特許第6006965号(P6006965)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 本田技研工業株式会社の特許一覧

<>
  • 特許6006965-動力伝達装置 図000003
  • 特許6006965-動力伝達装置 図000004
  • 特許6006965-動力伝達装置 図000005
  • 特許6006965-動力伝達装置 図000006
  • 特許6006965-動力伝達装置 図000007
  • 特許6006965-動力伝達装置 図000008
  • 特許6006965-動力伝達装置 図000009
  • 特許6006965-動力伝達装置 図000010
  • 特許6006965-動力伝達装置 図000011
  • 特許6006965-動力伝達装置 図000012
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6006965
(24)【登録日】2016年9月16日
(45)【発行日】2016年10月12日
(54)【発明の名称】動力伝達装置
(51)【国際特許分類】
   B25J 19/06 20060101AFI20160929BHJP
   B25J 17/00 20060101ALI20160929BHJP
   B25J 19/00 20060101ALI20160929BHJP
【FI】
   B25J19/06
   B25J17/00 Z
   B25J19/00 A
【請求項の数】5
【全頁数】25
(21)【出願番号】特願2012-92487(P2012-92487)
(22)【出願日】2012年4月13日
(65)【公開番号】特開2013-220496(P2013-220496A)
(43)【公開日】2013年10月28日
【審査請求日】2014年11月27日
(73)【特許権者】
【識別番号】000005326
【氏名又は名称】本田技研工業株式会社
(74)【代理人】
【識別番号】110000800
【氏名又は名称】特許業務法人創成国際特許事務所
(72)【発明者】
【氏名】織田 豊生
【審査官】 藤島 孝太郎
(56)【参考文献】
【文献】 特開2008−259381(JP,A)
【文献】 特開2005−177918(JP,A)
【文献】 特開2005−155871(JP,A)
【文献】 特開昭64−078776(JP,A)
【文献】 特開2011−083884(JP,A)
【文献】 特開2004−195576(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B25J 1/00−21/02
(57)【特許請求の範囲】
【請求項1】
駆動要素から伝達された動力を被駆動要素に伝達する動力伝達装置であって、
変更可能な剛性を有し、且つ前記駆動要素からの動力が伝達されると共に該動力を前記被駆動要素に伝達する第1要素と、
変更可能な粘性係数を有し、且つ前記駆動要素からの動力が伝達されると共に該動力を前記被駆動要素に伝達する第2要素と、
前記第1要素の剛性を変更する第1変更部と、
前記第2要素の粘性係数を変更する第2変更部とを備え、
前記第1要素の剛性及び前記第2要素の粘性係数を変更することで、前記被駆動要素に動力を伝達する伝達状態と、該伝達を断つ非伝達状態とを切替可能に構成され
前記駆動要素に動力を伝達する駆動源と、
前記駆動源を制御すると共に、前記第1要素の剛性及び前記第2要素の粘性係数を変更するように制御する制御手段とを備え、
前記制御手段は、
前記駆動源を正常に制御できるか否かを判定する第1判定手段と、
前記伝達状態か否かを判定する第2判定手段とを備え、
前記第1判定手段の判定結果が否定的であるとき、前記非伝達状態となるように制御し、
前記第1判定手段の判定結果が肯定的であり且つ前記第2判定手段の判定結果が否定的であるとき、前記被駆動要素の変位と前記駆動要素の変位との差が所定の値以下となるように前記駆動源を制御し、
前記第1判定手段の判定結果が肯定的であり且つ前記第2判定手段の判定結果が肯定的であるとき、前記被駆動要素に伝達される動力を制御することを特徴とする動力伝達装置。
【請求項2】
駆動要素から伝達された動力を被駆動要素に伝達する動力伝達装置であって、
変更可能な剛性を有し、且つ前記駆動要素からの動力が伝達されると共に該動力を前記被駆動要素に伝達する第1要素と、
変更可能な粘性係数を有し、且つ前記駆動要素からの動力が伝達されると共に該動力を前記被駆動要素に伝達する第2要素と、
前記第1要素の剛性を変更する第1変更部と、
