(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0020】
以下、本発明の好ましい実施形態について図面を参照しながら説明する。本明細書において、「左側」および「右側」は、車両に乗車した運転者から見た左右側をいう。
図1は本発明の第1実施形態に係る吸気ダクトを搭載した鞍乗型車両の一種である自動二輪車の側面図である。この自動二輪車の車体フレームFRは、前半部を形成するメインフレーム1と、このメインフレーム1の後部に取り付けられて車体フレームFRの後半部を形成するシートレール2とを有している。メインフレーム1の前端に設けられたヘッドパイプ4に、図示しないステアリングシャフトを介してフロントフォーク8が回動自在に軸支されて、このフロントフォーク8に前輪10が取り付けられている。フロントフォーク8の上端部に操向用のハンドル6が固定されている。
【0021】
一方、車体フレームFRの中央下部であるメインフレーム1の後端部に、ピボット軸16を介してスイングアーム12が上下揺動自在に軸支され、このスイングアーム12の後端部に後輪14が回転自在に支持されている。メインフレーム1の下部にエンジンEが取り付けられている。エンジンEの前方にエンジン冷却水のラジエータ13が配置されている。エンジンEの回転がチェーンのような伝達機構(図示せず)に伝達され、この伝達機構を介して後輪14が駆動される。車体の左側で、メインフレーム1の後端に、サイドスタンド17が起倒自在に支持されている。
【0022】
メインフレーム1の上部に燃料タンク15が配置され、リヤフレーム2に操縦者用シート18および同乗車用シート20が支持されている。また、車体前部に、前記ヘッドパイプ4の前方を覆う樹脂製のフロントカウル22が装着されている。フロントカウル22には、外部からエンジンEへの吸気を取り入れる吸気取入口24が形成されている。
【0023】
吸気取入口24が、車体前方に向かって開口することで走行風Aの風圧を利用してエンジンEへの吸気量を増やすことができる。吸気取入口24は、フロントカウル22の前面に配置され、走行風圧が最も高い、フロントカウル22の前端部に配置されている。これにより、吸気取入口24をフロントカウル22の側部に突出して設けるのに比べて、フロントカウル22からの突出量が抑制されるので、吸気取入口24が目立たなくなり、自動二輪車の外観が向上する。
【0024】
エンジンEは、車幅方向に延びるエンジン回転軸26を有する4気筒4サイクルの並列多気筒エンジンである。エンジンEの形式はこれに限定されない。エンジンEは、エンジン回転軸26を支持するクランクケース28と、クランクケース28の上部に連結されたシリンダブロック30と、その上部に連結されたシリンダヘッド32と、シリンダヘッド32の上部に取り付けられたヘッドカバー32aと、クランクケース28の下部に取り付けられたオイルパン34とを有している。
【0025】
シリンダブロック30およびシリンダヘッド32は若干前傾している。具体的には、エンジンEのピストン軸線が上方に向かって前方に傾斜して延びている。シリンダヘッド32の後部に吸気ポート47が設けられている。シリンダヘッド32の前面の排気ポートに接続された4本の排気管36が、エンジンEの下方で集合され、後輪22の右側に配置された排気マフラ38に接続されている。シリンダブロック30の後方でクランクケース28の上方に、外気を取り込んで吸気としてエンジンEに供給する過給機42が配置されている。
【0026】
過給機42は、吸込口46から吸引した外気を圧縮して、その圧力を高めたのち吐出口48から吐出して、エンジンEに供給する。これにより、エンジンEに供給する吸気量を増大させることができる。過給機42は、車幅方向に延びる過給機回転軸心44を有し、クランクケース28の後部の上方に、左向きに開口した吸込口46が位置し、エンジンEの車幅方向の中央部で過給機回転軸心44よりも後方に、上方を向いた吐出口48が位置している。
【0027】
図2に示すように、過給機42は、吸気を加圧するインペラ50と、インペラ50を覆うインペラハウジング52と、エンジンEの動力をインペラ50に伝達する伝達機構54と、伝達機構54を覆う伝達機構ハウジング56とを有している。伝達機構54は、例えば、歯車式の増速機である。インペラハウジング52を挟んで車幅方向に伝達機構54とエアクリーナ40とが配置されている。インペラハウジング52は、図示しないボルトにより伝達機構ハウジング56およびエアクリーナ40と連結されている。ただし、過給機42の構造は、この実施形態に限定されない。
