【文献】
Jungsum Kim,et.al.,Encoding complexity reduction for Intra prediction by Disabling NxN Partition,Joint Collaborative Team on Video Coding(JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 3rd Meeting:Guangzhou,CN,7-15 October,2010,米国,JCTVC,2010年10月 7日,JCTVC-C218,P.1-P.7
(58)【調査した分野】(Int.Cl.,DB名)
【背景技術】
【0002】
非特許文献1は、一般的な映像符号化方式及び映像復号方式を開示している。
【0003】
非特許文献1に記載されている映像符号化装置は、
図15に示すように構成される。以下、
図15に示される映像符号化装置を一般的な映像符号化装置と呼ぶ。
【0004】
図15を参照して、ディジタル化された映像の各フレームを入力としてビットストリームを出力する、一般的な映像符号化装置の構成と動作を説明する。
【0005】
図15に示された映像符号化装置は、変換/量子化器101、エントロピー符号化器102、逆変換/逆量子化器103、バッファ104、予測器105、多重化器106、及び符号化制御器108を備える。
【0006】
図15に示す映像符号化装置は、フレームをマクロブロック(MB:Macro Block )と呼ばれる16×16画素サイズのブロックに分割し、フレームの左上から順に各MBを符号化する。
【0007】
図16は、フレームの空間解像度がQCIF(Quarter Common Intermediate Format)の場合のブロック分割の例を示す説明図である。以下、説明の簡略化のために、輝度の画素値のみに着目して各装置の動作を説明する。
【0008】
ブロックに分割された入力映像は、予測器105から供給される予測信号が減じられて、予測誤差画像となり、変換/量子化器101に入力される。予測信号には、イントラ予測信号とインター予測信号の2種類がある。なお、インター予測信号を、フレーム間予測信号とも呼ぶ。
【0009】
それぞれの予測信号を説明する。イントラ予測信号は、バッファ104に格納された現在のピクチャと表示時刻が同一である再構築ピクチャの画像に基づいて生成される予測信号である。
【0010】
非特許文献1の8.3.1 Intra_4×4 prediction process for luma samples、8.3.2 Intra_8×8 prediction process for luma samples、及び8.3.3 Intra_16×16 prediction process for luma samplesを引用すると、3種類のブロックサイズのイントラ予測Intra_4×4、Intra_8×8、Intra_16×16がある。
【0011】
Intra_4×4とIntra_8×8は、
図17の(a)と(c)を参照すると、それぞれ4×4ブロックサイズと8×8ブロックサイズのイントラ予測であることが分かる。ただし、図面の丸(○)はイントラ予測に用いる参照画素、つまり、現在のピクチャと表示時刻が同一である再構築ピクチャの画素である。
【0012】
Intra_4×4のイントラ予測では、再構築した周辺画素をそのまま参照画素として、
図17の(b)に示す9種類の方向に参照画素をパディング(外挿)して予測信号が形成される。Intra_8×8のイントラ予測では、
図17の(c)の右矢印の下に記載のローパスフィルタ(1/2,1/4,1/2)によって再構築ピクチャの画像の周辺画素を平滑化した画素を参照画素として、
図17の(b)に示す9種類の方向に参照画素を外挿して予測信号が形成される。
【0013】
一方、Intra_16×16は、
図18の(a)を参照すると、16×16ブロックサイズのイントラ予測であることが分かる。
図17の場合と同様に図面の丸(○)はイントラ予測に用いる参照画素、つまり、現在のピクチャと表示時刻が同一である再構築ピクチャの画素である。Intra_16×16のイントラ予測では、再構築ピクチャの画像の周辺画素をそのまま参照画素として、
図18の(b)に示す4種類の方向に参照画素を外挿して予測信号が形成される。
【0014】
以下、イントラ予測信号を用いて符号化されるMB及びブロックをそれぞれイントラMB及びイントラブロックと呼ぶ。イントラ予測のブロックサイズをイントラ予測ブロックサイズと呼ぶ。また、外挿の方向をイントラ予測方向と呼ぶ。なお、イントラ予測ブロックサイズ及びイントラ予測方向は、イントラ予測に関する予測パラメータである。
【0015】
インター予測信号は、バッファ104に格納された現在のピクチャと表示時刻が異なる再構築ピクチャの画像から生成される予測信号である。以下、インター予測信号を用いて符号化されるMB及びブロックをそれぞれインターMB及びインターブロックと呼ぶ。インター予測のブロックサイズ(インター予測ブロックサイズ)として、例えば、16×16,16×8,8×16,8×8,8×4,4×8,4×4を選択することができる。
【0016】
図19は、16×16のブロックサイズを例にしたインター予測の例を示す説明図である。
図19に示す動きベクトルMV=(mv
x,mv
y)は、符号化対象ブロックに対する参照ピクチャのインター予測ブロック(インター予測信号)の平行移動量を示す、インター予測の予測パラメータである。AVCでは、符号化対象ブロックの符号化対象ピクチャに対するインター予測信号の参照ピクチャの方向を表すインター予測の方向に加えて、符号化対象ブロックのインター予測に用いる参照ピクチャを同定するための参照ピクチャインデックスもインター予測の予測パラメータである。AVCでは、バッファ104に格納された複数枚の参照ピクチャをインター予測に利用できるからである。
【0017】
AVCのインター予測では、1/4画素精度で動きベクトルを求めることができる。
図20は、動き補償予測における輝度信号の補間処理を示す説明図である。
図20において、Aは整数画素位置の画素信号、b、c、dは1/2画素精度の小数画素位置の画素信号、e
1、e
2、e
3は1/4画素精度の小数画素位置の画素信号を表わす。画素信号bは、水平方向の整数画素位置の画素に対して6タップのフィルタを適用して生成される。同様に、画素信号cは、垂直方向の整数画素位置の画素に対して6タップのフィルタを適用して生成される。画素信号dは、水平または垂直方向の1/2画素精度の小数画素位置の画素に対して6タップのフィルタを適用して生成される。6タップのフィルタ係数は[1, -5, 20, 20, -5, 1]/32 で表される。画素信号e
1、e
2、及び、e
