運転する傾向があるため、特に高SV(空間速度)下の燃料リッチ雰囲気下において触媒性能を発揮することが求められる。
【0016】
従来の3元触媒では、貴金属の中で白金(Pt)やロジウム(Rh)が触媒活性成分として用いられることが多かった。ところが、これらの貴金属の価格は極めて高いため、より安価なパラジウム(Pd)を多く用いたパラジウム触媒の開発が求められている。
しかしながら、触媒活性成分としてパラジウム(Pd)を用いると、特に高SV(空間速度)下の燃料リッチ雰囲気下において、一酸化炭素(CO)及び炭化水素(THC)の浄化効率が低下するという課題を抱えていた。
【0017】
そこで本発明の目的は、触媒活性成分としてパラジウム(Pd)を用いたパラジウム触媒に関し、高SV(空間速度)の燃料リッチ雰囲気下でも一酸化炭素(CO)、炭化水素(THC)を効率良く浄化することができる、新たなパラジウム触媒を提供することにある。
【課題を解決するための手段】
【0018】
本発明は、触媒活性成分としてのパラジウムと、触媒担持体としての無機多孔質体と、助触媒成分としてのセリア(CeO2)粒子とを含有してなるパラジウム触媒であって、触媒中に含有されるセリア粒子の含有量に対する、触媒中に含有されるパラジウムの含有量の質量比率(Pd/CeO2)が0.0014〜0.6000であることを特徴とするパラジウム触媒を提案する。
【0019】
本発明はまた、基材と、触媒活性成分としてのパラジウム、触媒担持体としての無機多孔質体及び助触媒成分としてのセリア(CeO2)粒子を含有する触媒層と、を備えたパラジウム触媒であって、触媒層中に含有されるセリア粒子の含有量に対する、触媒層中に含有されるパラジウムの含有量の質量比率(Pd/CeO2)が0.0014〜0.6000であることを特徴とするパラジウム触媒を提案する。
【発明の効果】
【0020】
本発明が提案するパラジウム触媒は、パラジウム(Pd)を所定の比率でセリア粒子上に担持するようにしたことで、高SV(空間速度)下の燃料リッチ雰囲気下において、CO及びTHCを効率良く浄化することができるようになった。
【0021】
本発明において、「高SV(空間速度)」とは、特にSV=45,000以上の領域を意味し、また、「燃料リッチ雰囲気下」とは、A/F<14.6、O/R<1を意味する。なお、O/Rとは、SAE paper No.950256に記載されている酸化ガスと還元ガスの割合のことをいう(O/R=Oxidizing Gas/Reducing Gas)。
また、「パラジウム触媒」とは、触媒活性成分の主成分、すなわち触媒活性成分のうちの50質量%以上を占める成分がパラジウム(Pd)である触媒の意味であり、本明細書では「Pd触媒」と略して示すこともある。
【発明を実施するための形態】
【0022】
次に、本発明を実施するための形態について説明する。但し、本発明が次に説明する実施形態に限定されるものではない。
【0023】
本発明に係るパラジウム触媒は、触媒活性成分としてのパラジウムと、触媒担持体としての無機多孔質体と、助触媒成分としてのセリア(CeO2)粒子と、を含有してなる触媒組成物としてのパラジウム触媒であってもよいし、また、基材と、触媒活性成分としてのパラジウム、触媒担持体としての無機多孔質体、及び、助触媒成分としてのセリア(CeO2)粒子を含有する触媒層と、を備えたパラジウム触媒であってもよい。
【0024】
ここでは、本発明の実施形態の一例として、基材と、パラジウム、無機多孔質体及びセリア粒子、さらに必要に応じて安定剤を含有する触媒層とを備えた触媒構造体としてのパラジウム触媒(「本Pd触媒」と称する)について説明する。
【0025】
本Pd触媒の具体的構成としては、例えばハニカム状(モノリス)構造を呈している基材の表面に、例えばパラジウム、無機多孔質体、セリア粒子及び必要に応じて安定剤を含有する触媒組成物をウォッシュコートするなどして触媒層を形成してなる構成を備えた触媒構造体を挙げることができる。
以下、本Pd触媒を構成する上記の各構成材料について説明する。
【0026】
<基材>
本Pd触媒に用いる基材の材質としては、セラミックス等の耐火性材料や金属材料を挙げることができる。