【0028】
過給機42の吸込口46はシリンダブロック30の左側面よりも車幅方向内側に配置されている。これにより、過給機42がシリンダブロック30の左側面から外側方に突出しないので、エンジンEと過給機42のアセンブリがコンパクトになる。この吸込口46にエアクリーナ40のクリーナ出口62が接続され、クリーナ入口60に、シリンダブロック30の前方を流れる走行風A(
図1)を過給機42に導入する吸気ダクト70が車幅方向外側から接続されている。クリーナ入口60と吸気ダクト70の導出口70bとは、それぞれの外周に設けられた連結用フランジ63,64を複数のボルト55で連結することにより接続されている。
【0029】
エアクリーナ40の上流端部を形成する連結用フランジ63,64に、吸気Iを浄化するクリーナエレメント69が内蔵されている。連結用フランジ63,64の下流側が、クリーン室を形成するクリーナ本体65となっている。クリーナエレメント69を通過した吸気Iは、浄化されるとともに、整流される。つまり、クリーナエレメント69は、過給機42の吸込口46の上流側に配置された、吸気通路77(
図7)の内部の吸気Iの偏りを抑制する抑制部材としても機能する。このような抑制部材として、エアクリーナ40のクリーナエレメント69のほかに、パンチングメタルを用いることができる。
【0030】
過給機42の吐出口48と
図1のエンジンEの吸気ポート47との間に吸気チャンバ74が配置されている。吸気チャンバ74は、過給機42から吸気ポート47に供給される吸気を溜める。吸気チャンバ74は、過給機42の上方でシリンダブロック30の後方に配置されている。
図2に示すように、過給機42の吐出口48は、吸気チャンバ74の車幅方向中心に接続されている。これにより、過給機42からの吸気が吸気チャンバ74を経て複数の吸気ポート47に均等に流入する。
【0031】
図1に示すように、吸気チャンバ74とシリンダヘッド32との間には、スロットルボディ76が配置されている。このスロットルボディ76において、吸入空気中に燃料が噴射されて混合気が生成され、この混合気がシリンダ内に供給される。これら吸気チャンバ74およびスロットルボディ76の上方に、前記燃料タンク15が配置されている。
【0032】
吸気ダクト70は、過給機42に吸気を供給する吸気通路77(
図7)を形成し、サイドスタンド17と同じ車体の左側方に配置されている。吸気通路77の通路面積は、前方の吸気取入口24から後方の過給機42に接続される下流部70c(
図2)に向かって徐々に小さくなるように設定されている。ここで、「徐々に小さくなる」とは、途中で面積一定の部分があってもよく、全体として小さくなっていることをいう。
【0033】
吸気通路77の通路面積の変化は、吸気ダクト70の断面の上下方向寸法および左右方向寸法の少なくとも一方が後方に向かって徐々に小さくなるように変化することで設定される。本実施形態では、
図4および
図5に示すように、上下方向寸法Hおよび左右方向寸法Wの両方を変化させている。
【0034】
吸気ダクト70の断面積が後方に向かって徐々に小さくなるので、
図1の吸気ダクト70の後部における車体本体から外側に露出する部分を小さくできる。換言すれば、吸気ダクト70の後部におけるライダーの脚と近接する部分を小さくできる。これにより、吸気ダクト70とライダーの脚との干渉を防ぐことができる。その結果、ライダーの運転姿勢が窮屈になるのを防いだり、ライダーの体格が大きくても運転しやすくなったりする。
【0035】
エアクリーナ40は、吸気ダクト70の下流部70cに設けられて通路面積が拡大する連結部67を構成している。この連結部67の上流端部が前記連結用フランジ63,64により形成され、連結部本体がクリーナ本体65により形成されている。連結部本体であるクリーナ本体65における過給機42に接続されるクリーナ出口62は、クリーナエレメント69が配置されるクリーナ入口60よりも通路面積が小さく設定されている。
【0036】