3は、それぞれ、近傍の整数画素位置または小数画素画素位置の画素に対して2タップフィルタ[1, 1]/2を適用して生成される。
【0018】
イントラMBのみで符号化されたピクチャはIピクチャと呼ばれる。イントラMBだけでなくインターMBも含めて符号化されたピクチャはPピクチャと呼ばれる。インター予測に1枚の参照ピクチャだけでなく、さらに同時に2枚の参照ピクチャを用いるインターMBを含めて符号化されたピクチャはBピクチャと呼ばれる。また、Bピクチャにおいて、符号化対象ブロックの符号化対象ピクチャに対するインター予測信号の参照ピクチャの方向が過去のインター予測を前方向予測、符号化対象ブロックの符号化対象ピクチャに対するインター予測信号の参照ピクチャの方向が未来のインター予測を後方向予測、過去と未来を含む参照ピクチャを同時に2枚用いるインター予測を双方向予測とそれぞれ呼ぶ。なお、インター予測の方向(インター予測方向)は、インター予測の予測パラメータである。
【0019】
予測器105は、符号化制御器108の指示に応じて、入力映像の信号と予測信号とを比較して、予測誤差画像ブロックのエネルギーが最小となる予測パラメータを決定する。符号化制御器108は、決定した予測パラメータをエントロピー符号化器102に供給する。
【0020】
変換/量子化器101は、予測信号が減じられた画像(予測誤差画像)を周波数変換し、周波数変換係数を得る。
【0021】
さらに、変換/量子化器101は、所定の量子化ステップ幅Qs で、周波数変換係数を量子化する。以下、量子化された周波数変換係数を変換量子化値と呼ぶ。
【0022】
エントロピー符号化器102は、予測パラメータと変換量子化値をエントロピー符号化する。予測パラメータは、上述した予測モード(イントラ予測、インター予測)、イントラ予測ブロックサイズ、イントラ予測方向、インター予測ブロックサイズ、及び動きベクトルなど、MB及びブロックの予測に関連した情報である。
【0023】
逆変換/逆量子化器103は、量子化ステップ幅Qs で、変換量子化値を逆量子化する。さらに、逆変換/逆量子化器103は、逆量子化した周波数変換係数を逆周波数変換する。逆周波数変換された再構築予測誤差画像は、予測信号が加えられて、バッファ104に供給される。
【0024】
バッファ104は、供給される再構築画像を格納する。1フレーム分の再構築画像を再構築ピクチャと呼ぶ。
【0025】
多重化器106は、エントロピー符号化器102の出力データ、及び符号化パラメータを多重化して出力する。
【0026】
上述した動作に基づいて、映像符号化装置における多重化器106は、ビットストリームを生成する。
【0027】
非特許文献1に記載されている映像復号装置は、
図21に示すように構成される。以下、
図21に示される映像復号装置を一般的な映像復号装置と呼ぶ。
【0028】
図21を参照して、ビットストリームを入力として復号された映像フレームを出力する、一般的な映像復号装置の構成と動作を説明する。
【0029】
図21に示された映像復号装置は、多重化解除器201、エントロピー復号器202、逆変換/逆量子化器203、予測器204、及びバッファ205を備える。
【0030】
多重化解除器201は、入力されるビットストリームを多重化解除して、エントロピー符号化された映像ビットストリームを抽出する。
【0031】
エントロピー復号器202は、映像ビットストリームをエントロピー復号する。エントロピー復号器202は、MB及びブロックの予測パラメータ及び変換量子化値をエントロピー復号し、逆変換/逆量子化器203及び予測器204に供給する。
【0032】
逆変換/逆量子化器203は、量子化ステップ幅で、変換量子化値を逆量子化する。さらに、逆変換/逆量子化器203は、逆量子化した周波数変換係数を逆周波数変換する。
【0033】
逆周波数変換後、予測器204は、エントロピー復号したMB及びブロックの予測パラメータに基づいて、バッファ205に格納された再構築ピクチャの画像を用いて予測信号を生成する。
【0034】
予測信号生成後、逆変換/逆量子化器203で逆周波数変換された再構築予測誤差画像は、予測器204から供給される予測信号が加えられて、再構築画像としてバッファ205に供給される。
【0035】
そして、バッファ205に格納された再構築ピクチャがデコード画像(デコード映像)として出力される。
【0036】
上述した動作に基づいて、一般的な映像復号装置はデコード画像を生成する。
【発明の概要】
【発明が解決しようとする課題】
【0038】
ところで、非特許文献2はTest Model under Consideration方式(TMuC方式)を開示している。TMuC方式は、非特許文献1に開示された方式とは異なり、
図22に示す階層構造の符号化ユニット(Coding Tree Block (CTB))を用いる。本明細書において、CTBのブロックをCoding Unit (CU:符号化ユニット)と呼ぶ。
【0039】
なお、最大のCUをLargest Coding Unit (LCU)、最小のCUをSmallest Coding Unit(SCU)と呼ぶ。また、TMuC方式においては、CUに対する予測ユニットとしてPrediction Unit (PU)という概念(
図23参照)が導入されている。PUは予測の基本単位であり、
図23に示される{2N×2N、2N×N、N×2N、N×N、2N×nU、2N×nD、nL×2N、nR×2N}の8種類のPUパーティションタイプが定義されている。インター予測が用いられるPUをインターPU、イントラ予測が用いられるPUをイントラPUと呼ぶ。インター予測が用いられるPUパーティションをインターPUパーティション、イントラ予測が用いられるPUパーティションをイントラPUパーティションと呼ぶ。イントラPUパーティションは
図23に示された形状のうち2N×2N、及びN×Nの正方形のみがサポートされている。以下、CU及びPUの1辺の長さをそれぞれCUサイズ及びPUサイズと呼ぶ。
【0040】
また、TMuC方式では小数精度の予測画像を求めるために最大で12タップのフィルタを用いることができる。画素位置とフィルタの係数の関係は以下のとおりである。
【0041】
【表1】
【0042】
画素位置について、
図24を用いて説明する。
図24において、A、Eが整数画素位置の画素であるとする。このとき、bが1/4画素位置の画素、cが1/2画素位置の画素、dが3/4画素位置の画素である。垂直方向も同様となる。
【0043】
図20に示す画素bまたは画素cは、水平または垂直方向の1/2画素位置用フィルタを1回適用することによって生成される。画素e
1は1/4画素位置用のフィルタを1回適用することによって生成される。
【0044】
図25を参照して、画素e
2や画素e