前記第2要素の粘性係数を変更する第2変更部とを備え、
前記第1要素の剛性及び前記第2要素の粘性係数を変更することで、前記被駆動要素に動力を伝達する伝達状態と、該伝達を断つ非伝達状態とを切替可能に構成され
前記第1要素及び前記第2要素は、筒状又は柱状に形成された共通の導電性高分子アクチュエータからなり、
前記第1変更部及び前記第2変更部は、前記導電性高分子アクチュエータに電圧を印加する電圧印加部として構成され、
前記導電性高分子アクチュエータの外壁には凸部が設けられ、
前記導電性高分子アクチュエータは、前記電圧印加部から電圧が印加されると、当該導電性高分子アクチュエータの長さ方向に縮小し、印加電圧が所定の電圧以上であるとき、前記凸部が前記被駆動要素に接触するように構成されていることを特徴とする動力伝達装置。
【請求項3】
駆動要素から伝達された動力を被駆動要素に伝達する動力伝達装置であって、
変更可能な剛性を有し、且つ前記駆動要素からの動力が伝達されると共に該動力を前記被駆動要素に伝達する第1要素と、
変更可能な粘性係数を有し、且つ前記駆動要素からの動力が伝達されると共に該動力を前記被駆動要素に伝達する第2要素と、
前記第1要素の剛性を変更する第1変更部と、
前記第2要素の粘性係数を変更する第2変更部とを備え、
前記第1要素の剛性及び前記第2要素の粘性係数を変更することで、前記被駆動要素に動力を伝達する伝達状態と、該伝達を断つ非伝達状態とを切替可能に構成され
前記第1要素及び前記第2要素は、筒状又は柱状に形成された共通の導電性高分子アクチュエータからなり、
前記第1変更部及び前記第2変更部は、前記導電性高分子アクチュエータに電圧を印加する電圧印加部として構成され、
前記被駆動要素は、前記導電性高分子アクチュエータの一端に接続され、
前記導電性高分子アクチュエータは、前記電圧印加部から電圧が印加されると、当該導電性高分子アクチュエータの長さ方向に縮小し、印加電圧が所定の電圧以上であるとき、前記被駆動要素を前記駆動要素に接触させるように構成されていることを特徴とする動力伝達装置。
【請求項4】
駆動要素から伝達された動力を被駆動要素に伝達する動力伝達装置であって、
変更可能な剛性を有し、且つ前記駆動要素からの動力が伝達されると共に該動力を前記被駆動要素に伝達する第1要素と、
変更可能な粘性係数を有し、且つ前記駆動要素からの動力が伝達されると共に該動力を前記被駆動要素に伝達する第2要素と、
前記第1要素の剛性を変更する第1変更部と、
前記第2要素の粘性係数を変更する第2変更部とを備え、
前記第1要素の剛性及び前記第2要素の粘性係数を変更することで、前記被駆動要素に動力を伝達する伝達状態と、該伝達を断つ非伝達状態とを切替可能に構成され
前記第1変更部及び前記第2変更部は、共通のアクチュエータからなり、
前記第1要素は、前記アクチュエータの駆動によって少なくとも一部が押動されることで、当該駆動方向と直交する方向の剛性が変化する可変剛性部として構成され、
前記第2要素は、前記アクチュエータの駆動によって少なくとも一部が押動されることで、当該駆動方向と直交する方向の粘性係数が変化する可変粘性係数部として構成されていることを特徴とする動力伝達装置。
【請求項5】
請求項に記載の動力伝達装置において、
前記アクチュエータは、筒状又は柱状に形成された圧電素子であり、
前記第1要素は、非線形ばねであり、
前記第2要素は、凸部が設けられた第3要素と、前記凸部の形状に沿う凹部が設けられ該凹部に粘性液を充填した第4要素とを備え、
前記駆動要素から前記第3要素と前記第4要素とのうちの一方に動力が伝達され、
前記第3要素と前記第4要素とのうちの他方から前記被駆動要素に動力が伝達され、
前記第2要素は、前記圧電素子の駆動により、前記凸部が前記粘性液と接触する面積が大きくなるように構成されていることを特徴とする動力伝達装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、駆動要素から伝達された動力を被駆動要素に伝達する動力伝達装置に関する。
【背景技術】
【0002】
近年、ロボットには、障害物に接触したとき等、ロボットに衝撃が加えられたときであっても、ロボットが損傷しないようにするため、動力伝達要素としてロボットのリンク間に配置される関節が柔軟であることが望まれる。
【0003】