図1からわかるように、吸気ダクト70は、吸気Iの流れ方向の中間部で最下部70dを有している。このように、中間部に最下部70dを設けることで、吸気ダクト70を側面視でV字形状とすることができる。ただし、吸気ダクト70の形状は、このようなV字形に限定されず、ストレート形状であってもよい。具体的には、例えば、
図4に2点鎖線で示すように、吸気ダクト70Lが側面視において、下方に向かって後方に徐々に傾斜するように延びるようにしてもよい。これにより、吸気抵抗を抑えることができる。
【0037】
吸気ダクト70は、
図3に示すように、上流側のラムダクトユニット80と下流側の吸入ダクトユニット82とを有している。ラムダクトユニット80は、
図1の前端開口70aをフロントカウル22の吸気取入口24に臨ませた配置でメインフレーム1に支持されており、開口70aから導入した空気をラム効果により昇圧させる。
図3のラムダクトユニット80の後端部80bに、吸入ダクトユニット82の前端部82aが接続されている。吸入ダクトユニット82の後端部である導出口70bは、エアクリーナ40のクリーナ入口60(
図2)に接続されている。
【0038】
ラムダクトユニット80は、ヘッドパイプ4よりも前方に位置し、例えば、フロントカウル22(
図1)に固定される。ヘッドパイプ4内をラムダクトユニット80における吸気通路77(
図7)の一部としてもよい。
【0039】
ラムダクトユニット80の前端開口70aが吸気ダクト70の導入口70aとなる。吸気ダクト70の導入口70a(吸気取入口24)は、
図6に示すように、横長形状に形成され、ヘッドパイプ4の前方で車体左側部に配置されている。これによって車幅方向中心に導入口70aを配置する場合に比べて、
図6に示す導入口70aから過給機42までの距離を短くするとともに、吸気ダクト70の曲率を
小さくすることができる。
【0040】
吸気取入口24の開口縁は、平面視で、車幅方向外側に向かって後方に傾斜している。吸気取入口24の車幅方向外側端24aは、吸気ダクト70における最も外側に湾曲した部分の車幅方向内側面70iよりも外側に位置している。これにより、外側に湾曲した吸気ダクト70内部の外側部分にも吸気を導きやすい。
【0041】
本実施形態では、吸気ダクト70の導入口70aと導出口70bとは、車体フレームFRおよびエンジンEの外側面よりも内側に位置している。これに対し、吸気ダクト70の前後方向中間部は、車体フレームFRおよびエンジンEの外側面よりも外側に位置している。
【0042】
ただし、吸気ダクト70の導入口70aは、前面となる位置に配置されていればよく、例えば、
図6のフロントカウル22における車幅方向の中心部で最も前方に位置する前端部の付近に配置してもよい。この場合、圧力の高い走行風Aを過給機42に導くことができる。
【0043】
吸気ダクト70は、メインフレーム1よりも車体の外側に位置している。これにより、メインフレーム1との干渉を防ぎつつ、メインフレーム1の幅方向寸法が大きくなるのを抑制できる。本実施形態では、メインフレーム1は吸気ダクト70を除いた車体の最外側部となる。操縦者用シート18の前方に車幅方向寸法が小さくなるニーグリップ部75が形成され、吸気ダクト70が、ニーグリップ部75よりも前方で、メインフレーム1から外側方に突出している。ニーグリップ部75は、
図1の燃料タンク15の下部の外側を覆うタンクサイドカバー79の後部に形成されている。
【0044】
吸入ダクトユニット82は、ラムダクトユニット80と過給機42とを滑らかに接続する配管である。吸入ダクトユニット82は、ラムダクトユニット80から後方に向かって下方に傾斜するとともに左側に膨出し、シリンダブロック30の側方を通過している。つまり、
図6に示すように、吸入ダクトユニット82は、前方から車体外側に湾曲しながら過給機42に接続されている。吸気ダクト70の内側面70iの一部、具体的には、湾曲する部分の内側面が後方に向かって外側に延びている。このように湾曲部分の内側面が外側に向かって傾斜することで、吸気ダクト70の内側部分で流速が低下するのを抑えることができる。
【0045】
詳細には、吸気ダクト70は、上下方向および左右方向に湾曲する。つまり、吸気ダクト70は、後方に向かって下方に湾曲して延びるとともに、車幅方向外側に湾曲して延びている。吸気ダクト70の湾曲形状は、様々な要因で複雑に湾曲する。具体的には、