セラミック製基材の材質としては、耐火性セラミック材料、例えばコージライト、コージライト−アルファアルミナ、窒化ケイ素、ジルコンムライト、スポジュメン、アルミナ−シリカマグネシア、ケイ酸ジルコン、シリマナイト(sillimanite)、ケイ酸マグネシウム、ジルコン、ペタライト(petalite)、アルファアルミナおよびアルミノシリケート類などを挙げることができる。
金属製基材の材質としては、耐火性金属、例えばステンレス鋼または鉄を基とする他の適切な耐食性合金などを挙げることができる。
【0027】
基材の形状は、ハニカム状、ペレット状、球状を挙げることができる。
【0028】
ハニカム材料としては、一般に、例えばセラミックス等のコージェライト質のものが多く用いられる。また、フェライト系ステンレス等の金属材料からなるハニカムを用いることもできる。
ハニカム形状の基材を用いる場合、例えば基材内部を流体が流通するように、基材内部に平行で微細な気体流通路、すなわちチャンネルを多数有するモノリス型基材を使用することができる。この際、モノリス型基材の各チャンネル内壁表面に、触媒組成物をウォッシュコートなどによってコートして触媒層を形成することができる。
【0029】
<触媒層>
本Pd触媒の触媒層は、パラジウム、無機多孔質体及びセリア粒子、さらに必要に応じて安定剤、その他の成分を含有する層である。
ただし、この触媒層のほかに、他の触媒層を上下方向に一層或いは二層以上積層してもよいし、また、排気ガスの流通方向に他の触媒層を形成してもよい。
【0030】
前記触媒層は、基材1リットル当たり40g〜300gの割合で含有するのが好ましい。
基材1リットル当たりの触媒層の含有量が40g以上であれば、触媒組成物をスラリー化した時に、固形分濃度を大幅に下げる必要がなく、貫通孔の大きなハニカム基材(例えば100セル)との密着性を確保することができる。他方、触媒層の含有量が300g以下であれば、貫通孔が小さいハニカム基材(例えば1200セル)であっても、基材の貫通孔が目詰りするのを抑えることができる。
かかる観点から、触媒層の含有量は、基材1リットル当たり60g以上或いは250g以下であるのがより一層好ましく、その中でも80g以上或いは200g以下であるのがさらに好ましい。
【0031】
(無機多孔質体)
前記基材と触媒活性成分との結合力は通常それ程強くないため、基材に直接触媒活性成分を担持させようとしても十分な担持量を確保することは難しい。そこで、高分散状態でかつ十分な量の触媒活性成分を基材の表面に担持させるために、高い比表面積を有する粒子状の無機多孔質体に触媒活性成分を担持させ、触媒活性成分を担持した当該無機多孔質体を基材表面上にコーティングして触媒層を形成するのが好ましい。
【0032】
無機多孔質体としては、例えばシリカ、アルミナおよびチタニア化合物から成る群から選択される化合物の多孔質体、より具体的には、例えばアルミナ、シリカ、シリカ−アルミナ、アルミノ−シリケート類、アルミナ−ジルコニア、アルミナ−クロミアおよびアルミナ−セリアから選択される化合物からなる多孔質体を挙げることができる。
【0033】
このうちアルミナとしては、比表面積が50m/gより大きなアルミナ、例えばγ,δ,θ,αアルミナを使用することができる。中でも、γもしくはθアルミナを用いるのが好ましい。なお、アルミナについては、耐熱性を上げるため、微量のLaを含むこともできる。
【0034】
(セリア粒子)
本Pd触媒は、酸素ストレージ能(OSC:Oxygen Storage capacity)を有する助触媒として、セリア(二酸化セリウム、CeO2)粒子を含有するものである。
【0035】
セリア粒子に所定の割合でパラジウムを担持させると、高SV(空間速度)の燃料リッチ雰囲気下でも一酸化炭素(CO)、炭化水素(THC)を効率良く浄化することができるようになる。これは、セリア粒子にパラジウムを所定の割合で担持することで、Pd−O−Ce結合が形成され、高酸化状態になるため、高SV(空間速度)の燃料リッチ雰囲気下でも一酸化炭素(CO)、炭化水素(THC)を効率良く浄化することができるものと考えることができる。
【0036】