このような事情を鑑みて、ロボットの駆動要素と被駆動要素との間に、弾性部材を配置したアクチュエータが知られている(特許文献1)。弾性部材の弾性によって、駆動要素又は被駆動要素に衝撃が生じた場合であっても、被駆動要素又は駆動要素に対して、この衝撃が直接的に伝達されることを防止している。このように、関節に柔軟性を持たせたときには、制御応答性を向上させることで制御対象(例えば、関節の動き等)が発振しやすくなる。そこで、各種センサ等によって検知された情報に基づいてフィードバック制御をすることで、発振を抑制している。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】米国特許5650704号明細書
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、各種センサ等が異常な状態であるような場合においては、適切なフィードバック制御が行えず、ひいては発振を適切に抑制できない可能性がある。そこで、関節に粘性を持たせることで、フィードバック制御による発振の抑制ができないような場合であっても、発振を抑制することが考えられる。
【0006】
一方、精密な作動をさせたい場合のように、関節が固い状態の方が望ましい場合もある。すなわち、関節の剛性を変化させることができると、様々な状況に対して適切な制御ができる。このような要望に対応するために、弾性部材として非線形ばねのような剛性を変化可能な部材を用いることが考えられる。
【0007】
しかしながら、一般に、ばね−ダンパ系において、以下の関係式が知られている。
【0008】
【数1】
【0009】
ここで、hは減衰定数、ωは角振動数、kは弾性係数、mは負荷の質量、Cは粘性係数である。
【0010】
式(1)より、負荷の質量m、粘性係数Cを一定としたとき、弾性部材の弾性(ひいては剛性)を表す弾性係数kを変化させると、減衰定数hが変化することとなる。減衰定数hは、振動している負荷が収束する過程における当該振動の減衰率を表わすものである。
【0011】
制御処理は、予め決められた周期毎に処理が実行される。このため、前回の制御周期の負荷の振動から、現時点の制御周期の負荷の振動を予測できる方が、制御処理を簡単にできる。すなわち、減衰率(ひいては減衰定数h)は、変化するよりも一定にした方が制御処理を簡単にできる。従って、式(1)において、減衰定数hを一定にする場合、負荷の質量mは一定であるので、弾性kの変化に応じて粘性係数Cを変化させる必要がある。
【0012】
このように、関節に弾性のみならず粘性を持たせる場合においては、剛性を変化させるだけではなく、粘性係数Cも変化させることが望まれる。なお、減衰定数hは、制御を簡単にできる範囲であれば値が変動しても問題はない。
【0013】
本発明は、上記の関節のような動力伝達要素の剛性を変更可能にすると共に粘性を持たせた場合において、制御対象の発振を効果的に抑制可能な動力伝達装置を提供することを目的とする。
【課題を解決するための手段】
【0014】
本発明は、駆動要素から伝達された動力を被駆動要素に伝達する動力伝達装置であって、変更可能な剛性を有し、且つ前記駆動要素からの動力が伝達されると共に該動力を前記被駆動要素に伝達する第1要素と、変更可能な粘性係数を有し、且つ前記駆動要素からの動力が伝達されると共に該動力を前記被駆動要素に伝達する第2要素と、前記第1要素の剛性を変更する第1変更部と、前記第2要素の粘性係数を変更する第2変更部とを備え、前記第1要素の剛性及び前記第2要素の粘性係数を変更することで、前記被駆動要素に動力を伝達する伝達状態と、該伝達を断つ非伝達状態とを切替可能に構成されている(前提構成)。
【0015】
第1発明によれば、駆動要素の動力は、第1要素及び第2要素を介して被駆動要素に伝達される。すなわち、駆動要素と被駆動要素との間の動力伝達経路上に、動力伝達要素として粘性を有する第2要素を備えるので、被駆動要素の制御時において、機械的に被駆動要素の振動を収束させることができる。また、第1要素は、第1変更部によって剛性を変更できるので、状況に応じて被駆動要素を柔軟に制御することができる。
【0016】
また、第2要素は、第2変更部によって粘性係数を変更できるので、例えば、第1変更部によって剛性が変更された場合、第2変更部は、当該変更された剛性に応じて第2要素の粘性係数を変更できる。これにより、状況に応じて第1要素の剛性を変更した場合であっても、第2要素の粘性係数を変更することで、例えば、被駆動要素の振動の減衰率が大幅に変化することを抑制することができる。
【0017】
このため、制御処理を実行するときに、前回の制御周期の負荷の振動から、現時点の制御周期の負荷の振動を予測しやすくなり、制御処理を簡単にできる。このように、剛性及び粘性係数が変更可能な動力伝達要素を用いて、その剛性及び粘性係数を適宜変更することにより、制御対象の発振を効果的に抑制できる。