図1のライダーの脚と干渉しないように湾曲したり、ラジエータ13を通過した走行風Aが吸気ダクト70で遮られないように湾曲したり、操舵時のハンドル6、フロントフォーク8と干渉しないように湾曲したり、吸気ダクト70内を通過する吸気Iの流れが円滑となるように湾曲したりする。
【0046】
図1の吸気ダクト70は、エンジンEの前方領域では、側面視で、ハンドル6の先端部の下方およびラジエータ13の上方で、且つフロントフォーク8の外側方を通過している。詳細には、吸気ダクト70は、ハンドル6の回動領域の下方を通過している。これにより、吸気ダクト70とハンドル6との干渉を防ぐことができる。また、吸気ダクト70は、ラジエータ13の後方の空間の上方を通過している。これにより、ラジエータ13の後方の空間を車幅方向に開放した状態にでき、その結果、ラジエータ13通過した走行風Aが円滑に排出される。ラジエータ13近傍での吸気ダクト70の下端は、ラジエータ13のファン(図示せず)の回転軸よりも上方に配置されるのが好ましく、ファン(図示せず)の上端よりも上方に配置されるのがより好ましい。また、吸気ダクト70は、エンジンEの前方では、排気管36よりも上方を通過している。
【0047】
また、吸気ダクト70は、燃料タンク15の下方でメインフレーム1の外側方を前後方向に延びている。これにより、燃料タンク15の容量を稼ぐことができるうえに、吸気ダクト70とメインフレーム1との干渉を避けることができる。また、吸気ダクト70により、メインフレーム1に固定されるハーネス、配管等を隠すことができる。
【0048】
さらに、エンジンEの側方領域では、側面視で、クランク軸26の上方、詳細には、クランクケース28の左側部に取り付けられたジェネレータカバー29の上方で、且つ、シリンダヘッド32の上面およびスロットルボディ76よりも下方を通過する。吸入ダクトユニット82の側面の一部および上面の一部は外方に露出している。また、吸気ダクト70におけるメインフレーム1から突出した部分の後端は、乗車状態のライダーの膝Kよりも下方に位置し、膝下部分KUよりも前方に位置している。
【0049】
このように、吸気ダクト70が、エンジン側方領域で、シリンダヘッド32の上面よりも下方を延びているので、シリンダヘッド32の上面よりも上方を通過する場合に比べて、クリーナ入口60(
図2)に接続するために吸気ダクト70を急激に下方向に曲げる必要がなくなり、吸気ダクト70の曲率半径を大きくできる。また、吸気ダクト70が、エンジンEの側方領域において、スロットルボディ76よりも下方を通過しているので、スロットルボディ76の両側部に形成されるスロットル弁駆動機構、センサ等の部品との干渉を防いで、可及的に車幅方向内側まで吸気ダクト70を延ばすことができる。さらに、吸気ダクト70がジェネレータカバー29の上方を延びているので、吸気ダクト70とジェネレータカバー29との干渉が防止される。
【0050】
図7に示すように、吸気ダクト70は、左右に2分割されており、内側半体90と外側半体92とを有している。内側半体90と外側半体92はそれぞれ断面U字状に形成されている。これにより、型成形しやすくかつ強度を確保できる。具体的には、外側半体92は、前後方向に垂直な断面形状が車幅方向内側に開放するU字状に形成されている。一方、内側半体90は、前後方向に垂直な断面形状が車幅方向外側に開放するU字状に形成されている。外側半体92および内側半体90の断面形状はU字形に限定されない。例えば、外側半体92および内側半体90を断面L字形に形成してもよく、また、内側半体90を断面I字形に形成してもよい。
【0051】
外側半体92と内側半体90とで、材料または表面処理が異なる。外側半体92は、美観向上が要求される材料または表面処理が行われる。一方、内側半体90は美観に比べて強度、生産コストなどの他の条件が優先される。材料または表面処理を異ならせることで、外側半体92と内側半体90とに要求される条件にそれぞれ適合することができる。この実施形態では、外側半体92は、ABS樹脂(アクリロニトリル・ブタジエン・スチレン共重合合成樹脂)を着色した材料により形成され、内側半体90は、ポリプロピレン(PP)により形成されている。ただし、外側半体92および内側半体90の材質はこれに限定されない。
【0052】
内側半体90の表面(内側面)に、吸気ダクト70をメインフレーム1に取り付ける固定部分100が形成されている。吸気ダクト70は、
