特許第6000448号(P6000448)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アー・ファウ・エル・リスト・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングの特許一覧

特許6000448少なくとも部分的に電気で駆動される車両の駆動系統を試験する方法及び装置
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6000448
(24)【登録日】2016年9月9日
(45)【発行日】2016年9月28日
(54)【発明の名称】少なくとも部分的に電気で駆動される車両の駆動系統を試験する方法及び装置
(51)【国際特許分類】
   B60L 3/00 20060101AFI20160915BHJP
   G01M 17/007 20060101ALI20160915BHJP
【FI】
   B60L3/00 L
   G01M17/00 H
【請求項の数】6
【全頁数】26
(21)【出願番号】特願2015-513204(P2015-513204)
(86)(22)【出願日】2013年5月24日
(65)【公表番号】特表2015-519034(P2015-519034A)
(43)【公表日】2015年7月6日
(86)【国際出願番号】EP2013060716
(87)【国際公開番号】WO2013174967
(87)【国際公開日】20131128
【審査請求日】2014年11月21日
(31)【優先権主張番号】A0610/2012
(32)【優先日】2012年5月24日
(33)【優先権主張国】AT
(73)【特許権者】
【識別番号】398055255
【氏名又は名称】アー・ファウ・エル・リスト・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング
(74)【代理人】
【識別番号】100069556
【弁理士】
【氏名又は名称】江崎 光史
(74)【代理人】
【識別番号】100111486
【弁理士】
【氏名又は名称】鍛冶澤 實
(74)【代理人】
【識別番号】100173521
【弁理士】
【氏名又は名称】篠原 淳司
(74)【代理人】
【識別番号】100153419
【弁理士】
【氏名又は名称】清田 栄章
(72)【発明者】
【氏名】ケーニヒ・オーリヴァー
(72)【発明者】
【氏名】ヤクベク・シュテファン
(72)【発明者】
【氏名】プロシャート・ギュンター
(72)【発明者】
【氏名】グシュヴァイトル・クルト
(72)【発明者】
【氏名】グレゴルチッチ・グレゴル
【審査官】 久保田 創
(56)【参考文献】
【文献】 特開2001−082098(JP,A)
【文献】 特開2007−195360(JP,A)
【文献】 特開2009−106059(JP,A)
【文献】 特開昭51−008535(JP,A)
【文献】 特開2010−266439(JP,A)
【文献】 特開2012−133757(JP,A)
【文献】 特開平11−064462(JP,A)
【文献】 米国特許出願公開第2013/0151227(US,A1)
【文献】 OLIVER KONIG,Model predictive control of a battery emulator for testing of hybrid and electric powertrains,Vehicle Power and Propulsion Conference (VPPC), 2011 IEEE,米国,IEEE,2011年 9月 6日,P.1-6
(58)【調査した分野】(Int.Cl.,DB名)
B60L 3/00
G01M 17/007
(57)【特許請求の範囲】
【請求項1】
少なくとも部分的に電気で駆動される車両用の駆動システムを試験する方法であって、この駆動システムに供給される電圧は、エネルギー貯蔵システム用のシミュレーションシステム及びこのシミュレーションシステムと繋がった制御回路を用いて、実際のエネルギー貯蔵システムに対応して電圧が動的に変化するように制御され、この制御回路が、モデルベースのコントローラ設計方法を用いてモデル予測制御として製作され、この制御系の離散時間モデルには、駆動システムの負荷モデルが組み込まれており、このモデル予測制御により、各時点(k)に関して制御プロセス(Δuk)の最適なシーケンスが決定される方法において、
このモデルが、そのパラメータセットに、動作範囲に渡って変化する一つのパラメータ(g)を有し、パラメータ(gp,i)から成る一定数(i)のパラメータセットが、動作範囲に渡って分散して計算され、この制御プロセス(Δuk)のシーケンスを決定するために、実行時間において、実際のパラメータ(g)に最も近いパラメータ(gp,i)から成るパラメータセットが選択されることを特徴とする方法。
【請求項2】
当該の出力電圧を測定し、駆動システムの所要電力を推定し、これらの出力電圧と推定した所要電力に応じて、負荷モデルのパラメータを変化させ、有利には、一定数(i)のパラメータセットの間での置き換えによって、負荷モデルのパラメータを変化させることを特徴とする請求項1に記載の方法。
【請求項3】
所要電力の推定が、オブザーバを用いて、測定した負荷電流に基づき行なわれることを特徴とする請求項2に記載の方法。
【請求項4】
少なくとも部分的に電気で駆動される車両用の駆動システムを試験する装置であって、エネルギー貯蔵システム用のシミュレーションシステムと、このシミュレーションシステムと繋がった、実際のエネルギー貯蔵システムに対応して電圧が動的に変化するように、この駆動システムに供給される電圧を制御する制御回路とを備え、この制御回路では、モデルベースの制御がモデル予測制御として実現され、この制御系のモデルには、駆動システムの負荷モデルが組み込まれており、このモデル予測制御が、各時点(k)に関して制御プロセス(Δuk)の最適なシーケンスを決定する装置において、
このモデルが、そのパラメータセットに、動作範囲に渡って変化する一つのパラメータ(g)を有し、この制御プロセス(Δuk)のシーケンスを決定するための制御が、動作範囲に渡って分散して計算されたパラメータ(gp,i)から成る一定数(i)のパラメータセットから、実行時間において、実際のパラメータ(g)に最も近いパラメータ(gp,i)から成るパラメータセットを選択することを特徴とする装置。
【請求項5】
負荷の所要電力に依存するモデルが組み込まれていることを特徴とする請求項4に記載の装置。
【請求項6】
エネルギー貯蔵システムの出力電圧に依存するモデルが組み込まれていることを特徴とする請求項4又は5に記載の装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、少なくとも部分的に電気で駆動される車両の駆動系統を試験する方法であって、この駆動系統に加わる電圧は、物理的なエネルギー貯蔵システムの場合と同様に電圧が動的に作用するように、エネルギー貯蔵システム用のシミュレーションシステムと繋がったコントローラにより制御される方法及びこの方法を実施するための装置に関する。
【背景技術】
【0002】