更に、剛性及び粘性係数の変更によって、被駆動要素に動力が伝達されない非伝達状態に切り替わることにより、被駆動要素が機械的に駆動されることを防止できる。また、第2要素が粘性を有しているので、非伝達状態に切り替わるだけで、他に発振を抑制するための制御をすることなく、被駆動要素の発振を機械的に抑制できる。
【0019】
前記前提構成において、前記駆動要素に動力を伝達する駆動源と、前記駆動源を制御すると共に、前記第1要素の剛性及び前記第2要素の粘性係数を変更するように制御する制御手段とを備え、前記制御手段は、前記駆動源を正常に制御できるか否かを判定する第1判定手段と、前記伝達状態か否かを判定する第2判定手段とを備え、前記第1判定手段の判定結果が否定的であるとき、前記非伝達状態となるように制御し、前記第1判定手段の判定結果が肯定的であり且つ前記第2判定手段の判定結果が否定的であるとき、前記被駆動要素の変位と前記駆動要素の変位との差が所定の値以下となるように前記駆動源を制御し、前記第1判定手段の判定結果が肯定的であり且つ前記第2判定手段の判定結果が肯定的であるとき、前記被駆動要素に伝達される動力を制御することを特徴とする(第発明)。
【0021】
これにより、第1判定手段によって駆動源を正常に制御できないと判定される場合には非伝達状態になる。これにより、被駆動要素に動力が伝達されない状態となる。この状態であれば、第2要素が粘性を持っているので、駆動源の制御をしない場合であっても、被駆動要素の発振を抑制して収束できる。
【0022】
また、通常、非伝達状態から伝達状態に遷移するときには、予め規定された被駆動要素と駆動要素との相対的な変位の差の範囲内で伝達状態にする必要があるので、被駆動要素の変位と駆動要素の変位との差を前記規定された差に近い値にしてから伝達状態にする必要がある。従って、制御手段等が、伝達状態にすると判定したときに、被駆動要素と駆動要素との相対的な変位の差が、前記規定された差よりも大きい場合には、当該相対的な変位の差が規定された差以下となるようにしてから伝達状態にする必要がある。
【0023】
しかしながら、本発明では、制御手段が、駆動源を正常に制御でき、且つ非伝達状態のときに、被駆動要素の変位と駆動要素の変位との差が、所定の値以下となるように駆動要素を制御している。従って、制御手段等が、伝達状態にすると判定したときに、すぐに伝達状態にすることができる。ひいては、制御処理の時間を短くできる。
【0024】
更に、第1判定手段によって駆動源を正常に制御できると判定され、且つ第2判定手段によって伝達状態であると判定されたとき、被駆動要素に伝達される動力を制御する。これにより、被駆動要素の作動を制御できる。
【0031】
前記前提構成において、前記第1要素及び前記第2要素は、筒状又は柱状に形成された共通の導電性高分子アクチュエータからなり、前記第1変更部及び前記第2変更部は、前記導電性高分子アクチュエータに電圧を印加する電圧印加部として構成され、前記導電性高分子アクチュエータの外壁には凸部が設けられ、前記導電性高分子アクチュエータは、前記電圧印加部から電圧が印加されると、当該導電性高分子アクチュエータの長さ方向に縮小し、印加電圧が所定の電圧以上であるとき、前記凸部が前記被駆動要素に接触するように構成されていることを特徴とする(第発明)。
【0032】
これにより、導電性高分子アクチュエータは、電圧が印加されることで、剛性及び粘性係数が変するので、動力伝達装置の構造を簡単にできる。
【0033】
更に、導電性高分子アクチュエータは、電圧が印加されることで、筒状又は柱状の長さ方向に縮むように構成されている。導電性高分子アクチュエータに印加される電圧が所定の電圧以上であるとき、凸部が前記長さ方向に移動することで被駆動要素に接触する。これにより、導電性高分子アクチュエータに伝達された動力が被駆動要素に伝達される(駆動要素から被駆動要素へ動力が伝達される伝達状態となる)。
【0034】
すなわち、導電性高分子アクチュエータに印加する電圧を所定の電圧以上にするか否かで、伝達状態と非伝達状態とを切り替えることができる。導電性高分子アクチュエータの凸部を入力側のクラッチ板とみなし、被駆動要素の該凸部と接触する部位を出力側のクラッチ板とみなした場合、凸部と被駆動要素とでクラッチ機構を実現しているとみなせる。
【0035】
以上のように、制御手段は、導電性高分子アクチュエータに印加する電圧を制御するだけで、剛性及び粘性係数を変更できると共に、伝達状態及び非伝達状態を制御することができる。
【0036】