図6のラムダクトユニット80がフロントカウル22に固定されることで前部が車体に支持され、後部は、エアクリーナ40にボルト55(
図2)で連結されることにより車体に支持されている。
図7の固定部分100は、必要に応じて複数個設けられ、吸気ダクト70の中間部を車体に支持する。
【0053】
外側半体92における内側端部と、内側半体90における外側端部とを突き合わされた状態で、外側半体92と内側半体90とが接合されている。内側半体90と外側半体92との接合は、例えば、溶着、接着によって行われる。外側半体92の上側の内側端部は、内側半体90の外側端部が突き合わされる接合部92aと、この接合部92aの上方に形成されて接合部92aよりも車体内側に突出する突出部92bとを有している。上側の分割面94は、吸気ダクト70の車体幅方向中央位置よりも車体の内側に配置されている。下側の分割面96は、上側の分割面94よりも車体の外側に位置している。
【0054】
図8(a)に示すように、下側の分割面96は、吸気ダクト70の左右方向中心部よりも外側に位置してもよい。また、内側半体90と外側半体92との接合部は、
図8(b)に示すように、凸部93が凹部95に嵌まり込む形状としてもよい。これにより、接合部の強度が向上する。また、接合部に、
図8(c)に示すように、左右方向に外れるのを防止する返し部97を設けてもよい。
【0055】
図7の吸気通路77を形成する吸入ダクトユニット82の断面形状は、ほぼ上下方向に長軸を有する矩形である。湾曲する部分では、吸入ダクトユニット82の横断面形状は、湾曲の中心側(車体内側)から湾曲の径方向外側である車幅方向外側に向かって、湾曲の径方向である車幅方向(左右方向)に直交する直交方向寸法(上下方向寸法)D1が徐々に小さくなるように形成されている。ここで、「徐々に小さくなる」とは、途中で寸法一定の部分があってもよく、全体として小さくなっていることをいう。吸入ダクトユニット82の断面形状は、外側縁が湾曲の径方向(車幅方向外側)へ向かって円弧状に膨出したD字形状、V字形形状、台形形状等であってもよい。
【0056】
このような直交方向寸法D1が外側に向かって徐々に小さくなる縮径形状は、ダクト全体に形成されてもよいが、少なくとも曲率が
大きくなる領域に形成されることが好ましく、曲率が
大きくなる領域だけ縮径形状であってもよい。具体的には、吸気ダクト70の内部の吸気Iの流れ方向が、前後方向から左右方向に大きく変わるダクト後部70bが縮径形状に形成されることが好ましい。
【0057】
本実施形態では、吸気ダクト70は左右方向に湾曲しているがこれに限らない。例えば、吸気ダクト70がエンジンEの上方を前後方向に通過して上下方向に湾曲する場合、湾曲部分での左右寸法が上方に向かって縮径するように吸気ダクト70が形成される。
【0058】
吸入ダクトユニット82内の吸気通路77の湾曲する部分の横断面形状は、直交方向寸法D1の最大値D1maxが、湾曲の径方向に沿った径方向寸法(左右方向寸法)D2の最大値D2maxよりも大きく設定されている(D1max>D2max)。換言すれば、吸入ダクトユニット82の横断面は、湾曲の中心側のダクト内側辺84、湾曲の径方向外側のダクト外側辺86、およびダクト内側辺84とダクト外側辺86とを連結するダクト連結辺88,88を有しており、ダクト外側辺86が、ダクト内側辺84よりも直交方向寸法が小さく形成されている。このように、車幅方向寸法に比べて上下方向寸法を大きくすることで、車幅方向に膨らむのを防ぎつつ、通路面積を大きくすることができる。なお、直交方向寸法D1および径方向寸法D2は、
図4および
図5に示した吸気ダクト70の断面の上下方向寸法Hおよび左右方向寸法Wに相当している。
【0059】
ほぼ矩形の吸気ダクト70の断面の上方外側の角部に、面取り部89が形成されている。これにより、角部で流速が低下するのを防ぐことができる。また、吸気ダクト70の断面について、内側半体90および外側半体90の内面同士が面一となるように形成されている。これによっても、流路抵抗を減らすことができる。
【0060】
図1の吸気ダクト70は、その外側面の一部が車幅方向外方に露出している。本実施形態では、吸気ダクト70のうち車幅方向外方に露出している部分が、車体フレームFRよりも車幅方向外側を通過し、ハンドル6付近を通過している。具体的には、外側に露出する部分は、ハンドル6付近からエンジンEの後部付近まで前後方向に長く延びている。これによって、ライダーまたは外部から吸気ダクト70の側面が視認されやすい。上述したように吸気ダクト70の側面には、分割線が形成されないので、ライダーおよび外部から分割線が視認しづらい。これにより、自動二輪車の美観が向上する。