ハイブリッド車両(HEV)及び電気車両(EV)の開発は、それまで自動車産業で未だ採用されていなかった多数の新しい技術と関連する複雑な課題である。この課題の克服には、問題を早目に検知して、シームレスな統合を保証するための個々の構成要素の早期の試験が必要である。しかし、構成要素は、互いに相関関係を有し、そのため、それらの相関関係をエミュレートできる好適な試験設備が無いと単独の試験は不可能である。構成要素毎に、将来の使用条件と出来る限り幅広く一致する個別の環境が必要である。一つ以上の電気モータを備えた駆動系統は、機械的な試験環境だけでなく、電気的な試験環境も必要とする。そのような電気的な環境の重要な部分は、牽引用バッテリである。実際のバッテリを用いた試験は、駆動系統用の所定の動作条件を得るためには時間の掛かる事前の条件設定を必要とする。更に、バッテリの老朽化は、試験フローの決まった繰り返しを妨げる。更に、場合によっては、好適なバッテリが未だ入手できない場合に、駆動系統を出来る限り早く試験することが望ましい。そのような挑戦は、電気特性のエミュレーションによる牽引用バッテリの代替品として機能するバッテリエミュレータ(BE)の使用によって対処することができる。これらの特性は、通常多少複雑なバッテリモデルの使用によりシミュレーションされる。プログラミング可能な直流電源が、その出力端子にシミュレーションしたバッテリ電圧を再現して、所要の電流を駆動系統に供給する。この仮想的なバッテリの状態を更新するために、測定した負荷電流がシミュレーションモデルにフィードバックされる。数十又は数百キロワットの性能要件のためには、線形電源の代わりに、DC−DC変換器を使用しなければならない。バッテリ内部の電気化学プロセスの時定数は、通常パワーエレクトロニクス機器及び電気駆動系統の時定数と比べて遅い。それにも関わらず、二重層効果及びオーム抵抗によるキャパシタンスと電池間の接続部のインダクタンスによる負荷電流の過渡現象のために、端子電圧は非常に速く変化する可能性が有る。例えば、負荷電流の段階的な上昇は、端子電圧の即時低下を引き起こす。電流回路を開放した場合の電圧をバッテリモデルにより簡単に再現することは十分ではなく、バッテリの内部インピーダンスをエミュレートしなければならない。従って、負荷電流の変化時の出力電圧の速い調節制御と効果的な雑音抑制を実現し、それにより、バッテリエミュレータの出力段の出力インピーダンスを抑えて、バッテリモデルのインピーダンスを規定できるコントローラを設計する必要が有る。
【0003】
ウルトラコンデンサバッテリのエミュレーションに基づく需要の増大は、そのようなバッテリが電気化学式バッテリよりも速い動特性を有するので、必要な帯域幅を一層拡大する。
【0004】
動作中、牽引用インバータは、電気駆動モータが発生する速度又は回転トルクを制御する。バッテリの端子電圧の変化は、コントローラにより補正され、そのため、インバータの電力消費量は変化しない。この明細書では、そのような負荷は、一般的に定動力負荷(コンスタントパワーロード:CPL)と称する。バッテリの代わりに、DC−DC変換器によりCPLを加えた場合、システムは、CPLの負のインピーダンスのために不安定となる。それは、自動車でのコンパクトな高出力インバータの場合に問題となる。工業用途のためのインバータと比べて、牽引用インバータは、通常安定余裕を低下させる小さい中間回路コンデンサを有する。その結果得られる小さいフィルタキャパシタンスのために、負荷遷移現象と電流リップルがDC電源にフィードバックされる。
【0005】
このような電源供給のエミュレーションに関して、多数の使用分野が有る。バッテリのエミュレーションは、例えば、非特許文献1に記載されている通り、娯楽用エレクトロニクス機器の試験にも有用である。燃料電池の電力インバータの試験は、燃料電池の試作品の制限された入手可能性と費用の掛かる損傷リスクのために問題となる可能性が有る。従って、燃料電池のエミュレーションは、有利となる場合が有る(非特許文献2)。両方の文献では、電源モデルを試験されるシステムと接続するために、線形電力増幅器を使用している。そのような増幅器は、広い帯域幅を得られるにも関わらず、効率が低いために低電力レベルに限定される。更に別の重要な用途分野は、太陽光発電システムの配電網用インバータの試験である。非特許文献3には、DC−DC変換器に基づく太陽光発電モジュール用エミュレータが記載されている。自動車のスタータ用バッテリのためのエミュレータが非特許文献4に記載されている。
【0006】
CPLと関連したDC−DC変換器が多くの出版物で考察されている。負性インピーダンスの不安定さの概念が非特許文献5と6で紹介されている。
【0007】
これらの提案されている安定化制御アプローチは、非特許文献7と6のフィードバック式線形化から、非特許文献9のスライディングモード制御(SMC)を経て、非特許文献10の不動態に基づくPID設計及び非特許文献11の動的減衰にまで及んでいる。CPLによるエネルギー供給網のモデル予測安定化制御が非特許文献12で提案されている。これらの全てのアプローチは、電源変換器がCPLとして機能する一つ以上のインバータのために一定の電圧を供給しなければならないことが共通している。これらの提案されているコントローラ設計のアプローチは、閉じた制御ループを安定させるが、(主に考慮している場合の)調節制御が遅く、減衰振動が弱い。それに対して、ここで紹介する用途は、速い調節制御を必要としている。
【0008】
速い調節制御を必要とする別の電子変流器は、交流電圧を発生する無停電電源(UPS/USV)である。調節制御と雑音挙動を改善するために、交流電圧の周期性を活用できる(非特許文献13)。BEでは、出力電圧は周期的ではなく、バッテリモデルにより負荷電流に基づき調節されており、そのため、これらのアプローチを使用することができない。
【0009】
デジタルコントローラプラットフォームの計算能力の増強とアルゴリズムの改善により、モデル予測制御(MPC)は、最早動特性が遅いシステムに限定されない。現在、その制御は、例えば、電力用インバータなどの高いサンプリングレートを必要とするシステムでも使用することができる。MPCによるDC−DC変換器の制御は、非特許文献14で提案され、実験結果が非特許文献15に示されており、所謂明示的MPC(eMPC)(非特許文献16)が計算機技術的な実行可能性の鍵であった。非特許文献17には、サンプリングレートを5kHz〜25kHzに制限したMPCを用いた能動的振動抑制に関する実験結果が紹介されている。サンプリング時間が150μsの単独フルブリッジ変換器の非線形MPCに関する実験結果が非特許文献18に記載されている。ブーストコンバータの非線形MPCが非特許文献19に記載されているが、実験結果は示されていない。非特許文献20に記載された、三相電力網インバータの線形オンラインMPCのシミュレーションに関して、標準的なDSP上で10μs...50μsで実行可能であることが記載されているが、実験結果は示されていない。非特許文献20で使用されているアルゴリズムは、非特許文献21に提案されている高速勾配方法に基づいている。
【0010】
MPC用に特化した高速解法アルゴリズムが非特許文献22〜24で提案されている。
【0011】
通常DC−DC変換器用のコントローラは、多くの場合抵抗である定格負荷に対して設計されている。好適なモデルが入手可能である限り、モデルベースのコントローラ設計を用いて、変換器用のコントローラを任意の負荷に対して考案することが可能である。従って、定格負荷で抵抗に対して制御方式を構築する必要はない。
【先行技術文献】
【非特許文献】
【0012】
【非特許文献1】P. H. Chou, C. Park, J. Park, K. Pham und J. Liu, “B#: a battery emulator and power profiling instrument,” in ISLPED ’03: Proceedings of the 2003 international symposium on Low power electronics and design. New York, NY, USA: ACM, 2003, S.288-293