3のように、その画素位置が水平垂直両方とも小数精度位置であり、そのうち少なくともどちらかが1/4画素位置である場合の小数画素生成の例を説明する。
図25において、画素Aが整数画素位置の画素、画素cが求めたい小数画素位置の画素であるとする。このとき、まず、画素bが垂直方向の1/4画素位置用フィルタを適用することによって生成される。続いて、画素cが、小数画素bに対して、水平方向の3/4画素位置用フィルタを適用することによって生成される。なお、非特許文献2の8.3 Interpolation Methods には、小数画素生成のより詳細な説明が記載されている。
【0045】
TMuC方式ではすべての階層のCUのPUヘッダでPUパーティションタイプを示すシンタクス(非特許文献2の4.1.10 Prediction unit syntax の表記に従えば、イントラ予測の場合はintra_split_flag、インター予測の場合はinter_partitioning_idc)を出力ビットストリームに埋め込む。以後、intra_split_flagシンタクスをイントラPUパーティションタイプシンタクス、inter_partitioning_idcシンタクスをインターPUパーティションタイプシンタクスと呼ぶ。
【0046】
それぞれのLCU内に小さいサイズのCUが多く存在するとき、ビットストリームに含まれるインターPUパーティションタイプシンタクスのビット数の率が高くなり、圧縮映像の品質が低下する課題がある。
【0047】
また、TMuC方式ではインターPUパーティションのサイズが小さいほど、参照ピクチャに対するメモリアクセスが増加し、メモリ帯域を圧迫する課題がある。特に、TMuC方式では12タップのフィルタを用いて小数画素を生成するため、メモリ帯域をより圧迫する。
【0048】
図26は、12タップフィルタを用いるときのメモリアクセス領域を説明するための説明図である。
図26(A)はN×NのPUパーティションタイプが選択されたときの、1つのインターPUパーティションのメモリアクセス領域、
図26(B)は2N×2NのインターPUパーティションタイプが選択されたときのメモリアクセス領域を表わす。
【0049】
N×Nが選択されたとき、
図26(A)における破線で囲まれたサイズのメモリアクセスを0,1,2,3のインターPUパーティションごとに計4回行うため、メモリアクセス量は、4(N+11)
2=4N
2+88N+484に参照ピクチャのビット量を乗算した値になる。2N×2NのインターPUパーティションのメモリアクセス量が(2N+11)
2=4N
2+44N+121に参照ピクチャのビット量を乗算した値であることから、N×NのインターPUパーティションのメモリアクセス量は2N×2Nのメモリアクセス量よりも大きくなる。
【0050】
例えば、N=4、片方向予測、画素値のビット精度が8bitのときの8×8 CUにおけるインターPUのメモリアクセス量を考える。2N×2NのインターPUパーティションにおけるメモリアクセス量は19×19×1×8bit = 2888bitであるのに対し、N×NのインターPUパーティションにおけるメモリアクセス量は15×15×4×8bit =7200bitとなり、約2.5倍のメモリアクセス量となる。
【0051】
さらに、LCU単位では、LCUのブロックサイズが128×128のとき、LCUを1個のインターPUパーティションで予測するときのメモリアクセス量は139×139×1×8bit=154568bitであるのに対して、LCUを全て4×4インターPUパーティションで予測するとき(すなわち、LCUを1024個のインターPUパーティションで予測するとき)のメモリアクセス量は15×15×1024×8bit=1843200bitとなり、約12倍のメモリアクセス量となる。
【0052】
本発明は、所定面積当たりのメモリ帯域を削減することを目的とする。
【課題を解決するための手段】
【0053】
本発明による映像復号装置は、インター予測を用いて映像復号を行う映像復号装置であって、インターPUパーティションタイプシンタクスを復号するエントロピー復号手段と、所定の最小インターPUサイズと、復号対象CUのサイズとの関係に基づいて復号対象CUのインターPUパーティションのとりうる値を設定する復号制御手段とを備え、復号制御手段は、復号対象CUのCUサイズが最小インターPUサイズ以下である場合には、エントロピー復号手段に、復号対象CUのPUヘッダレイヤのインターPUパーティションタイプシンタクスを復号させず、復号対象CUのCUサイズが最小インターPUサイズより大きい場合に、エントロピー復号手段に、復号対象CUのインターPUパーティションタイプシンタクスを復号させることを特徴とする。
【0054】
本発明による映像復号方法は、インター予測を用いて映像復号を行う映像復号方法であって、所定の最小インターPUサイズと、復号対象CUのサイズとの関係に基づいて復号対象CUのインターPUパーティションのとりうる値を設定し、復号対象CUのCUサイズが最小インターPUサイズ以下である場合には、復号対象CUのPUヘッダレイヤのインターPUパーティションタイプシンタクスをエントロピー復号せず、復号対象CUのCUサイズが最小インターPUサイズより大きい場合に、復号対象CUのインターPUパーティションタイプシンタクスを復号することを特徴とする。
【0055】
本発明による映像復号プログラムは、所定の最小インターPUサイズと、復号対象CUのサイズとの関係に基づいて復号対象CUのインターPUパーティションのとりうる値を設定する処理と、復号対象CUのCUサイズが最小インターPUサイズ以下である場合には、復号対象CUのPUヘッダレイヤのインターPUパーティションタイプシンタクスをエントロピー復号せず、復号対象CUのCUサイズが最小インターPUサイズより大きい場合に、復号対象CUのインターPUパーティションタイプシンタクスを復号する処理とを実行させることを特徴とする。
【発明の効果】
【0056】
本発明によれば、小さなインターPUパーティションの使用を制限してメモリ帯域を削減できる。
【発明を実施するための形態】
【0058】
上述した一般的技術の課題を解決するために、本発明では、階層構造の符号化ユニットを用いることを特徴とする映像符号化において、CUのdepth (すなわち、CUサイズ)に基づいてインターPUパーティションを制限することで課題を解決する。本発明の一例では、2N×2N以外のインターPUパーティションが使用可能なCUサイズを制限することによって課題を解決する。本発明の別の一例では、PUヘッダのインターPUパーティションタイプシンタクス伝送を制限することによって課題を解決する。本発明の上記の例によって、ビットストリームに含まれるインターPUパーティションタイプシンタクスのビット数の率が低く抑えて圧縮映像の品質を向上させつつ、メモリ帯域を抑制できる。
【0059】
実施形態1.