かかる観点から、本Pd触媒、特にPdを含有する触媒層が含有するOSC材のうちの50質量%以上を、セリア粒子が占めるのが好ましく、中でも70質量%以上、その中でも80質量%以上、その中でも特に90質量%以上(100質量%を含む)をセリア粒子が占めるのが好ましい。
【0037】
セリア粒子の比表面積は、BET比表面積20〜130m2/gであるのが好ましい。後述する実施例・比較例の結果を見ても分かるように、パラジウム(Pd)を担持させるセリア粒子の比表面積が所定の範囲であると、高SV(空間速度)下の燃料リッチ雰囲気下においては、CO及びTHCをより一層効率良く浄化することができることが判明した。
よって、パラジウム(Pd)を担持させるセリア粒子の比表面積は、BET比表面積20〜130m2/gであるのが好ましく、中でも40m2/g以上或いは120m2/g以下、その中でも85m2/g以上であるがさらに好ましい。
【0038】
セリア粒子は、触媒層中に5〜85質量%の割合で含有されることが好ましい。
触媒層中のセリア粒子の含有量が5質量%以上であれば、燃料リッチ雰囲気下においてCO及びTHCを十分に浄化することができる。他方、85質量%以下であれば、基材との密着性をより確実に確保することができる。
かかる観点から、セリア粒子の含有量は、触媒層中に5〜85質量%の割合で含有されることが好ましく、中でも5質量%以上或いは40質量%以下の割合、その中でも特に13質量%以上の割合で含有されるのが特に好ましい。
【0039】
(触媒活性成分)
本Pd触媒においては、触媒全体の価格を下げるために、触媒活性を有する金属の主成分がパラジウム(Pd)であることを特徴とする。
パラジウム(Pd)が触媒活性を有する金属の主成分であるから、触媒活性を有する金属のうち少なくとも50質量%以上をパラジウム(Pd)が占める必要がある。中でも、パラジウム(Pd)が触媒活性を有する金属の80質量%以上、その中でも特に90質量%以上(100質量%を含む)を占めるのが好ましい。
【0040】
そして本Pd触媒においては、触媒層中に含有されるパラジウムの含有量が、セリア粒子の含有量に対する質量比率(Pd/CeO2)として0.0014〜0.6000であるのが好ましい。
かかる比率でパラジウムを含有することにより、高SV(空間速度)下の燃料リッチ雰囲気下において、CO及びTHCを効率良く浄化するができるようになる。
よって、触媒層中に含有されるパラジウムの含有量は、セリア粒子の含有量に対する質量比率(Pd/CeO2)が0.0014〜0.6000であるのが好ましく、中でも0.0050以上或いは0.4000以下、その中でも0.0250以上或いは0.3600以下、さらにその中でも0.1000以下であるのがより一層好ましい。
【0041】
また、触媒活性成分の主成分をなすパラジウム(Pd)の大きさは、平均粒子径1.0nm〜83.0nmであるのが好ましい。
後述する実施例・比較例の結果を見ても分かるように、パラジウム(Pd)の大きさが所定範囲であると、高SV(空間速度)下の燃料リッチ雰囲気下においては、CO及びTHCをより一層効率良く浄化できることが判明した。
よって、触媒活性成分の主成分をなすパラジウム(Pd)の大きさは、平均粒子径1.0nm〜83.0nmであるのが好ましく、中でも2.0nm以上或いは40.0nm以下、その中でも特に2.0nm以上或いは30.0nm以下であるがさらに好ましい。
【0042】
なお、パラジウム(Pd)以外の触媒活性を有する金属としては、白金、ロジウム、金、銀、ルテニウム、イリジウム、ニッケル、セリウム、コバルト、銅、オスミウム、ストロンチウム等の金属を挙げることができる。これらの中で、本Pd触媒において、パラジウム(Pd)以外に含有させるより好ましい成分としては、例えば白金を挙げることができる。
【0043】
本Pd触媒におけるパラジウムの含有量は、基材1リットル当たり0.18〜4.50gの割合であるのが好ましい。かかる範囲でパラジウムを含有させることにより、高SV(空間速度)下の燃料リッチ雰囲気下において、CO及びTHCを効率良く浄化するができるようになる。
ただし、パラジウム量が増えれば製品価格の上昇を招くことから多量に使用することは難しい。