【非特許文献2】A. Gebregergis und P. Pillay, “The development of solid oxide fuel cell (sofc) emulator,” in Power Electronics Specialists Conference, 2007. PESC 2007. IEEE, 17−21 2007, S.1232-1238
【非特許文献3】M. C. Di Piazza und G. Vitale, “Photovoltaic field emulation including dynamic and partial shadow conditions,” Applied Energy, vol.87, no.3, S.814-823, 2010
【非特許文献4】T. Baumhoefer, W. Waag und D. Sauer, “Specialized battery emulator for automotive electrical systems,” in Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE, Sept. 2010, S.1-4
【非特許文献5】V. Grigore, J. Hatonen, J. Kyyra und T. Suntio, “Dynamics of a buck converter with a constant power load,” in Power Electronics Specialists Conference, 1998. PESC 98 Record. 29th Annual IEEE, vol.1, 17−22 1998, S.72-78 vol.1
【非特許文献6】B. Choi, B. Cho und S.−S. Hong, “Dynamics and control of dc−to−dc converters driving other converters downstream,” Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, vol.46, no.10, S.1240-1248, Okt. 1999
【非特許文献7】J. Ciezki und R. Ashton, “The application of feedback linearization techniques to the stabilization of dc−to−dc converters with constant power loads,” in Circuits and Systems, 1998. ISCAS ’98. Proceedings of the 1998 IEEE International Symposium on, vol.3, Mai−3. Juni 1998, S.526-529 vol.3
【非特許文献8】A. Emadi und M. Ehsani, “Negative impedance stabilizing controls for pwm dc−dc converters using feedback linearization techniques,” in Energy Conversion Engineering Conference and Exhibit, 2000. (IECEC) 35th Intersociety, vol. 1, 2000, S.613-620 vol.1
【非特許文献9】A. Emadi, A. Khaligh, C. Rivetta und G. Williamson, “Constant power loads and negative impedance instability in automotive systems: definition, modeling, stability, and control of power electronic converters and motor drives,” Vehicular Technology, IEEE Transactions on, vol.5, no.4, S. 1112-1125, Juli 2006
【非特許文献10】A. Kwasinski und P. Krein, “Passivity−based control of buck converters with constant−power loads,” in Power Electronics Specialists Con-ference, 2007. PESC 2007. IEEE, 2007, S.259-265
【非特許文献11】A. Rahimi und A. Emadi, “Active damping in dc/dc power electronic converters: A novel method to overcome the problems of constant power loads,” Industrial Electronics, IEEE Transactions on, vol.56, no.5, S.1428-1439, Mai 2009
【非特許文献12】M. Zima und G. Andersson, “Model predictive control employing trajectory sensitivities for power systems applications,” in Decision and Control, 2005 and 2005 European Control Conference. CDC−ECC ’05. 44th IEEE Conference on, 2005, S.4452-4456
【非特許文献13】K. Zhang, L. Peng, Y. Kang und J. Xiong, “State−feedback−with−integral control plus repetitive control for UPS inverters,” in Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005., no.2. IEEE, 2005, S.553-559
【非特許文献14】T. Geyer, G. Papafotiou und M. Morari, “On the optimal control of switch−mode dc−dc converters,” Hybrid Systems: Computation and Control, S.77-85, 2004
【非特許文献15】T. Geyer, G. Papafotiou, R. Frasca und M. Morari, “Constrained optimal control of the step−down dc−dc converter,” Power Electronics, IEEE Transactions on, vol.23, no.5, S.2454-2464, Sept. 2008
【非特許文献16】A. Bemporad, F. Borrelli und M. Morari, “Model predictive control based on linear programming the explicit solution,” Automatic Control, IEEE Transactions on, vol.47, no.12, S.1974-1985, Dez. 2002