第1の実施形態では、外部設定される所定の最小インターPUサイズに基づいてインターPUパーティションタイプを制御する符号化制御手段、及び、最小インターPUサイズに関する情報を映像復号装置にシグナリングするための、最小インターPUサイズに関する情報をビットストリームに埋め込む手段を備える映像符号化装置を示す。
【0060】
本実施形態では、利用可能なCUサイズを128,64,32,16,8(つまり、LCUサイズが128、SCUサイズが8である)、最小インターPUサイズ(minInterPredUnitSize)を8とする。
【0061】
さらに、本実施形態では、最小インターPUサイズに関する情報(min_inter_pred_unit_hierarchy_depth )として、最小インターPUサイズ(8)をSCUサイズ(8)で割った値の”2”を底とするlog (対数)とする。よって、本実施形態では、ビットストリームに多重化されるmin_inter_pred_unit_hierarchy_depthの値は、0(=log
2(8/8))となる。
【0062】
図1に示すように、本実施形態の映像符号化装置は、
図15に示された一般的な映像符号化装置と同様に、変換/量子化器101、エントロピー符号化器102、逆変換/逆量子化器103、バッファ104、予測器105、多重化器106、及び符号化制御器107を備える。
【0063】
図1に示す本実施形態の映像符号化装置では、
図15に示す映像符号化装置とは異なり、minInterPredUnitSizeより大きいCUサイズでインターPUパーティションタイプシンタクスを伝送するために、minInterPredUnitSizeが符号化制御器107に供給されている。さらに、minInterPredUnitSizeを映像復号装置にシグナリングするために、minInterPredUnitSizeが多重化器106にも供給されている。
【0064】
符号化制御器107は、符号化歪み(入力信号と再構築ピクチャの誤差画像のエネルギー)と発生ビット量から計算されるコスト(Rate-Distortion コスト:R-D コスト)を予測器105に計算させる。符号化制御器107は、R-D コストが最小となる、CU分割形状(
図22に示したように、split_coding_unit_flagによって決定する分割形状)、及び、各CUの予測パラメータを決定する。符号化制御器107は、決定したsplit_coding_unit_flag及び各CUの予測パラメータを予測器105及びエントロピー符号化器102に供給する。予測パラメータは、予測モード(pred_mode )、イントラPUパーティションタイプ(intra_split_flag)、イントラ予測方向、インターPUパーティションタイプ(inter_partitioning_idc)、及び動きベクトルなど、符号化対象CUの予測に関連した情報である。
【0065】
ただし、本実施形態の符号化制御器107は、一例として、minInterPredUnitSizeより大きいCUサイズのCUに対して、予測パラメータとして最適なPUパーティションタイプを、イントラ予測の{2N×2N、N×N}、インター予測の{2N×2N、2N×N、N×2N、N×N、2N×nU、2N×nD、nL×2N、nR×2N}の計10種類から選択する。符号化制御器107は、minInterPredUnitSizeと等しいCUサイズのCUに対して、予測パラメータとして最適なPUパーティションタイプを、イントラ予測の{2N×2N、N×N}、インター予測の{2N×2N}の計3種類から選択する。符号化制御器107は、minInterPredUnitSize未満のCUサイズのCUに対して、予測パラメータとして最適なPUパーティションタイプをイントラ予測の{2N×2N、N×N}の計2種類から選択する。
【0066】
図2は、PUパーティションタイプの候補の決定に関する本実施形態の符号化制御器107の動作を示すフローチャートである。
【0067】
図2に示すように、符号化制御器107は、ステップS101で、符号化対象CUのCUサイズがminInterPredUnitSizeより大きいと判定したとき、ステップS102で、PUパーティションタイプの候補をイントラ予測{2N×2N、N×N}とインター予測{2N×2N、2N×N、N×2N、N×N、2N×nU、2N×nD、nL×2N、nR×2N}の計10種類に設定し、ステップS106でR-D コストに基づいて予測パラメータを決定する。
【0068】
ステップS101で符号化制御器107が符号化対象CUのCUサイズがminInterPredUnitSize以下であると判定したとき、ステップS103に進む。
【0069】
符号化制御器107は、ステップS103で符号化対象CUのCUサイズがminInterPredUnitSizeと等しいと判定したとき、ステップS104で、PUパーティションタイプの候補をイントラ予測{2N×2N、N×N}とインター予測で{2N×2N}の計3種類に設定し、ステップS106でR-D コストに基づいて予測パラメータを決定する。
【0070】
符号化制御器107は、ステップS103で符号化対象CUのCUサイズがminInterPredUnitSize未満であると判定したとき、ステップS105で、PUパーティションタイプの候補をイントラ予測の{2N×2N、N×N}の計2種類と設定し、ステップS106でR-D コストに基づいて予測パラメータとして最適なPUパーティションタイプを決定する。
【0071】
予測器105は、符号化制御器107が決定した各CUの予測パラメータに対応する予測信号を選定する。
【0072】
符号化制御器107が決定した形状の各CUの入力映像は、予測器105から供給される予測信号が減じられて予測誤差画像となり、変換/量子化器101に入力される。
【0073】
変換/量子化器101は、予測誤差画像を周波数変換し、周波数変換係数を得る。
【0074】
さらに、変換/量子化器101は、量子化ステップ幅Qs で、周波数変換係数を量子化し、変換量子化値を得る。
【0075】
エントロピー符号化器102は、符号化制御器107から供給されるsplit_coding_unit_flag(
図22参照)、予測パラメータ、及び変換/量子化器101から供給される変換量子化値をエントロピー符号化する。
【0076】
逆変換/逆量子化器103は、量子化ステップ幅Qs で、変換量子化値を逆量子化する。さらに、逆変換/逆量子化器103は、逆量子化した周波数変換係数を逆周波数変換する。逆周波数変換された再構築予測誤差画像は、予測信号が加えられて、バッファ104に供給される。
【0077】
多重化器106は、最小インターPUサイズに関する情報(min_inter_pred_unit_hierarchy_depth )、及びエントロピー符号化器102の出力データを多重化して出力する。非特許文献2の4.1.2 Sequence parameter set RBSP syntaxの表記に従えば、多重化器106は、