前記前提構成において、前記第1要素及び前記第2要素は、筒状又は柱状に形成された共通の導電性高分子アクチュエータからなり、前記第1変更部及び前記第2変更部は、前記導電性高分子アクチュエータに電圧を印加する電圧印加部として構成され、前記被駆動要素は、前記導電性高分子アクチュエータの一端に接続され、前記導電性高分子アクチュエータは、前記電圧印加部から電圧が印加されると、当該導電性高分子アクチュエータの長さ方向に縮小し、印加電圧が所定の電圧以上であるとき、前記被駆動要素を前記駆動要素に接触させるように構成されていることを特徴とする(第発明)。
【0037】
これにより、導電性高分子アクチュエータは、電圧が印加されることで、剛性及び粘性係数が変するので、動力伝達装置の構造を簡単にできる。
【0038】
更に、導電性高分子アクチュエータは、電圧が印加されることで、筒状又は柱状の長さ方向に縮むように構成されている。導電性高分子アクチュエータは、一端が第1部材に、他端が第2部材に接続されている。従って、導電性高分子アクチュエータに印加される電圧が所定の電圧以上であるとき、第1部材が前記長さ方向に移動することで駆動要素に接触する。これにより、導電性高分子アクチュエータに伝達された動力が被駆動要素に伝達される(駆動要素から被駆動要素へ動力が伝達される伝達状態となる)。
【0039】
すなわち、導電性高分子アクチュエータに印加する電圧を所定の電圧以上にするか否かで、伝達状態と非伝達状態とを切り替えることができる。被駆動要素の第1部材を出力側のクラッチ板とみなし、駆動要素の該第1部材と接触する部位を入力側のクラッチ板とみなした場合、駆動要素と第1部材とでクラッチ機構を実現しているとみなせる。
【0040】
以上のように、制御手段は、導電性高分子アクチュエータに印加する電圧を制御するだけで、剛性及び粘性係数を変更できると共に、伝達状態及び非伝達状態を制御することができる。
【0041】
前記前提構成において、前記第1変更部及び前記第2変更部は、共通のアクチュエータからなり、前記第1要素は、前記アクチュエータの駆動によって少なくとも一部が押動されることで、当該駆動方向と直交する方向の剛性が変化する可変剛性部として構成され、前記第2要素は、前記アクチュエータの駆動によって少なくとも一部が押動されることで、当該駆動方向と直交する方向の粘性係数が変化する可変粘性係数部として構成されていることを特徴とする(第発明)。これにより、第1アクチュエータによって第1要素の剛性を変化させ第2アクチュエータによって第2要素の粘性係数を変化させることができるので、制御対象の発振を効果的に抑制できる。
【0042】
発明において、前記アクチュエータは、筒状又は柱状に形成された圧電素子であり、前記第1要素は、非線形ばねであり、前記第2要素は、凸部が設けられた第3要素と、前記凸部の形状に沿う凹部が設けられ該凹部に粘性液を充填した第4要素とを備え、前記駆動要素から前記第3要素と前記第4要素とのうちの一方に動力が伝達され、前記第3要素と前記第4要素とのうちの他方から前記被駆動要素に動力が伝達され、前記第2要素は、前記圧電素子の駆動により、前記凸部が前記粘性液と接触する面積が大きくなるように構成されていることが好ましい(第発明)。これにより、圧電素子の駆動によって、非線形ばねを移動することで、当該非線形ばねの剛性を変更できる。また、圧電素子の駆動によって、第3要素を移動することで、凸部が凹部の底部に近付いて、凸部と粘性液との接触面積を大きくすることができる。これにより、凸部と粘性液とによる粘性係数を大きくすることができる。このように、圧電素子の駆動によって、剛性及び粘性係数を変更できるので、制御対象の発振を効果的に抑制できる。
【図面の簡単な説明】
【0043】
図1】本発明の実施形態の動力伝達装置の概念図。
図2】(a)は本実施形態の動力伝達装置の可変剛性部の電圧特性を示す図、(b)は可変粘性係数部の電圧特性を示す図。
図3】本実施形態の動力伝達装置の制御装置が実行する処理を示す図。
図4】実施例1の動力伝達装置を示す図。
図5】実施例1の動力伝達装置の中間部材の詳細を示す図。
図6】実施例2の動力伝達装置を示す図。
図7】実施例2の動力伝達装置の中間部材の詳細を示す図。
図8】実施例3の動力伝達装置を示す図。
図9】実施例4の動力伝達装置を示す図。
図10】実施例4の動力伝達装置の粘性係数を変化させる方法について説明する図。
【発明を実施するための形態】
【0044】
図1は、本実施形態の動力伝達装置1についての概念図を示す。図1に示されるように、動力伝達装置1は、主に、モータA2と、入力ギアG2と、中間部材4と、従動側クラッチ板6と、制御装置A4と、出力部Bとを備える。
【0045】