かかる観点から、本Pd触媒におけるパラジウムの含有量は、基材1リットル当たり0.3g以上或いは3.0g以下であるのがより一層好ましく、その中でも1.0g以下であるのがさらに好ましい。
【0044】
また、前記パラジウムは、触媒層中に0.12〜3.00質量%の割合で含有されるのが好ましい。かかる範囲でパラジウムを含有させることにより、高SV(空間速度)下の燃料リッチ雰囲気下において、CO及びTHCを効率良く浄化するができるようになる。ただし、パラジウム量が増えれば製品価格の上昇を招くことから多量に使用することは難しい。
かかる観点から、前記パラジウムは、触媒層中に0.12〜3.00質量%の割合で含有されるのが好ましく、中でも0.20質量%以上或いは2.00質量%以下、その中でも特に0.667質量%以下の割合で含有されるのがさらに好ましい。
【0045】
(安定剤及びその他の成分)
本Pd触媒は、燃料リッチ雰囲気下でPdOxの金属への還元を抑制することを目的として、安定剤を含んでもよい。
この種の安定剤としては、例えばアルカリ土類金属やアルカリ金属を挙げることができる。中でも、マグネシウム、バリウム、カルシウムおよびストロンチウム、好適にはストロンチウムおよびバリウムから成る群から選択される金属のうちの一種又は二種以上を選択可能である。その中でも、PdOxが還元される温度が一番高い、つまり還元されにくいという観点から、バリウムが好ましい。
【0046】
本Pd触媒は、バインダ成分など、公知の添加成分を含んでいてもよい。
バインダ成分としては、無機系バインダ、例えばアルミナゾル、シリカゾル、ジルコニアゾル等の水溶性溶液を使用することができる。これらは、焼成すると無機酸化物の形態をとることができる。
なお、本Pd触媒は、バインダ成分としてジルコニアを含有する可能性もある。この場合、助触媒成分としてのジルコニアと、バインダ成分としてのジルコニアとは、例えば電子顕微鏡で観察するなどの手法で区別することができる。すなわち、助触媒成分としてのジルコニアは、セリア粒子と同一箇所または周辺に分散している一方、バインダ成分としてのジルコニアは、セリア粒子の同一箇所または周辺のみに分散していることはないからである。
【0047】
<製法>
本Pd触媒を製造するための一例として、無機多孔質体、セリア(CeO2)粒子粉末若しくは水溶性のCe塩、バインダ及び水を混合し、ボールミルなどで撹拌してスラリーとする。次に、このスラリー中に、例えばセラミックハニカム体などの基材を浸漬し、これを引き上げて焼成して、基材表面に触媒層を形成する方法などを挙げることができる。
ただし、本Pd触媒を製造するための方法は公知のあらゆる方法を採用することが可能であり、上記例に限定するものではない。
【0048】
<語句の説明>
本明細書において「X〜Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
【実施例】
【0049】
以下、本発明を下記実施例及び比較例に基づいてさらに詳述する。
【0050】
(実施例1)
多孔質γ-アルミナ5質量部と、セリア粒子粉末(BET比表面積20m2/g)85質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
φ40mm×L60mm(100セル):担体容積0.0754Lのステンレス製メタルハニカム基材を、前記スラリー中に浸漬し、引き上げて過剰なスラリーをエアーガンで吹き払った後、大気雰囲気下600℃で3時間焼成してコート層を形成した。このとき、コート層の量は
ハニカム基材1L当り150gであった。
このようにして得られたコート層付きハニカム基材を、硝酸Pd溶液中に浸漬させて余分な液滴をエアーガンで吹き払い、大気雰囲気下600℃で3時間焼成して触媒層を形成してPd触媒を得た。このとき、触媒層の量はハニカム基材1Lに対して150gであり、Pdの量はハニカム基材1Lに対し0.18gであった。
【0051】
なお、表中のPd量、Rh量、CeO2量などは、製造時の配合量を示したものであるが、触媒を製造後に測定した場合の含有量と同じ値である(他の実施例・比較例についても同様)。
【0052】
(実施例2)