図3に示すリストに表されるように、シーケンスパラメータセットのlog2_min_coding_unit_size_minus3シンタクスとmax_coding_unit_hierarchy_depth シンタクスに後続させて、min_inter_pred_unit_hierarchy_depth シンタクス(minInterPredUnitSizeをSCUサイズで割った値の”2”を底とするlog (対数)、本実施形態では0)を多重化する。ただし、log2_min_coding_unit_size_minus3シンタクス及びmax_coding_unit_hierarchy_depth シンタクスは、それぞれ、SCUサイズ(minCodingUnitSize )及びLCUサイズ(maxCodingUnitSize )を決定するための情報である。minCodingUnitSize とmaxCodingUnitSize は、それぞれ、以下のように計算される。
【0078】
minCodingUnitSize =1<<(log2_min_coding_unit_size_minus3+3)
【0079】
maxCodingUnitSize =1<<(log2_min_coding_unit_size_minus3+3+max_coding_unit_hierarchy_depth )
【0080】
また、min_inter_pred_unit_hierarchy_depth シンタクスとminCodingUnitSize には以下の関係がある。
【0081】
min_inter_pred_unit_hierarchy_depth =log
2(minInterPredUnitSize /minCodingUnitSize )
【0082】
上述した動作に基づいて、発明の映像符号化装置はビットストリームを生成する。
【0083】
本実施形態の映像符号化装置は、最小インターPUサイズ未満のインターPUが出現しないように、所定の最小インターPUサイズ、及び、符号化対象CUのCUサイズに基づいて符号化対象CUのインターPUパーティションを制御する。
【0084】
最小インターPUサイズ未満のインターPUが出現しないようにすることによって、メモリ帯域が削減される。また、最小インターPUサイズ未満のインターPUが出現しないようにすることによって、シグナリングされるインターPUパーティションタイプシンタクスの個数が削減されるので、ビットストリームに占めるPUヘッダの符号量の割合が小さくなり映像の品質が改善する。
【0085】
本実施形態の映像符号化装置における符号化制御手段は、外部設定される所定の最小インターPUサイズに基づいてインターPUパーティションを制御する。一例として、2N×2N以外のインターPUパーティションタイプを、所定のサイズより大きなCUサイズのCUでのみ使用するように制御する。よって、2N×2NのインターPUパーティションの発生確率が増加し、エントロピーが減少するため、エントロピー符号化の効率が上がる。よって、メモリ帯域を削減しつつ圧縮映像の品質を保持できる。
【0086】
また、本実施形態の映像符号化装置は、映像復号についても同様にインターPUパーティションタイプシンタクスをビットストリームから読み出せるように、外部設定される所定の最小インターPUサイズに関する情報をビットストリームに埋め込む手段を備える。よって、映像復号装置に所定のサイズがシグナリングされるようになり、映像符号化装置と映像復号装置の相互運用性を高めることができる。
【0087】
実施形態2.
第2の実施形態の映像符号化装置は、外部設定される所定の最小インターPUサイズに基づいてインターPUパーティションタイプを制御し、かつ、上記の所定の最小インターPUサイズに基づいて、インターPUパーティションタイプシンタクスのエントロピー符号化を制御する符号化制御手段、及び、上記の最小インターPUサイズに関する情報を映像復号装置にシグナリングするための、最小インターPUサイズに関する情報をビットストリームに埋め込む手段を備える。
【0088】
本実施形態では、インターPUパーティションタイプシンタクスを伝送するCUのCUサイズは、上記の最小インターPUサイズ(minInterPredUnitSize)より大きいとする。また、本実施形態では、利用可能なCUサイズを128,64,32,16,8(つまり、LCUサイズが128、SCUサイズが8である)、minInterPredUnitSizeを8とする。よって、本実施形態では、インターPUパーティションタイプシンタクスをビットストリームに埋め込むCUサイズは128,64,32,16になる。
【0089】
さらに、本実施形態では、最小インターPUサイズに関する情報(min_inter_pred_unit_hierarchy_depth )として、最小インターPUサイズ(8)をSCUサイズ(8)で割った値の”2”を底とするlog (対数)とする。よって、本実施形態では、ビットストリームに多重化されるmin_inter_pred_unit_hierarchy_depth の値は、0(=log
2(8/8))となる。
【0090】
本実施形態の映像符号化装置の構成は、
図1に示された第1の実施形態の映像符号化装置の構成と同様である。
【0091】
図1に示すように、本実施形態の映像符号化装置では、
図15に示す映像符号化装置とは異なり、minInterPredUnitSizeより大きいCUサイズでインターPUパーティションタイプシンタクスを伝送するためにminInterPredUnitSizeが符号化制御器107に供給されている。さらに、minInterPredUnitSizeを映像復号装置にシグナリングするために、minInterPredUnitSizeが多重化器106にも供給されている。
【0092】
符号化制御器107は、符号化歪み(入力信号と再構築ピクチャの誤差画像のエネルギー)と発生ビット量から計算されるR-D コストを予測器105に計算させる。符号化制御器107は、R-D コストが最小となる、CU分割形状(
図22に示したように、split_coding_unit_flagによって決定する分割形状)、及び、各CUの予測パラメータを決定する。符号化制御器107は、決定したsplit_coding_unit_flag及び各CUの予測パラメータを予測器105及びエントロピー符号化器102に供給する。予測パラメータは、予測モード(pred_mode )、イントラPUパーティションタイプ(intra_split_flag)、イントラ予測方向、インターPUパーティションタイプ(inter_partitioning_idc)、及び動きベクトルなど、符号化対象CUの予測に関連した情報である。
【0093】
本実施形態の符号化制御器107は、第1実施形態と同様に、minInterPredUnitSizeより大きいCUサイズのCUに対しては、予測パラメータとして最適なPUパーティションタイプを、イントラ予測の{2N×2N、N×N}、インター予測の{2N×2N、2N×N、N×2N、N×N、2N×nU、2N×nD、nL×2N、nR×2N}の計10種類から選択する。符号化制御器107は、minInterPredUnitSizeと等しいCUサイズのCUに対して、予測パラメータとして最適なPUパーティションタイプを、イントラ予測の{2N×2N、N×N}、インター予測の{2N×2N}の計3種類から選択する。符号化制御器107は、minInterPredUnitSize未満のCUサイズのCUに対して、予測パラメータとして最適なPUパーティションタイプを、イントラ予測の{2N×2N、N×N}から選択する。