【0061】
図6に示すように、吸気ダクト70の上面の一部も車体上方に露出している。本実施形態では、吸気ダクト70のうち車体上方に露出している部分が、車体フレームFRよりも車幅方向外側を通過し、ハンドル6付近を通過している。具体的には、上方に露出する部分は、ハンドル6付近からエンジンEの後部付近まで前後方向に長く延びている。これによって、ライダーまたは外部から吸気ダクト70の上面が視認されやすい。上述したように吸気ダクト70の上面の分割線94は内側に配置されるので、ライダーおよび外部から分割線94が視認しづらい。これにより、自動二輪車の美観が向上する。
【0062】
平面視において、吸気ダクト70が車体フレームまたはカウルによって車幅方向内側に部分的に隠れる場合には、平面視で車体フレームまたはカウルで隠れる範囲で分割線を車幅方向外側に向かうように偏向してもよい。これによって美観を維持しつつ、強度を向上させやすい。例えば、車体フレームまたはカウルで隠れる境界に沿って分割線が延びるようにしてもよい。
【0063】
図1に示すクランク軸26が回転すると、エンジンEの動力が伝達機構54を介して過給機42に伝達され、過給機42が始動する。自動二輪車が走行すると、走行風Aは、吸気取入口24からラムダクトユニット80を通り、吸入ダクトユニット82を通って、エアクリーナ40で清浄化されたのち過給機42に導入される。過給機42に導入された走行風Aは、過給機42により加圧されて、吸気チャンバ74およびスロットルボディ76を介してエンジンE内へ導入される。このようなラム圧と過給機42による加圧との相乗効果により、エンジンEに高圧の吸気を供給することができる。
【0064】
上記構成において、
図7に示す吸気通路77の内部における湾曲の径方向外側の通路が、湾曲の径方向内側の通路に比べて狭くなっているので、遠心力で吸気Iが湾曲の径方向外側へ偏るのが抑制され、吸気通路77の内部で吸気Iの流れが均一化される。このように、吸気Iの流れが均一化された状態で過給機42の吸込口46に接続されることで、過給機42の効率が低下するのを防ぐことができる。
【0065】
また、吸気通路の横断面形状は、直交方向の最大寸法D1maxが、湾曲の径方向の最大寸法D2maxよりも大きく設定されている。これにより、径方向の最大寸法が、直交方向の最大寸法よりも大きい場合に比べて、流速の偏りを小さくしやすい。
【0066】
図1に示すように、前方に開口した吸気取入口24から走行風Aを取り入れているので、流速が速くなって高い動圧が得られる反面、遠心力の影響を受けやすいが、上述のように、吸気Iの偏りが抑制されるので、過給機42の効率が低下するのを防ぐことができる。
【0067】
図2の過給機42がエンジンEのシリンダブロック30の後方に配置され、吸気ダクト70が、シリンダブロック30の前方から車体の左側へ湾曲しながらシリンダブロック30の左側を通って過給機42に接続されている。このように、吸気ダクト70が側方に湾曲されているので、シリンダブロック30の上方を通過する場合に比べて自動二輪車の上下方向寸法を小さくできる。
【0068】
図6に示す吸気ダクト70の吸気取入口24が車体の左側に配置され、吸気取入口24の車幅方向外側面24aが、吸気ダクト70における最も外側に湾曲した部分の車幅方向内側面70iよりも外側に位置しているので、吸気ダクト70の湾曲が小さくて済み、吸気Iの車幅方向への変更量が少なくなるとともに、自動二輪車の車幅方向寸法を小さくできる。
【0069】
図2の過給機42の吸込口46が、エンジンEの左側面よりも車体内側に配置されている。吸込口46がエンジンEの内側にある場合、過給機42がエンジンEの左側面から外側方に突出しないから、エンジンEと過給機42のアセンブリがコンパクトになる反面、吸気ダクト70の曲率が
大きくなって遠心力が大きくなりやすいが、上述のように、吸気Iの偏りが抑制されるので、過給機42の効率が低下するのを防ぐことができる。また、吸気取入口24から過給機42に向かって、吸気Iの車幅方向への変更量が少なくなるので、流れの乱れが抑制され、吸気効率が高くなる。