多孔質γ-アルミナ35質量部と、セリア粒子粉末(BET比表面積20m2/g)55質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し0.18gであった。
【0053】
(実施例3)
多孔質γ-アルミナ50質量部と、セリア粒子粉末(BET比表面積40m2/g)40質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し0.30gであった。
【0054】
(実施例4)
多孔質γ-アルミナ63質量部と、セリア粒子粉末(BET比表面積87m2/g)27質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し1.00gであった。
【0055】
(実施例5)
多孔質γ-アルミナ63質量部と、セリア粒子粉末(BET比表面積100m2/g)27質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し1.00gであった。
【0056】
(実施例6)
多孔質γ-アルミナ63質量部と、セリア粒子粉末(BET比表面積55m2/g)27質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し1.00gであった。
【0057】
(実施例7)
多孔質γ-アルミナ63質量部と、セリア粒子粉末(BET比表面積63m2/g)27質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し1.00gであった。
【0058】
(実施例8)
多孔質γ-アルミナ63質量部と、セリア粒子粉末(BET比表面積85m2/g)27質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し1.00gであった。
【0059】
(実施例9)
多孔質γ-アルミナ63質量部と、セリア粒子粉末(BET比表面積94m2/g)27質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し1.00gであった。
【0060】
(実施例10)
多孔質γ-アルミナ77質量部と、セリア粒子粉末(BET比表面積111m2/g)13質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し2.00gであった。
【0061】
(実施例11)
多孔質γ-アルミナ85質量部と、セリア粒子粉末(BET比表面積120m2/g)5質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し2.70gであった。
【0062】
(実施例12)
多孔質γ-アルミナ87質量部と、セリア粒子粉末(BET比表面積130m2/g)3質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し3.00gであった。
【0063】
(実施例13)
多孔質γ-アルミナ85質量部と、セリア粒子粉末(BET比表面積129m2/g)5質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し3.75gであった。
【0064】
(実施例14)
多孔質γ-アルミナ85質量部と、セリア粒子粉末(BET比表面積127m2/g)5質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し4.50gであった。
【0065】
(比較例1)
多孔質γ-アルミナ2質量部と、セリア粒子粉末(BET比表面積16m2/g)90質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で8質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し0.05gであった。
【0066】
(比較例2)
多孔質γ-アルミナ2質量部と、セリア粒子粉末(BET比表面積4m2/g)90質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で8質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し0.18gであった。