【0094】
ただし、本実施形態の符号化制御器107は、エントロピー符号化対象CUの予測モードがインター予測であり、かつ、そのCUサイズがminInterPredUnitSize以下である場合は、inter_partitioning_idcをエントロピー符号化しないようにエントロピー符号化器102を制御する。
【0095】
予測器105は、符号化制御器107が決定した各CUの予測パラメータに対応する予測信号を選定する。
【0096】
符号化制御器107が決定した形状の各CUの入力映像は、予測器105から供給される予測信号が減じられて予測誤差画像となり、変換/量子化器101に入力される。
【0097】
変換/量子化器101は、予測誤差画像を周波数変換し、周波数変換係数を得る。
【0098】
さらに、変換/量子化器101は、量子化ステップ幅Qs で、周波数変換係数を量子化し、変換量子化値を得る。
【0099】
エントロピー符号化器102は、符号化制御器107から供給されるsplit_coding_unit_flag(
図22参照)、予測パラメータ、及び変換/量子化器101から供給される変換量子化値をエントロピー符号化する。ただし、上述したように、本実施形態のエントロピー符号化器102は、エントロピー符号化対象CUの予測モードがインター予測であり、かつ、そのCUサイズがminInterPredUnitSize以下である場合は、inter_partitioning_idcをエントロピー符号化しない。
【0100】
逆変換/逆量子化器103は、量子化ステップ幅Qs で、変換量子化値を逆量子化する。さらに、逆変換/逆量子化器103は、逆量子化した周波数変換係数を逆周波数変換する。逆周波数変換された再構築予測誤差画像は、予測信号が加えられて、バッファ104に供給される。
【0101】
多重化器106は、最小インターPUサイズに関する情報(min_inter_pred_unit_hierarchy_depth )、及びエントロピー符号化器102の出力データを多重化して出力する。非特許文献2の4.1.2 Sequence parameter set RBSP syntaxの表記に従えば、多重化器106は、
図3に示すリストに表されるように、シーケンスパラメータセットのlog2_min_coding_unit_size_minus3シンタクスとmax_coding_unit_hierarchy_depth シンタクスに後続させて、min_inter_pred_unit_hierarchy_depth シンタクス(minInterPredUnitSizeをSCUサイズで割った値の”2”を底とするlog (対数)、本実施形態においては0)を多重化する。ただし、log2_min_coding_unit_size_minus3シンタクス及びmax_coding_unit_hierarchy_depth シンタクスは、それぞれ、SCUサイズ(minCodingUnitSize )及びLCUサイズ(maxCodingUnitSize )を決定するための情報である。minCodingUnitSize とmaxCodingUnitSize は、それぞれ、以下のように計算される。
【0102】
minCodingUnitSize =1<<(log2_min_coding_unit_size_minus3+3)
【0103】
maxCodingUnitSize =1<<(log2_min_coding_unit_size_minus3+3+max_coding_unit_hierarchy_depth )
【0104】
また、min_inter_pred_unit_hierarchy_depth シンタクスとminCodingUnitSize には以下の関係がある。
【0105】
min_inter_pred_unit_hierarchy_depth =log
2(minInterPredUnitSize /minCodingUnitSize )
【0106】
上述した動作に基づいて、本実施形態の映像符号化装置はビットストリームを生成する。
【0107】
次に、本実施形態の特徴であるインターPUパーティションタイプシンタクス書き込みの動作を
図4のフローチャートを参照して説明する。
【0108】
図4に示すように、エントロピー符号化器102は、ステップS201で、split_coding_unit_flagをエントロピー符号化する。また、ステップS202で、エントロピー符号化器102は、予測モードをエントロピー符号化する。すなわち、pred_mode シンタクスをエントロピー符号化する。ステップS203で符号化対象CUの予測モードがインター予測であると判定し、かつ、ステップS204でCUサイズがminInterPredUnitSize以下のサイズであると判定した場合には、符号化制御器107は、エントロピー符号化器102におけるinter_partitioning_idcシンタクスのエントロピー符号化をスキップするように制御する。なお、ステップS203で符号化対象CUがイントラ予測であると判定した場合、又は、ステップS204でCUサイズがminInterPredUnitSizeより大きいと判定した場合には、ステップS205で、符号化制御器107は、エントロピー符号化器102が該符号化対象CUのPUパーティションタイプ情報をエントロピー符号化するように制御する。
【0109】
なお、上述したpred_mode シンタクス、及びinter_partitioning_idcシンタクスは、非特許文献2の4.1.10 Prediction unit syntax の表記に従えば、
図5に示すリストに表されるようにシグナリングされる。" if(currPredUnitSize > minInterPredUnitSize )" の条件によって、minInterPredUnitSizeより大きなサイズのCUのPUヘッダのみにおいて、inter_partitioning_idcシンタクスがシグナリングされることが、本実施形態の特徴である。
【0110】
本実施形態の映像符号化装置は、シグナリングされるインターPUパーティションタイプシンタクスの個数を削減するように、符号化対象CUのCUサイズが所定の最小インターPUサイズ以下のときに、該符号化対象CUのPUヘッダレイヤのインターPUパーティションタイプシンタクスをエントロピー符号化させない。シグナリングされるインターPUパーティションタイプシンタクスの個数を削減することによって、ビットストリームを占めるPUヘッダの符号量の割合が小さくなるので、映像の品質がさらに改善する。
【0111】
また、本実施形態の映像符号化装置は、最小インターPUサイズ未満のインターPUが出現しないように、符号化対象CUのCUサイズが所定の最小インターPUサイズを越えるときに、該符号化対象CUのPUヘッダレイヤのインターPUパーティションタイプシンタクスを所定のインターPUパーティションタイプに設定してエントロピー符号化させる。最小インターPUサイズ未満のインターPUが出現しないことによって、メモリ帯域が削減される。
【0112】
実施形態3.