【非特許文献17】A. Wills, D. Bates, A. Fleming, B. Ninness und R. Moheimani, “Application of mpc to an active structure using sampling rates up to 25khz,” in Decision and Control, 2005 and 2005 European Control Conference. CDC−ECC ’05. 44th IEEE Conference on, 2005, S.3176-3181
【非特許文献18】Y. Xie, R. Ghaemi, J. Sun und J. Freudenberg, “Implicit model predictive control of a full bridge dc−dc converter,” Power Electronics, IEEE Transactions on, vol.24, no.12, S.2704-2713, 2009
【非特許文献19】J. Bonilla, R. De Keyser, M. Diehl und J. ESPINOZA, “Fast NMPC of a DC−DC converter: an exact Newton real−time iteration approach,” in Proc. of the 7th IFAC Symposium on Nonlinear Control Systems (NOLCOS 2007), 2007
【非特許文献20】S. Richter, S. Mariethoz und M. Morari, “High−speed online mpc based on a fast gradient method applied to power converter control,” in American Control Conference (ACC), 2010, 302010−2. Juli 2010, S.4737-4743
【非特許文献21】S. Richter, C. Jones und M. Morari, “Real−time input−constrained mpc using fast gradient methods,” in Decision and Control, 2009 held jointly with the 2009 28th Chinese Con-trol Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, 2009, S.7387-7393
【非特許文献22】R. Milman und E. Davison, “A fast mpc algorithm using nonfeasible active set methods,” Journal of Optimization Theory and Applications, vol.139, S.591-616, 2008, 10.1007/s10957−008−9413−3
【非特許文献23】H. J. Ferreau, H. G. Bock und M. Diehl, “An online active set strategy to overcome the limitations of explicit mpc,” Int. J. Robust Nonlinear Control, vol.18, no.8, S.816-830, 2008
【非特許文献24】Y. Wang und S. Boyd, “Fast model predictive control using online optimization,” Control Systems Technology, IEEE Transactions on, vol.18, no.2, S.267-278, 2010
【非特許文献25】O. Koenig, S. Jakubek und G. Prochart, “Model predictive control of a battery emulator for testing of hybrid and electric power−trains,” 2011, akzeptiert zur Praesentation bei: 2011 IEEE Vehicle Power and Propulsion Conference (VPPC)
【非特許文献26】R. W. Erickson und D. Maksimovic, Fundamen-tals of power electronics. Springer, 2001
【非特許文献27】S. Mariethoz, A. Beccuti und M. Morari, “Model predictive control of multiphase interleaved dc−dc converters with sensorless current limitation and power balance,” in Power Electronics Specialists Conference, 2008. PESC 2008. IEEE, 2008, S.1069-1074
【非特許文献28】H. Bae, J. Lee, J. Yang und B. H. Cho, “Digital resistive current (drc) control for the parallel interleaved dc−dc converters,” Power Electronics, IEEE Transactions on, vol.23, no.5, S.2465-2476, 2008
【非特許文献29】J. Maciejowski, Predictive control: with constraints. Pearson education, 2002
【非特許文献30】U. Maeder, F. Borrelli und M. Morari, “Linear offset−free model predictive control,” Automatica, vol.45, no.10, S.2214-2222, 2009
【非特許文献31】The Mathworks Inc., “Optimization toolbox 4.3,” 2009
【非特許文献32】G. Gregorcic und G. Lightbody, “Nonlinear model−based control of highly nonlinear processes,” Computers & Chemical Engineering, vol.34, no.8, S.1268-1281, 2010
【発明の概要】
【課題を解決するための手段】
【0013】
本明細書では、追加の入力フィルタキャパシタンスを用いたCPLによるMPC設計に適したコンバータモデルを提案している。このモデルは、出力電圧と負荷の所要電力に応じたCPLの線形負性代替インピーダンスに基づいている。動作点の変化を考慮した線形MPC設計のための二つの異なるアプローチを提案している。第一のアプローチは、大まかな負荷インピーダンスの極値を表す二つの内部モデルを用いた単純で堅牢なMPC設計である。第二のアプローチは、期待される動作範囲に渡る一連の動作点に関する異なるコントローラパラメータのセットを用いたスケジューリングコントローラ設計である。負荷の推定した所要電力に基づき、サンプリングステップ毎に、次の制御プロセスを計算するための最も近いパラメータセットを選定している。雑音を測定しないにも関わらず制御偏差が残存しない制御を実現し、更に、測定した雑音のフィルタリングと負荷の所要電力の推定を行なうために、オブザーバを使用している。