【0070】
また、吸気通路の通路面積は、上流から下流に向かって徐々に小さくなるように設定されている。これにより、吸気Iの流速が徐々に増大する。その結果、過給機42の吸込口46付近で流速が低下することがなく、過給機42の高い効率を確保できる。また、吸気Iの流速は徐々に増速するので、流れの乱れが少なくなり、吸気効率も高い。この場合、流速の大きい過給機42の吸込口46付近で遠心力の影響を受けやすくなるが、上述のように、吸気Iの偏りが抑制されるので、過給機42の効率が低下するのを防ぐことができる。
【0071】
図2に過給機42の吸込口46の上流側に、クリーナエレメント69が配置されている。クリーナエレメント69により吸気通路の内部の吸気Iの偏りが抑制される結果、過給機42へ導かれる吸気Iの偏りが小さくなり、効率の低下を一層防ぐことができる。
【0072】
図7に示すように、吸気ダクト70が左右2つ割れの構造となっているので、型成形により吸気ダクト70を成形できる。その結果、上下方向および左右方向に湾曲する場合でも、吸気ダクト70を容易に形成することができる。
【0073】
図6の示す吸気ダクト70の側面の一部が外方に露出しているが、側面に分割線が存在しないので、吸気ダクト70が露出しても美観を損なわない。
【0074】
図7の吸気ダクト70の上側の分割面94が、吸気ダクト70の車体幅方向中央位置よりも車体の内側に配置されているので、吸気ダクト70の上面の一部が外方に露出している場合でも、内側半体90は外部に露出しにくい。その結果、外側半体92のみ意匠部品として形成して美観向上させ、内側は安価に製造できる。
【0075】
図1に示すように、吸気ダクト70がラジエータ13の上方やフロントフォーク8の外側方を通過すると、ライダーから吸気ダクト70は見えやすくなるが、上述のように、上側の分割面94が車体の内側に配置されているので、分割線が目立ちにくい。
【0076】
図7に示す下側の分割面96が、上側の分割面94よりも車体の外側に位置しているので、内側半体90が扁平になるのを抑制して、吸気ダクト70の剛性を向上させることができる。
【0077】
外側半体92の内側端部と、内側半体90の外側端部とが、突き合わされた状態で外側半体92と内側半体90とが接合されているので、吸気ダクト70の内周面に凹凸が形成されるのを抑制できる。その結果、吸気ダクト70内部の吸気Iの流れが阻害されない。
【0078】
外側半体92の上側の内側端部は、内側半体90の外側端部が突き合わされる接合部92aと、この接合部92aの上方に形成されて接合部92aよりも車体内側に突出する突出部92bとを有している。これにより、上側の接合部92aが、突出部92bにより隠されて、外観が一層向上する。
【0079】
吸気ダクト70をメインフレーム1に取り付ける固定部分100が、内側半体90の外面(内側面)に形成されているので、固定部分100が車体の外観に現れるのを防いで、車体の外観が損なわれるのを防ぐことができる。
【0080】
図1の吸気ダクト70がサイドスタンド17と同じ車体左側に配置されている場合、停車時、上側の分割面94は見えやすいが、吸気ダクト70が停車時に傾斜した下側に位置するので、分割線が目立ちにくい。
【0081】
図2の吸気ダクト70の下流部70cに通路面積が拡大する連結部39が設けられている。この連結部39に吸気Iが貯留されるので、過給機42に安定して吸気Iを供給できる。
【0082】
また、この連結部にクリーナエレメント69が配置され、連結部39における過給機42に接続されるクリーナ出口62は、クリーナエレメント69の部分よりも通路面積が小さく設定されている。その結果、吸気Iが、エアクリーナ40で減速されるので、クリーナエレメント69の通過ロスが少ない。さらに、エアクリーナ40のクリーナ出口62の通路面積が小さく設定されているので、クリーナ出口62において吸気Iが増速され、過給機42の吸込口46付近で吸気Iの流速が低下して過給機42の効率を低下させることがない。
【0083】
図6の吸気取入口24の開口縁が、平面視で、車幅方向外側に向かって後方に傾斜している。これにより、車体の流線形状を保ちつつ、吸気取入口24の開口面積を大きくできる。
【0084】