第3の実施形態の映像復号装置は、第2の実施形態の映像符号化装置が生成したビットストリームを復号する。
【0113】
本実施形態の映像復号装置は、ビットストリームに多重化された最小インターPUサイズ情報を多重化解除する手段、多重化解除した最小インターPUサイズ情報に基づいてインターPUパーティションタイプを読み出す所定のCUサイズを決定するCUサイズ決定手段、及び、CUサイズ決定手段が決定したCUサイズでインターPUパーティションタイプをビットストリームから読み出す読み出し手段を備えることを特徴とする。
【0114】
図6に示すように、本実施形態の映像復号装置は、多重化解除器201、エントロピー復号器202、逆変換/逆量子化器203、予測器204、バッファ205、及び復号制御器206を備える。
【0115】
多重化解除器201は、入力されるビットストリームを多重化解除して、最小インターPUサイズ情報、及びエントロピー符号化された映像ビットストリームを抽出する。多重化解除器201は、
図3に示すリストに示されるように、シーケンスパラメータにおいて、log2_min_coding_unit_size_minus3シンタクスとmax_coding_unit_hierarchy_depth シンタクスに後続するmin_inter_pred_unit_hierarchy_depth シンタクスを多重化解除する。さらに、多重化解除器201は、多重化解除したシンタクスの値を用いて、インターPUパーティションタイプシンタクス(inter_partitioning_idcシンタクス)が伝送される最小インターPUサイズ(minInterPredUnitSize)を以下のように決定する。
【0116】
minInterPredUnitSize=1<<(log2_min_coding_unit_size_minus3+3+min_inter_pred_unit_hierarchy_depth )
【0117】
すなわち、本実施形態の多重化解除器201は、多重化解除した最小インターPUサイズ情報に基づいてインターPUパーティションタイプシンタクスを読み出すCUサイズを決定する役割も担っている。
【0118】
さらに、多重化解除器201は、最小インターPUサイズを復号制御器206に供給する。
【0119】
エントロピー復号器202は、映像ビットストリームをエントロピー復号する。エントロピー復号器202は、エントロピー復号した変換量子化値を逆変換/逆量子化器203に供給する。エントロピー復号器202は、エントロピー復号したsplit_coding_unit_flag及び予測パラメータを復号制御器206に供給する。
【0120】
ただし、本実施形態の復号制御器206は、復号対象CUの予測モードがインター予測であり、かつ、そのCUサイズがminInterPredUnitSizeであるときには、エントロピー復号器202に該復号対象CUのインターPUパーティションタイプシンタクスのエントロピー復号をスキップさせる。さらに、該復号対象CUのインターPUパーティションタイプを2N×2Nに設定する。なお、復号対象CUのCUサイズがminInterPredUnitSize未満であるとき、そのCUの予測モードはイントラ予測としかならない。
【0121】
逆変換/逆量子化器203は、量子化ステップ幅で、輝度及び色差の変換量子化値を逆量子化する。さらに、逆変換/逆量子化器203は、逆量子化した周波数変換係数を逆周波数変換する。
【0122】
逆周波数変換後、予測器204は、復号制御器206から供給される予測パラメータに基づいて、バッファ205に格納された再構築ピクチャの画像を用いて予測信号を生成する。
【0123】
逆変換/逆量子化器203で逆周波数変換された再構築予測誤差画像は、予測器204から供給される予測信号が加えられて、再構築ピクチャとしてバッファ205に供給される。
【0124】
そして、バッファ205に格納された再構築ピクチャがデコード画像として出力される。
【0125】
上述した動作に基づいて、本実施形態の映像復号装置はデコード画像を生成する。
【0126】
次に、本実施形態の特徴であるインターPUパーティションタイプシンタクス読み込みの動作を
図7のフローチャートを参照して説明する。
【0127】
図7に示すように、エントロピー復号器202は、ステップS301で、split_coding_unit_flagをエントロピー復号してCUのサイズを確定する。 また、ステップS302で、エントロピー復号器202は、予測モードをエントロピー復号する。すなわち、エントロピー復号器202は、pred_mode シンタクスをエントロピー復号する。また、ステップS303で、予測モードがインター予測であると判定し、かつ、ステップS304で、確定したCUサイズがminInterPredUnitSize以下であると判定したとき、ステップS305で、復号制御器206は、エントロピー復号器202におけるインターPUパーティションタイプのエントロピー復号をスキップするように制御し、該CUのPUパーティションタイプを2N×2Nと設定するように制御する(inter_partitioning_idc=0とする)。
【0128】
なお、ステップS303で、予測モードがイントラ予測であると判定した場合、又は、ステップS304で、確定したCUサイズがminInterPredUnitSizeより大きいと判定した場合、復号制御器206は、ステップS306で、エントロピー復号器202における該復号対象CUのPUパーティションタイプのエントロピー復号をスキップしないように制御し、該CUのPUパーティションタイプをエントロピー復号結果のPUパーティションタイプに設定する。
【0129】
また、第1の実施形態及び第2の実施形態の映像符号化装置は、第1の実施形態で利用された最小インターPUサイズ情報(min_inter_pred_unit_hierarchy_depth )を、
図8に示すリストや
図9に示すリストに表されているように、ピクチャパラメータセットやスライスヘッダにおいて多重化できる。同様に、本実施形態の映像復号装置は、ピクチャパラメータセットやスライスヘッダからmin_inter_pred_unit_hierarchy_depth シンタクスを多重化解除できる。
【0130】
また、第1の実施形態及び第2の実施形態の映像符号化装置は、min_inter_pred_unit_hierarchy_depth シンタクスを、LCUサイズ(maxCodingUnitSize )を最小インターPUサイズ(minInterPredUnitSize)で割った値の”2”を底とするlog (対数)としてもよい。すなわち、下式を用いてもよい。
【0131】
min_inter_pred_unit_hierarchy_depth =log 2(maxCodingUnitSize /minInterPredUnitSize )
【0132】
この場合、本実施形態の映像復号装置は、最小インターPUサイズを、min_inter_pred_unit_hierarchy_depth シンタクスに基づいて以下のように計算できる。
【0133】
minInterPredUnitSize =1<<(log2_min_coding_unit_size_minus3+3+max_coding_unit_hierarchy_depth - min_inter_pred_unit_hierarchy_depth )
【0134】
本実施形態の映像復号装置では、最小インターPUサイズ未満のインターPUが出現しないので、メモリ帯域が削減される。
【0135】
実施形態4.