【0014】
制約したMPCの実装に関して、計算のために使用可能な制限された時間内に良好なアクティブセットを速く発見するための発見的アクティブセット方法が提案されている。その方法と堅牢なMPCのアプローチは、非特許文献25でも紹介されているが、チョーク電流に関する制約を行なっていない。
【0015】
高電力逓降DC−DC変換器のオンラインMPC(モデル予測制御)のためのアプローチが提案されている。その変換器は、ハイブリッド又は全電気式自動車の駆動系統用の試験設備の牽引用バッテリの代替品としてのバッテリエミュレータの一部である。そのような用途は、シミュレーションしたバッテリモデルの基準電圧に出来る限り速く出力電圧を追従させる一方、速い負荷遷移現象に対して敏感でないことを必要としている。CPLとして機能する、その変換器の弱減衰出力フィルタと高速制御インバータの組合せは、システムを不安定にさせる。そのコントローラ設計段階では、負荷の正確なデータは分からず、所要電力は動作中に変動する。最適な電力とハードウェア保護のためには、制御変数の制約とチョーク電流の制限を考慮しなければならない。その提案されたアクティブセット方法に基づくMPCは、CPLにも関わらず、入力及び状態制約を維持しつつ高速な調節制御を達成している。
【0016】
その制御アルゴリズムは、商業的に入手可能なデジタルコントローラのハードウェア上で所要のサンプリングレートにより実行することができる。インバータに電力を供給する60kWのバッテリエミュレータを用いた実験結果が、提案された制御アプローチの処理能力を証明している。
【0017】
本発明では、モデルベースのコントローラ設計方法によりコントローラを考案し、制御されるシステムのモデルにおいて、駆動系統の負荷モデルを使用する。
【0018】
有利な実施構成は、出力電圧を測定し、駆動系統の所要電力を推定し、これらの出力電圧と推定した所要電力に応じて、詳しく言うと、有利には、全てのパラメータセット間の置き換えによって、負荷モデルのパラメータを変更することを特徴とする。
【0019】
任意選択として、負荷の所要電力の推定は、オブザーバを用いて、測定した負荷電流に基づき行なわれる。
【0020】
本発明では、エネルギー貯蔵システム用のシミュレーションシステムと、物理的なエネルギー貯蔵システムの場合と同様に電圧が動的に作用するように駆動系統に加える電圧を制御するコントローラとを備え、このコントローラがシミュレーションシステムと繋がっている、少なくとも部分的に電気で駆動される車両の駆動系統を試験する装置において、コントローラには、モデル予測制御ループが配備されていることと、制御されるシステムには、負荷モデルが統合されていることとを特徴とする。
【0021】
この装置の有利な実施構成は、負荷の所要電力に依存するモデルが統合されていることを特徴とする。
【0022】
前記の二つの装置は、任意選択として、コントローラに、モデル予測制御部が配備されていることを特徴とする。
【0023】
エネルギー貯蔵システムの出力電圧に依存するモデルを統合することができる。
【0024】
このバッテリエミュレータのモデル予測制御によって、制御されるシステムのモデルに負荷モデルを最適に統合することが可能となり、そのため、負荷が最早未知の雑音ではなく、コントローラで明示的に考慮される。この負荷モデルのパラメータは、負荷の所要電力に依存する。このモデルベースの予測コントローラのために線形モデルを使用した場合、モデルパラメータは、更に、出力電圧に依存する。従って、モデルベースの予測コントローラの策定に適した制御パラメータグループが採用される。このパラメータグループの交換又は混合は、測定した出力電圧と推定した所要電力に応じて行なわれる。この目的のために、負荷の所要電力の推定は、オブザーバを用いて、測定した負荷電流に基づき行なわれる。
【0025】
以下において、添付図面を参照して、本発明を詳しく説明する。
【図面の簡単な説明】
【0026】
図1】バッテリエミュレータを備えた駆動系統用試験設備の模式図
図2】バッテリエミュレータの出力段の模式図
図3】(a)負荷モデルの定電力負荷の静特性曲線のグラフ、(b)非線形負荷モデルの図、及び(c)動作点の周囲で線形化された小信号モデルの図
図4】バッテリエミュレータモデルのブロック図
図5】本提案によるコントローラ構造のブロック図
図6】上のグラフが出力電圧の予測軌跡を表し、下のグラフがそれに対応する制御変数のシーケンスを表す、本提案によるモデル予測制御(MPC)で使用されるアルゴリズムのグラフ
図7】本提案によるアルゴリズムと一般的なQP解法アルゴリズムを使用したMPCを比較したグラフ
図8】堅牢なコントローラ方式のブロック図
図9】スケジューリングコントローラのブロック図
図10】上のグラフが出力電圧、チョーク電流及び負荷電流を表し、下のグラフが使用したデューティサイクルを表す、定電力負荷による0kW〜60kWの所要電力の飛躍的変化に関するシミュレーション結果のグラフ
図11】アイドリング時の基準電圧の飛躍的変化に関する実験結果のグラフ
図12】チョーク電流の制限の有効性を表す基準電圧の飛躍的変化のグラフ
図13a】下の線がスケジューリングコントローラに関するパラメータセットの選択と堅牢なコントローラに関するデューティサイクルを表す、定電力負荷による動作時の基準電圧の変化シーケンスに関する実験結果のグラフ
図13b】下の線がスケジューリングコントローラに関するパラメータセットの選択と堅牢なコントローラに関するデューティサイクルを表す、定電力負荷による動作時の基準電圧の変化シーケンスに関する実験結果のグラフ
図14a】P=0kW〜P=24kWの定電力負荷の所要電力の飛躍的変化に関する実験結果のグラフ
図14b】P=0kW〜P=24kWの定電力負荷の所要電力の飛躍的変化に関する実験結果のグラフ
【発明を実施するための形態】
【0027】
典型的な試験設備構成の例が図1に図示されている。この設備は、一方では負荷を表し、他方では物理的な牽引用バッテリに代わるバッテリエミュレータを表すHEV又はEVの駆動系統のパワーエレクトロニクス機器から構成されている。このコントローラ設計では、バッテリエミュレータと負荷を別個にモデル化し、次に、一つのシステムモデルに組み合わせている。
【0028】
バッテリエミュレータの模式図が図2に図示されている。主要な構成要素は、バッテリ端子電圧のエミュレーションに使用される出力電圧Vを供給する一つの共通の出力コンデンサCを備え、ずらして接続された三つの逓降DC−DC変換器から構成される出力段である。ここでは、整流器は考慮されておらず、Cは十分に大きく、そのため、DC中間回路電圧が一定であると仮定できる。
【0029】
アナログ変調器が、その入力における単一の作動コマンドdによって、チョーク電流のパルス幅変調(PWM)と等化を行なっている。リアルタイムMPCの簡略化モデルが、PWMの近似により連続した設定電圧として挙動し(非特許文献26)、非特許文献27又は28の通り、三つのチョークの並列構成により代替インダクタンスLとして挙動する。
【0030】