モータA2は、所謂電動機であり、図示しない電源から電力が供給されることで、当該モータA2に接続されたモータ出力軸A2aを軸周りに回転させるトルクを発生する。また、モータA2には、当該モータA2の回転角度を検知するモータエンコーダA3が接続されている。モータ出力軸A2aには、駆動ギアG1が固定されている。駆動ギアG1は、モータ出力軸A2aと共に回転する。
【0046】
入力ギアG2は、駆動ギアG1に噛み合うように構成され、駆動ギアG1の回転により入力ギアG2が回転する。このとき、入力ギアG2は、モータA2の回転を減速して回転する。すなわち、駆動ギアG1及び入力ギアG2は、減速機として機能する。
【0047】
また、入力ギアG2には、当該入力ギアG2から出力されるトルクを検知する入力側トルクセンサ5が配置されている。
【0048】
中間部材4は、可変剛性部41と、可変粘性係数部42と、特性変更部43と、ねじ軸44と、ナット45と、駆動側クラッチ板46とを備える。このとき、可変剛性部41は、変位によって剛性が変化する非線形ばねであり、可変粘性係数部42は、変位によって粘性係数が変化する非線形ダンパである。
【0049】
また、特性変更部43は、印加される電圧(以下、「特性変更電圧」という)に応じて、ねじ軸44を回転させる駆動源である。なお、特性変更部43には、駆動するための電源(図示省略)から電力が供給されている。ナット45は、ねじ軸44が特性変更部43の駆動により回転することで、ねじ軸44の軸方向に沿って図1の左右方向に移動する。
【0050】
このとき、特性変更部43は、特性変更電圧が増加するとき、ナット45を右方向に移動させ、特性変更電圧が減少するとき、ナット45を左方向に移動させ、特性変更電圧が一定であるとき、ナット45の移動を停止する。また、特性変更部43に特性変更電圧が印加されていないときには、ナット45を最も左側に移動させる。
【0051】
また、ナット45が図1の右方向に移動することで、可変剛性部41及び可変粘性係数部42を押圧して、当該移動した分だけ図1の右方向に変位させる。また、ナット45が図1の左方向に移動することで、右方向への押圧が解除され、当該移動した分だけ、可変剛性部41及び可変粘性係数部42が図1の左方向に変位する。以上のようなナット45の移動により、可変剛性部41の剛性及び可変粘性係数部42の粘性係数が変化する。すなわち、特性変更電圧に応じて、可変剛性部41の剛性及び可変粘性係数部42の粘性係数が変化する。
【0052】
図2(a)は、横軸が電圧を示し、縦軸が剛性を示す。図2(a)に示されるように、中間部材4の特性変更部43に印加される電圧が大きくなるに従って、剛性が大きくなる特性にしている。このとき、電圧−剛性特性曲線は、電圧が増加するにつれ、傾きが大きくなる曲線である。
【0053】
また、図2(b)は、横軸が電圧を示し、縦軸が粘性係数を示す。図2(b)に示されるように、中間部材4の特性変更部43に印加される電圧が大きくなるに従って、粘性係数が大きくなる特性にしている。このとき、電圧−粘性係数特性曲線は、所定の電圧までは電圧が増加するにつれ傾きが小さくなり、該所定の電圧以上では傾きが一定となる曲線である。なお、図2(a)及び(b)において、ある電圧以上では、剛性及び粘性係数は増加しなくなる。
【0054】
このような、剛性及び粘性係数の電圧特性は、上述の式(1)を用いた説明のように、被駆動側(例えば、出力部B)の振動の減衰率が一定となるように決定されている(但し、厳密に一定にしているわけではなく、上述したように制御処理を簡単にできる程度に一定にしている)。すなわち、各電圧値に対して、減衰率が一定となるように、剛性及び粘性係数の特性が決定されている。
【0055】
そして、制御装置A4は、所望の剛性を得るときに、この剛性に対応した電圧値を図2(a)に示されるような特性に基づいて決定している。図2(a)及び(b)に示される特性は、予め実験等によって決定されている(可変剛性部41及び可変粘性係数部42を構成する段階で決定される)ので、制御装置A4は、所望の剛性となるように電圧値を決定するだけで、可変粘性係数部42の粘性係数を減衰率が一定となるような値に変更できる。
【0056】
ここで、上記のように「減衰率が一定となるように予め定められた特性に応じて、剛性及び粘性係数を変更する」ことが、本発明における「前記第2変更部は、前記被駆動要素の振動の減衰が所定の減衰となるように、前記第1変更部によって変更された剛性に応じて前記粘性係数を変更する」ことに相当する。
【0057】