第4の実施形態の映像復号装置は、第1の実施形態の映像符号化装置が生成したビットストリームを復号する。
【0136】
本実施形態の映像復号装置は、ビットストリームに多重化された最小インターPUサイズ情報を多重化解除する手段、及び、多重化解除した最小インターPUサイズ情報に基づいて復号対象CUを含むビットストリームのアクセスユニットにおけるエラーを検出するエラー検出手段を備えることを特徴とする。アクセスユニットは、非特許文献1の3.1 access unit において定義されているように、1ピクチャ分の符号化データを格納する単位である。エラーは、所定面積あたりに許容する動きベクトルの本数に基づく制約に対する違反を意味する。
【0137】
図10に示すように、本実施形態の映像復号装置は、多重化解除器201、エントロピー復号器202、逆変換/逆量子化器203、予測器204、バッファ205、及びエラー検出器207を備える。
【0138】
多重化解除器201は第3の実施形態における多重化解除器201と同様に動作し、入力されるビットストリームを多重化解除して、最小インターPUサイズ情報、及びエントロピー符号化された映像ビットストリームを抽出する。さらに最小インターPUサイズを求めて、最小インターPUサイズをエラー検出器207に供給する。
【0139】
エントロピー復号器202は、映像ビットストリームをエントロピー復号する。エントロピー復号器202は、エントロピー復号した変換量子化値を逆変換/逆量子化器203に供給する。エントロピー復号器202は、エントロピー復号したsplit_coding_unit_flag及び予測パラメータをエラー検出器207に供給する。
【0140】
エラー検出器207は、多重化解除器201から供給される最小インターPUサイズに基づいて、エントロピー復号器202から供給される予測パラメータのエラー検出を行い、予測パラメータを予測器204に供給する。エラー検出の動作は後述される。なお、エラー検出器207は、第3の実施形態における復号制御器206の役割も果たす。
【0141】
逆変換/逆量子化器203は、第3の実施形態における逆変換/逆量子化器203と同様に動作する。
【0142】
予測器204は、エラー検出器207から供給される予測パラメータに基づいて、バッファ205に格納された再構築ピクチャの画像を用いて予測信号を生成する。
【0143】
バッファ205は、第3の実施形態におけるバッファ205と同様に動作する。
【0144】
上述した動作に基づいて、本実施形態の映像復号装置はデコード画像を生成する。
【0145】
図11のフローチャートを参照して、復号対象CUを含むビットストリームのアクセスユニットのエラーを検出する、本実施形態の映像復号装置のエラー検出動作を説明する。
【0146】
ステップS401で、エラー検出器207は、CUサイズ、予測モード、PUパーティションタイプを確定する。
【0147】
ステップS402で、エラー検出器207は、復号対象CUのPUの予測モードを判定する。予測モードがイントラ予測である場合には、処理を終了する。予測モードがインター予測である場合、ステップS403に進む。
【0148】
ステップS403で、エラー検出器207は、復号対象CUのPUサイズと最小インターPUサイズとを比較する。該復号対象CUのPUサイズが最小インターPUサイズ以上の場合には、処理を終了する。該復号対象CUのPUサイズが最小インターPUサイズ未満である場合には、ステップS404に進む。
【0149】
ステップS404で、エラー検出器207は、エラーがあると判断し、エラーを外部に通知する。例えば、エラーが発生した該復号対象CUのアドレスを出力する。
【0150】
以上の動作により、エラー検出器207は、復号対象CUを含むビットストリームのアクセスユニットのエラーを検出する。
【0151】
なお、上記の各実施形態を、ハードウェアで構成することも可能であるが、コンピュータプログラムにより実現することも可能である。
【0152】
図12に示す情報処理システムは、プロセッサ1001、プログラムメモリ1002、映像データを格納するための記憶媒体1003及びビットストリームを格納するための記憶媒体1004を備える。記憶媒体1003と記憶媒体1004とは、別個の記憶媒体であってもよいし、同一の記憶媒体からなる記憶領域であってもよい。記憶媒体として、ハードディスク等の磁気記憶媒体を用いることができる。
【0153】
図12に示された情報処理システムにおいて、プログラムメモリ1002には、
図1、
図6、
図10のそれぞれに示された各ブロック(バッファのブロックを除く)の機能を実現するためのプログラムが格納される。そして、プロセッサ1001は、プログラムメモリ1002に格納されているプログラムに従って処理を実行することによって、
図1、
図6、
図10のそれぞれに示された映像符号化装置または映像復号装置の機能を実現する。
【0154】
図13は、本発明による映像符号化装置の主要部を示すブロック図である。
図13に示すように、本発明による映像符号化装置は、インター予測を用いて映像符号化を行う映像符号化装置であって、所定の最小インターPUサイズ(PA)と、符号化対象CUのCUサイズ(PB)とに基づいて符号化対象CUのインターPUパーティションタイプを制御する符号化制御手段11(一例として、
図1に示す符号化制御器107)を備える。
【0155】
図14は、本発明による映像復号装置の主要部を示すブロック図である。
図14に示すように、本発明による映像復号装置は、インター予測を用いて映像復号を行う映像復号装置であって、所定の最小インターPUサイズ(PA)と、復号対象CUのサイズ(PB)とに基づいて復号対象CUのインターPUパーティションを制御する復号制御手段21(一例として、
図6及び
図10に示す復号制御器207)を備える。
【0156】
以上、実施形態および実施例を参照して本発明を説明したが、本発明は上記実施形態および実施例に限定されない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
【0157】
この出願は、2011年1月13日に出願された日本特許出願2011−4964を基礎とする優先権を主張し、その開示の全てをここに取り込む。