次に、三つの電流全ての合計i=i1a+i1b+i1cが新しいチョーク電流として選択される。チョークと半導体スイッチのオーム抵抗は、近似的にRLにより表されている。負荷が受ける電流は、iにより表されている。x=[i√2]として選択されたコンバータ用状態ベクトル、制御変数u=d・V及び雑音変数iを用いて、このシステムは、次の通り、状態空間モデルにより記述される。
【0031】
【数1】
変数i,v及びiは測定可能である。
【0032】
HEV/EV用電気モータのインバータは、その電圧中間回路をBEと接続した、パルスインバータを速く制御したインバータである。このインバータの所要電力Pは、その電源電圧Vが所定の範囲内に有る限り、その電源電圧に依存しない。この構成は、定電力負荷(CPL)を発生させ、そのため、次の通り、CPLが受ける電流iと電源電圧の間の関係が得られる。
【0033】
【数2】
式(2)は、出力電圧から負荷電流の雑音入力へのフィードバックを完成し、以下の非線形状態方程式となる。
【0034】
【数3】
以下の差分補償抵抗Rを導入することによって、
【0035】
【数4】
動作点
【0036】
【数5】
【0037】
【数6】
で、次の通り、動作点に依存する線形設備モデルが得られる。
【0038】
【数7】
P>0及びv>0に関して、Rは負であり、そのため、設備は不安定となる。
【0039】
図3は、負荷モデルの図面である。部分図(a)はCPLの静特性曲線を表し、部分図(b)は非線形負荷モデルを表し、部分図(c)は動作点
【0040】
【数8】
の周囲で線形化された小信号モデルを表す。全ての測定可能な変数を表すために、新しい出力ベクトル
【0041】
【数9】
が導入されている。導線の抵抗は十分に小さく、そのため、インバータのDC中間回路コンデンサCをCに対して並列に追加することができる。その結果、以下の式(6)によるモデルが得られる。
【0042】
【数10】
この関係式を簡単化するために、パラメータとしてシンボルg=1/Rを使用している。変数
【0043】
【数11】
は、動作点のオフセットを表す。
【0044】
図4は、E/Aインタフェースとデジタル制御用サンプリングを含む制御設計のために使用される、その結果得られたモデル構造のブロック図を図示している。このサンプリングは、三つのずれた対称的なPWMキャリア信号の中点と同期し、そのため、サンプリングレートfは、各相のスイッチング周波数fswの三倍と等しい。連続時間モデル(6)は、サンプリング・ホールド部品を用いたPWM近似法を使用して、以下の離散時間モデル(7)に変換される。
【0045】
【数12】
このコンパクトな関係式のために、動作点のオフセットwが新しい状態として導入され、そのため、次の通りとなる。
【0046】
【数13】
この制御方式は、有利には、モデル予測制御(MPC)として選択される。非特許文献29に基づくMPCオンライン定式化のために、以下の拡張された離散時間システム表現式を使用する。
【0047】
【数14】
ここで、状態ベクトルは、
【0048】
【数15】
として選択される。
【0049】
これによって、非特許文献30に基づく状態オブザーバと組み合わせて、制御誤差が残存しない取得が可能になるとともに、必要な計算時間により生じるサンプリングステップの遅延も考慮される。
【0050】
各時点kで、制御ホライズンNと予測ホライズンNに関する制御プロセスΔukの最適なシーケンスが決定され、そのため、以下の判断基準が最小化される。
【0051】
【数16】
これらの対称的な正に定義された重み行列QとRは、(i)前記の出力軌跡Ykの基準軌跡Rs,kからの偏差又は(ii)制御負荷ΔUkを重み付けする行列である。この決定変数は、次の通り、将来の制御プロセスのシーケンスであり、
【0052】
【数17】
この出力軌跡は、前記の出力のシーケンスであり、
【0053】
【数18】
ここで、行列FとΦは、次の通り定義される。
【0054】
【数19】
MPCの強さは、制約を明示的に考慮できる能力である。従って、0≦dk≦1、そのため0≦uk≦1の範囲内へのPWMデューティサイクルの制限は、最小化問題と関連して、次の形の不等式条件により定式化され、
【0055】
【数20】
そのため、ホライズンNcc≦Ncにおいて、全てのi∈N≦Nccに関して、制御プロセスは、次の通り制限される。
【0056】
【数21】
更に、IGBTスイッチの過電流保護及びインダクタの磁気飽和防止のためにインダクタ電流を制限することができる。それは、前記の状態に対して不等式条件MxΔUk≦γxを与えることによって実現され、そのため、i∈N≦Nccに関して、次の式が成り立つ。
【0057】
【数22】
次に、これらの入力及び状態条件は、以下の通り、不等式条件のグループと組み合わされる。
【0058】
【数23】
後退ホライズン原理(Receding Horizon Principle)の実装によって、各時点で第一の制御プロセスuk=uk−1+Δuk|kだけが使用されて、ΔUkの残余が排除される。得られたコントローラ方式のブロック図が図5に図示されている。
【0059】
このコントローラは、重み行列QとRにより設定することができる。一つの制御出力だけを用いて、Qは、単位行列Np×Npにマッピングされ、Rは、対角行列Nc×Ncにマッピングされ、そのため、以下の通りとなる。
【0060】
【数24】
これにより、コントローラの設定が単一のスカラ値Rの選択に簡略化される。より小さい値のRは、閉じた制御ループの帯域幅を大きくするが、測定雑音と設備モデルのモデル誤差に対する感度も大きくする。
【0061】
以下において、本発明に関する制約したリアルタイムMPCを使用する利点を説明する。図6の本提案によるアルゴリズムをモデル予測制御に適用した場合の図面は、前記の発展形の時間変化を図示している。上のグラフが前記の出力電圧の軌跡を表し、下のグラフがそれに対応する制御変数のシーケンスを表す。縦線は、互いに連続する時点を表す。これらの制御プロセスは、制約を守るためには簡単には切り離されず、制約されないプロセスが変更される。この時間変化において、解が益々改良されている。
【0062】
この制約したMPCによりパワーエレクトロニクス機器を制御する挑戦は、kHz範囲のサンプリングレートを達成する程十分に速く最小化問題を解くことである。ここで、簡単であるが、与えられた問題の構造を活用した効果的なアルゴリズムを提案する。
【0063】
このシステムが制約されない場合、ΔUkに関する式(9)の最小化により最適化された制御シーケンス
【0064】
【数25】
は、次の式で与えられる。
【0065】
【数26】
式(13)の形の制約に関して、Mの各列mjとそれに対応するγの要素γjは、一つの制約を表す。アクティブな制約の任意の組合せは、それぞれアクティブセットMact,γactとして表される。以下のヘッセ行列H(18)とラグランジュ乗数ベクトルλact(19)を用いて、
【0066】
【数27】
制約された解ΔUkは、制約されない解の更新によって、次の通り得られる。
【0067】
【数28】
残る課題は、Jkを最小化するアクティブセットの発見である。アクティブセット方法は、通常最適な解が見つかるまで、制約の追加と除去による多数の反復を必要とする。最悪の場合、制約の全ての取り得る組合せを試験しなければならない。従って、アクティブセット方法を用いて、反復回数に関する多項式による上限を発見することは不可能である(非特許文献23)。全ての取り得るアクティブセットの試験は、非特許文献23及び24の通り、(i)制約の無関係な組合せを取り除くための問題構造の活用と、(ii)限定された回数の反復と最適でない解の使用による中断とによって防止される。
【0068】