【0067】
(比較例3)
多孔質γ-アルミナ89.5質量部と、セリア粒子粉末(BET比表面積130m2/g)0.5質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し0.60gであった。
【0068】
(比較例4)
多孔質γ-アルミナ90質量部と、無機系バインダとしてのアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
このスラリーを用いて、実施例1と同様にコート層付きハニカム基材及びPd触媒を作製した。但し、Pdの量はハニカム基材1Lに対し6.00gであった。
【0069】
(参考例1)
多孔質γ-アルミナ56.6質量部と、セリア粉末(BET比表面積19m2/g)20質量部と、ジルコニア粉末13.4質量部と、無機系バインダとしてアルミナゾルを酸化物換算で10質量部と、純水150質量部とを秤量し、ボールミルにて混合を行うことでスラリーを得た。
φ40mm×L60mm(100セル):担体容積0.0754Lのステンレス製メタルハニカム基材を前記スラリー中に浸漬し、引き上げて過剰なスラリーをエアーガンで吹き払った後、大気雰囲気下600℃で3時間焼成してコート層を形成した。このとき、コート層の量はハニカム基材1L当り150gであった。
このようにして得られたコート層付きハニカム基材を、硝酸Pdと硝酸Rhの混合溶液中に浸漬させて余分な液滴をエアーガンで吹き払い、大気雰囲気下600℃で3時間焼成してハニカム基材1Lに対して1.50gのPdと0.15gのRhを担持し、Pd/Rh触媒を得た。
【0070】
<Pd粒子径評価方法>
実施例1〜14、比較例1〜4及び参考例1で得たPd触媒について、公知手法であるCOパルス吸着法(T.Takeguchi、S.Manabe、R.Kikuchi、K.Eguchi、T.Kanazawa、S.Matsumoto、Applied Catalysis A:293(2005)91.)に従って、触媒層中に存在するPd1g当たりの比表面積を測定し、Pd粒子を球体とした場合の直径を、Pd粒子数及びPd密度から算出した値をPd平均粒子径(但し、表には「Pd粒子径」と表示)とした。
【0071】
<BET比表面積評価方法>
実施例1〜14、比較例1〜4及び参考例1で使用したセリア粉末のBET比表面積を、ユアサアイオニクス(株)製QUADRASORBSI装置を使用してガス吸着法によりで測定した。
【0072】
<単体浄化性能評価方法(T50-CO、T50-HC)>
次の表1に示す模擬排気ガスを、実施例1〜14、比較例1〜4及び参考例1で得たPd触媒(φ40×L60-100cpsi)に流通させ、100℃〜500℃における出口ガス成分をCO/HC分析計を用いて測定した。得られた測定結果より、50%浄化率に到達する温度(T50-CO、T50-HC)を求めた。
そして、参考例1の浄化性能と比較して、浄化性能が悪いものを「×:poor」と評価し、浄化性能が良いものを「○:good」、さらに良いものを「○○」、より一層良いものを「○○○」と評価した。
【0073】
【表1】
【0074】
【表2】
【0075】
上記実施例及びこれまで発明者が行った試験結果を総合すると、触媒活性成分としてのパラジウムを、助触媒成分としてのセリア(CeO2)粒子上に所定の割合で担持させることにより、すなわち、触媒中に含有されるセリア粒子の含有量に対する、触媒中に含有されるパラジウムの含有量の質量比率(Pd/CeO2)が0.0014〜0.6000となるように担持させることにより、高SV(空間速度)下の燃料リッチ雰囲気下において、CO及びTHCを効率良く浄化することができるようになることが分かった。
また、この際、触媒活性成分としてのパラジウムは、平均粒子径1.0nm〜83.0nmのパラジウムが好ましく、助触媒成分としてのセリア(CeO2)粒子としては、BET比表面積が20〜130m2/gであるセリア(CeO2)粒子であるのが好ましいことも分かった。