ここで、図1においては、「剛性」及び図1の左右方向の「変位」に応じて可変剛性部41が力を作用し、「粘性係数」及び図1の左右方向の「速度」に応じて可変粘性係数部42が力を作用するかのように図示されているが、実際には、可変剛性部41及び可変粘性係数部42の各々は、駆動側クラッチ板46(又は従動側クラッチ板6)の回転方向に対して上記各々の力を作用する。図1のように記載しているのは、駆動側クラッチ板46の回転方向に対して力を作用するように記載すると、図が複雑になってしまい、かえって理解しづらいものとなってしまうからである。このように、図1は、本実施形態の動力伝達装置1の概念を簡略に示す図となっている。
【0058】
駆動側クラッチ板46は、可変剛性部41及び可変粘性係数部42に接続されている。これにより、駆動側クラッチ板46は、入力ギアG2が回転するとき、当該入力ギアG2から出力されるトルクが、可変剛性部41及び可変粘性係数部42を介して伝達され、入力ギアG2と共通の軸心周りに回転する。従って、駆動側クラッチ板46には、入力ギアG2の出力トルクが、可変剛性部41の剛性及び可変粘性係数部42の粘性係数に応じて伝達される。
【0059】
また、ナット45には、変位用エンコーダB1が固定されている。変位用エンコーダB1は、ナット45と駆動側クラッチ板46との間の距離を検知する距離センサである。すなわち、変位用エンコーダB1の出力によって、ナット45がどこに位置しているかを検知することができると共に、可変剛性部41の剛性及び可変粘性係数部42の粘性係数を検知(又は推定)することができる。
【0060】
特性変更電圧が所定の電圧V1未満であるときには、駆動側クラッチ板46と従動側クラッチ板6とが接触していない状態(すなわち、クラッチが接続されていない状態。以下、この状態を「非伝達状態」という)であり、特性変更電圧が所定の電圧V1以上であるときには、駆動側クラッチ板46と従動側クラッチ板6とが接触している状態(すなわち、クラッチが接続されている状態。以下、この状態を「伝達状態」という)である。ここで、駆動側クラッチ板46及び従動側クラッチ板6の2つを指す場合は、クラッチ6,46ということがある。
【0061】
駆動側クラッチ板46及び従動側クラッチ板6の互いに接触する面は、大きな摩擦力が発生するように構成されている。従って、駆動側クラッチ板46及び従動側クラッチ板6が互いに接触しているときには、駆動側クラッチ板46が回転するときのトルクが、従動側クラッチ板6に伝達され、従動側クラッチ板6が駆動側クラッチ板46と共通の軸心周りに回転する。
【0062】
また、従動側クラッチ板6には、当該従動側クラッチ板6に伝達されたトルクを検知する出力側トルクセンサ7が配置されている。
【0063】
また、従動側クラッチ板6には、負荷に接続される出力部Bが接続されている。負荷は、動力伝達装置1の用途等に応じて様々なものが用いられる。例えば、動力伝達装置1が、様々な物体を持ち上げる用途に用いられる2つのリンクからなるアームであり、且つ中間部材4がこれらのリンク間に配置される関節である場合、出力部Bは被駆動側のリンクであり、負荷は当該リンクによって持ち上げられる物体である。
【0064】
以上のように構成されているので、中間部材4の特性変更部43に、所定の電圧V1以上の特性変更電圧が印加されているときには、クラッチ6,46が伝達状態となるので、モータA2から出力されたトルクは、中間部材4を介して、従動側クラッチ板6ひいては出力部Bに伝達される。一方、中間部材4の特性変更部43に印加される電圧が0であるとき、又は印加されている特性変更電圧が所定の電圧V1未満であるときには、クラッチ6,46が非伝達状態となるので、モータA2から出力されたトルクは、従動側クラッチ板6ひいては出力部Bに伝達されない。
【0065】
以上のように、「特性変更部43に印加する剛性及び粘性係数を変更する特性変更電圧を、所定の電圧V1以上とするか否かによって、伝達状態と非伝達状態とを切替可能にしている」ことが、本発明における「前記第1要素の剛性又は前記第2要素の粘性係数を変更することで、前記被駆動要素に動力を伝達する伝達状態と、該伝達を断つ非伝達状態とを切替可能に構成されている」ことに相当する。
【0066】
また、図2において、剛性及び粘性係数の各々の特性に関して、所定の電圧V1未満の場合について記載を省略しているのは、クラッチ6,46が所定の電圧V1未満であるときに、非伝達状態となるためである。すなわち、非伝達状態である場合には、駆動側と従動側との間の動力伝達経路上に配置された中間部材の剛性及び粘性係数は意味を成さないので図示していない。なお、実際には、所定の電圧V1未満の場合であっても剛性及び粘性係数の特性は予め規定されている。