特定の存在する問題に適用可能な発見的アプローチの内容は、以下の通りである。(i)最大違反により制約を発見する。ベクトルδ=(MΔUk−γ)の各要素δj>0は、一つの制約の違反を表す。複数の同時違反の場合、以下の式による最も大きな要素δiは、
【0069】
【数29】
全ての制約が同じスカラー値となるとの条件の下で、最大違反に関する指標として看做すことができる。(ii)アクティブセットに
【0070】
【数30】
を追加し、(iii)式(19)と(20)を新たに計算し、(iv)制約違反となるまで、最大Ncc回の反復で繰り返す。アクティブセットへの制約は、追加されるだけであり、決して、取り除かれない。この方法は、以下のアルゴリズム1に集約される。
【0071】
【数31】
入力制約だけを考慮する場合、得られた解は実効解であるが、無条件に最適な解ではない。このモデル予測制御によって、第一の制御プロセスΔUkだけが使用される。そのため、完全な解を発見する必要はなく、最適なシーケンスの第一のプロセスに十分に近い近似解だけを発見すれば良く、そのため、所望の軌跡を得ることができる。図6のシミュレーション例は、Np=16,Nc=8,Ncc=5に関する時間変化において解が如何に展開するかを図解している。
【0072】
図7は、得られた軌跡が二次計画法から得られる正確な解(非特許文献31)とほぼ同じであることを図示している。
【0073】
図7における本提案によるアルゴリズムと一般的なQP解法アルゴリズムを用いたMPCの比較は、時点1での初期解が最適解から大きく懸け離れているにも関わらず、両方の軌跡の間にほぼ違いが無いことを図示している。
【0074】
状態制約も同時に処理できるようにするためには、Mとyの列をスカラ化して、それにより、δの要素、即ち、制約違反の大きさを比較できるようにする必要が有る。それは、以下の通り、それぞれ許容範囲に関する入力制約と状態制約の正規化により実現される。
【0075】
【数32】
ここで提案したアルゴリズムは、QPを正確には解かないので、得られた制御規則は、チョーク電流の制限値の短い違反を引き起こす可能性が有る一方、最適な基準取得のための制御変数が飽和している。従って、以下の通り、優先係数αによりスカラ化することによって、状態制約を優先することが必要な場合が有る。
【0076】
【数33】
シミュレーションは、α=10の値がこの用途の良好な結果を与えることを示している。
【0077】
状態制約の追加により、制約の有効な組合せが得られる。そのような場合、反復が停止され、最後の反復工程からの解が使用される。
【0078】
ここで提案したアプローチの大きな利点は、制限された少数の反復だけを必要とし、それにより、リアルタイムでの実装が軽減されることである。同様のアプローチが非特許文献24に記載されており、そこでは、詳しい数値実験が僅かな回数の反復後の早期の中断により驚くほど良好な制御規則が得られることを示している。この計算時間は、式(19)におけるヘッセ行列Hの逆行列の前処理と行列反転のためのランク1更新の使用によって低減することができる。平均計算時間の更なる低減は、アクティブセットでの制約による第一の制御変数の増大が確認されたら、アルゴリズムを停止することによって実現できる。
【0079】
これで状態オブザーバと基準フィルタリングの有効性と利点を説明した。選択されたMPC表現法により、設備モデルと一致しない、或いは雑音を測定しないにも関わらず、制御誤差が残存しない取得が可能となる。非特許文献30では、このことがオブザーバの使用によって達成され、そのため、実際に先行するコントローラ出力Uk−1の代わりに最新の状態ベクトルが推定値
【0080】
【数34】
を有することが示されている。更に、このオブザーバは、全ての状態変数を直接測定できない場合でも、完全な状態ベクトルを提供する。各サンプリング時に、スカラ基準rkから有効な基準軌跡ベクトル
【0081】
【数35】
を生成するために、基準プレフィルタを使用する。このフィルタは、計算遅延とシステムのローパスフィルタ特性を考慮するために、二つのサンプリングステップだけ軌跡を遅らせる。これらの軌跡の変化速度も
【0082】
【数36】
に制限される。
【0083】
これまでに説明したMPCは、パラメータが一定である負荷に関してのみ有効である。負荷のフィルタ性能は既知であるか、或いは測定可能であり、動作中に変化しない。しかし、定負荷電力では、パラメータRは、式(2)の通り、vとPに関して変化する。この制御問題を解決するための取り得るアプローチとして、堅牢性方式が選択される。システムモデル(6)のために、二つの極端な場合を与えることができる。第一に、P=0に関して、不確実なパラメータをgmax=0とする。第二に、最高所要電力Pmaxに関する不確実なパラメータは、インバータに与えられる最低入力電圧vmin2に対して、値
【0084】
【数37】
を取る。両方の極端な場合に、状態ベクトルxd1kに関する{A(0)、B(0),C(0)}と状態ベクトルxd2kに関する{A(gmin)、B(gmin),C(gmin)}により表される、式(7)の形の二つの予測モデルを作成することができる。この基本的な考えは、一方では実際の設備を正しく制御するとともに、他方では両方の極端な設備モデルを安定化させる制御プロセスのシーケンスを発見するために、両方の予測モデルを使用することである。それは、両方のモデルに同じシーケンスの制御変数を使用して、図8の図面の通り、両方の出力をφ又はφで重み付けした合計を制御出力として採用することによって実現される。
【0085】
これは、以下の通り、前段落のMPCアルゴリズムの使用とそれに対応する拡張モデル装置によって実装することができる。
【0086】
【数38】
ここで、状態ベクトルは、
【0087】
【数39】
として選択される。
【0088】
このオブザーバ設計は、次の拡張された出力ベクトルにより、両方のモデルを監視可能としなければならず、
【0089】
【数40】
実際には、現実の設備の測定値
【0090】
【数41】
だけが入手可能である。これらの測定は、オブザーバ用の完全な出力ベクトルが得られるように、二回行なわなければならず、そのため、
【0091】
【数42】
が成り立つ。
【0092】
事前には分からないパラメータgを測定又は推定できる場合、スケジューリングコントローラにより処理能力を改善することができる。システム規定(7)は、パラメータセットの選択のために選択される単一のパラメータgを有する。期待される動作範囲を同時に表す次の値の代表的なグループに関して、
【0093】
【数43】
ローカルMPCパラメータ設定が得られる。それに対応するパラメータセット{Φi,Hi,Fi}はオフラインで計算される。そして、実行時間において、スケジューラは、次の式が成り立つパラメータセットだけを選択しなければならない。
【0094】
【数44】
このコントローラ方式が図9に図示されている。ローカルパラメータグループの数Nが多くなる程、システムの反応が滑らかとなる。このパラメータグループの数は、パラメータの保存に必要なメモリ量にだけ影響し、オンライン計算の複雑性を高めない。このパラメータグループ間の円滑な遷移を実現するために本方式を実装することは、綿密な措置を必要とする。この初期システム(7)は、組み合わされた雑音とオフセット状態
【0095】
【数45】
を有し、そのため、状態ベクトルの意味がパラメータgに向けられている。同じ物理状態は、ローカルMPCパラメータセット毎にwkの異なる値を生じさせる。
【0096】
この問題は、状態変数と物理状態の間の関係がプラニング変数に依存しない、状態ベクトル
【0097】
【数46】
を用いた、拡張された離散時間モデル
【0098】
【数47】