図1に示す吸気ダクト70が、シリンダブロック30の左側を通過しているので、エンジンEの上方に広い空間を確保して、設計の自由度を向上させることができる。また、吸気ダクト70は、ハンドル6の前方からラジエータ13の上方を通過しているので、ラジエータ13との干渉を避けることができる。その結果、ラジエータ性能の低下を防ぐことができる。
【0085】
さらに、吸気ダクト70は、ハンドル6の先端部よりも下方を通過しているので、吸気ダクト70が、回動するハンドル6と干渉するのを防ぐことができる。
【0086】
吸気ダクト70が、
図6に示すニーグリップ部75よりも前方で、メインフレーム1から外側方に突出しており、吸気ダクト70におけるメインフレーム1から突出した部分の後端は、
図1に示すように、側面視において、乗車状態のライダーの膝Kよりも下方に位置し、膝下部分KUよりも前方に位置している。これにより、吸気ダクト70が、ライダーの膝Kと干渉するのを防ぐことができる。
【0087】
また、吸気ダクト70が、吸気Iの流れ方向の中間部で最下部70dを有しているので、最下部70dで水抜きを行うことができる。
【0088】
図9は、本発明の第2実施形態に係る吸気ダクトを搭載した鞍乗型車両の一種である自動二輪車の要部を示す平面図である。第2実施形態の吸気ダクト70Aは、車体の一側方である左側の吸気取入口24に加え、車体の他側方である右側に、追加の吸気取入口25が配置されている。さらに、ラムダクトユニット80Aと吸入ダクトユニット82との接続部に、吸気を浄化するクリーナエレメント69Aが内蔵されている。したがって、吸気ダクト70Aの下流部70cには、クリーナエレメント(エアクリーナ)は設けられていない。その他の構造は、第1実施形態と同じである。
【0089】
第2実施形態によれば、追加の吸気取入口25があるので、走行風Aの吸入量が増加する。また、通路面積の大きい吸気通路の上流側にクリーナエレメント69Aが配置されているので、吸気Iは、流速が遅い箇所でクリーナエレメント69Aを通過する。これにより、クリーナエレメント69Aを通過する際のロスを少なくできる。
【0090】
図10は、本発明の第3実施形態に係る吸気ダクトを搭載した鞍乗型車両の一種である自動二輪車の要部を示す平面図で、
図11はその斜視図である。第3実施形態の吸気ダクト70Bは、導入口70aが車体の前端の車幅方向中心位置に配置されている。さらに、吸入ダクトユニット82は、円筒状のパイプからなり、側面視で、後方に向かって下方に滑らかに延びるストレート形状である。したがって、第3実施形態の吸気ダクト70Bには、第1実施形態のような前後方向中間部の最下部70dは設けられていないが、吸気ダクト70Bの前部に、後方に向かって上方に立ち上がる傾斜部70eが形成されている。これにより、吸気Iに含まれる水分を減らすことができる。その他の構造は、第1実施形態と同じである。この第3実施形態においても、第1実施形態と同様の効果を奏する。
【0091】
上述の各実施形態において、吸気ダクト70,70A,70Bの内部に、過給機42の吸込口46に吸気Iを導く案内部材150を設けてもよい。案内部材150は、例えば、
図12に示すように、吸気ダクト70の内面に一体形成されたガイド板152である。案内部材150を設けることで、過給機42に安定して吸気Iが導かれるので、過給機42の効率が向上する。
【0092】
また、吸気ダクト70は、前端部および後端部に形成されるフランジ部によって車体に固定されてもよい。各フランジ部には、外側方からボルトが挿通されるボルト挿通孔が形成される。各フランジ部は、内側半体、外側半体のどちらに形成されてもよい。また、例えば、後側フランジ部が内側半体に形成され、前側フランジ部が外側半体に形成されてもよい。この場合、外側半体に形成されるフランジ部は、フロントカウルによって外部から見えない位置に配置されることが好ましい。また外側半体にフランジ部が形成される場合、下方に形成されることで、フランジ部を目立ちにくくすることができる。内側半体および外側半体にそれぞれフランジ部を形成することで、内側半体と外側半体の接続部分で担う支持強度を抑えることができ、強度を高めることができる。
【0093】
本発明は、以上の実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。例えば、本発明の吸気ダクトは、自動二輪車以外の鞍乗型車両にも適用可能で、三輪車、四輪車にも適用できる。したがって、そのようなものも本発明の範囲内に含まれる。