の選択によって緩和される。次に、MPC用の拡張された予測モデルは、拡張された状態ベクトル
【0099】
【数48】
を用いて、
【0100】
【数49】
と定義される。
【0101】
式(12)と(18)から、それに対応するグループ{Φi,Hi,Fi}を発見するために、行列A(g,i),B,Cを使用する。コントローラのサンプリング毎に、状態v,k及び
【0102】
【数50】
は等しい。しかし、MPCの予測ホライズン内では、
【0103】
【数51】
だけが変化する一方、
【0104】
【数52】
は、全てのi∈N≦Nに関して、一定である。前に行なった状態ベクトルの選択のために、この状態は、パラメータgpに関係無く推定することができ、そのため、動作範囲全体に同じオブザーバを採用することができる。gp=0の選択によって、負荷の影響は、雑音
【0105】
【数53】
として処理される。
【0106】
そのため、この状態オブザーバは、以下の名目的なモデルのために考案されている。
【0107】
【数54】
この推定された状態ベクトル
【0108】
【数55】
は、
【0109】
【数56】
によって拡張され、そのため、以下の通り、スケジューリングMPCのために使用することができる。
【0110】
【数57】
を直接測定することができないので、式(4)からパラメータの推定値
【0111】
【数58】
を得るためにも、オブザーバが採用され、そのため、以下の式が成り立つ。
【0112】
【数59】
この予期しないパラメータ交換は、過渡現象中のシステムの望ましくない励起を引き起こす可能性が有る。定常状態での動作点が正確に二つの支持された点の間の中央に有り、スケジューラがそれらの間で一定に切り換わる場合、リミットサイクルが起こる可能性が有る。パラメータのクロスフェード又はコントローラ出力のクロスフェードなどの拡張されたスケジューリング方法は、処理能力を改善させる(非特許文献32)。
【0113】
本発明で提案したコントローラ方式をシミュレーションと実験による60kWバッテリエミュレータの両方によって試験した。試験システムのパラメータは、表1に列挙されている。この試験システムのPWM変調器は、その入力にローパスフィルタを有し、そのフィルタをインバータモデル(1)に追加しなければならない。
【0114】
【表1】
これらのシミュレーションは、三つのずれた切換フェーズを有するBE出力段の詳細モデルを用いて実施した。シミュレーションした負荷は、150Vよりも大きな電圧用の理想的なCPLとしてモデル化した。低い方の電圧では、シミュレーションした負荷は、一定の電力挙動で切り換わった。
【0115】
このシミュレーションモデルでは、ここで提案したアプローチが最悪の状況でも有効であることを示すために、フィルタキャパシタンスに関してC=0μFを選択した。ここで提案したスケジューリングコントローラとここで提案した堅牢なコントローラのCPLモデルの無い従来のMPCを用いてシミュレーションを実施した。この堅牢なコントローラは、
【0116】
【数60】
の場合に、Pmax=60kWの最大所要電力に関して構成したので、
【0117】
【数61】
及び
【0118】
【数62】
が成り立つ。
【0119】
より広い範囲の選択は、堅牢性を向上させたが、反応も遅くした。このスケジューリングアプローチにより、制御性能(クローズドループパフォーマンス)を損ねること無く、より広いパラメータ範囲をカバーすることができた。追加のパラメータセット用の所要メモリが多くなることだけを考慮しなければならない。g=1/Rとの表記では、システム行列は、gに線形的に依存する。それに対して、
【0120】
【数63】
【0121】
【数64】
の間で均等に21個のパラメータセットを配置したので、その結果得られたローカルコントローラは、0.05Ω−1の間隔で配置されている。
【0122】
図10は、基準電圧を一定に保持している間における、初期の負荷の無い0Vから320Vの目標値までの、並びに0kW〜60kWの急激な負荷ステップのシミュレーション結果を図示している。ゼロ負荷では、名目的なコントローラもスケジューリングコントローラも同じパラメータグループを使用しており、そのため、最初の5msのスタートは同じである。5msの負荷ステップ後に、名目的なコントローラは、変化した設備動特性に合致せず、制御ループは不安定である一方、スケジューリングコントローラは、安定したままである。出力電圧の第一の大きな下降にも関わらず、このコントローラは、制御変数の使用可能な範囲の最適な活用によって、実質的にオーバーシュート無しに電圧を速く回復することができている。堅牢なコントローラの変化形態では、制御ループは同様に安定しているが、それでもオーバーシュートを引き起こして、擾乱後の必要な復帰時間が長くなっている。この堅牢なコントローラは、制御変数を慎重に使用しているので、スタートフェーズで目標値に到達するためには、より多くの時間も必要としている。10ms後に、調節制御及び動作点の変化に追随する能力を示すために、320Vから270Vまでの基準ステップを加えている。両方の提案したコントローラは、立ち上がり時間が短く、調節が速い同様の挙動を示している。
【0123】
この試験の実験のために、自動的なコード生成のためにMATLABを使用して、dSpace MicroAutoBoxに制御アルゴリズムを実装した。このdSpaceプラットフォームは、クロック速度800MHzのプロセッサIBM PPC 750FXを備えている。無負荷での基準電圧の段階的な変化が、制約による最適化の有効性を示す図11に図示されている。より小さい基準ステップでは、目標値を非常に速く達成することができる。このコントローラは、第一の時点で制御変数の大きな増加を使用しているが、次の時点で制御変数を下限にまで低減している。0.8ms以内の後、目標値に到達し、デューティサイクルが定常状態の新しい値に設定されている。明らかな通り、チョーク電流は、三角形の軌跡に従っている。より大きな基準ステップでは、このコントローラは、両方の第一のサンプリングの間にデューティサイクルの上限を完全に使用している。次に、コントローラは、新しい目標値に到達するまで、基準軌跡に従っている。
【0124】
チョーク電流制限の作動を示すために、誘導電流の限界値を±200Aから低減するとともに、100Aの電力消費量を一定とした図12の図面に対応して、同じ大きな基準ステップを繰り返した。このチョーク電流は、過渡現象中に上限を制約されており、そのため、出力電圧は、ゆっくりとしか上昇できない。
【0125】
試験目的のために、最大電力24kW及び中間回路キャパシタンスC=20,000μFの三相無停電電源(USV)のインバータをBEと接続した。AC側では、三相抵抗を介して定電圧に制御するように設定したので、BEに対して定電力負荷として出現している。スケジューリングコントローラ及び堅牢なコントローラを用いて基準電圧を飛躍的に変化させたシーケンスの結果は、図13に図示されている。負荷電流は、定電力負荷時に期待される通り、出力電圧の上昇時に低下し、それと逆に、出力電圧の低下時に上昇していることは明らかである。過渡現象中に、インバータの大きな中間回路コンデンサの充放電が大きな電流スパイクを発生させた。しかし、これらは、チョーク電流の制限により±300Aに限定された。スケジューリングコントローラだけが、瞬間的に僅かに下限値に違反した。
【0126】
インバータのAC側抵抗の急激な切換によって、負荷雑音を試験した。この結果が図14に図示されている。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13a
図13b
図14a
図14b