【0067】
制御装置A4は、「中央演算処理装置等の演算処理を行う1又は複数の電子回路」と、「ROM又はRAM等からなる1又は複数の記憶装置」とを備える。また、制御装置A4には、モータエンコーダA3、変位用エンコーダB1、入力側トルクセンサ5、及び出力側トルクセンサ7の出力が入力される。制御装置A4は、これらの入力された情報に基づき、モータA2及び中間部材4(図1においては、特性変更部43)を制御する。
【0068】
詳細には、制御装置A4は、モータA2から出力されるトルクが目標のトルクになるように、現時点(現制御周期)でのトルク指令値に応じた電流をモータA2に供給する。また、制御装置A4は、中間部材4の剛性が目標の剛性になるように、現時点(現制御周期)での剛性指令値に応じた電圧(すなわち、特性変更電圧)を中間部材4に印加する。
【0069】
また、制御装置A4は、モータA2を正常に制御できるか否かを判定する第1判定手段A41と、伝達状態か否かを判定する第2判定手段A42との機能も有する。
【0070】
ここで、可変剛性部41が、本発明の「第1要素」に相当し、可変粘性係数部42が、本発明の「第2要素」に相当し、制御装置A4が、本発明の「第1変更部」、「第2変更部」、「電圧印加部」及び「制御手段」に相当する。また、モータA2が、本発明の「駆動要素」及び「駆動源」に相当する。
【0071】
次に、制御装置A4が実行する制御処理について図3を参照して説明する。制御装置A4は、図3の制御処理を、所定の間隔(例えば、10[ms])毎に実行する。まず最初のステップST1では、動力伝達装置1の状態を取得する。ここで、動力伝達装置1の状態とは、正常状態と異常状態とがある。正常状態は、「モータエンコーダA3、変位用エンコーダB1、入力側トルクセンサ5及び出力側トルクセンサ7等のセンサ類」が全て正常に動作している状態である。また、異常状態は、センサ類が異常な動作をしている状態である。
【0072】
センサ類に異常があるか否かは、それらが検知した値が所定の範囲外であるか否か(すなわち、正常動作している場合には検知されないと思われる値か否か)によって判定している。このような値は、予め実験等によって決定され、制御装置A4が有する記憶装置に記憶保持されている。
【0073】
なお、センサ類のいずれかに異常がある場合、正常なセンサによって検知された情報から当該異常があるセンサによって取得される情報を推定できるような場合には、正常状態としてもよい。この場合には、異常があるセンサの出力の代わりに、推定した値を用いる。
【0074】
これは、例えば、入力側トルクセンサ5に異常がある場合、モータA2に電力を供給しているときの電流によって、入力ギアG2から出力されるトルクを推定することができる。「モータA2に供給している電流」は、電流センサ(図示省略)から得られた値を用いる。まず、「モータA2によって規定されるトルク定数(供給された電流に対する出力トルクの係数)」と「モータA2に供給している電流」とを乗算することで「モータA2の出力トルク」が得られる。
【0075】
そして、「当該得られたモータA2の出力トルク」に、「駆動ギアG1と入力ギアG2とによって規定される減速比」を乗算することで、「入力ギアG2に伝達されるトルク」が得られる。そして、「当該得られた入力ギアG2に伝達されるトルク」から、「駆動ギアG1及び入力ギアG2の歯の噛み合い時に発生する摩擦力」を減算することで、「入力ギアG2から出力されるトルク」を得ることができる。
【0076】
また、出力側トルクセンサ7に異常がある場合、入力側トルクセンサ5及び変位用エンコーダB1の各々の出力によって、従動側クラッチ板6に伝達されるトルクを推定することができる。まず、「可変粘性係数部42の粘性係数」と「変位用エンコーダB1の出力の単位時間辺りの変化量」とを乗算して、可変粘性係数部42の剪断応力を得る。ここで、単位時間辺りの変化量とは、「本制御周期の変位用エンコーダB1の出力」と「前制御周期の変位用エンコーダB1の出力」との差分である。
【0077】
そして、「入力側トルクセンサ5から出力された入力ギアG2から出力されるトルク」から、上記で得られた可変粘性係数部42の剪断応力を減算することで、従動側クラッチ板6に伝達されるトルクを推定することができる。なお、従動側クラッチ板6に伝達されるトルクを推定する際に、出力側トルクセンサ7及び入力側トルクセンサ5のいずれも異常がある場合には、「入力ギアG2から出力されるトルク」を、上述したように「モータA2に供給している電流」によって推定してもよい。この場合には、「モータA2に供給している電流」及び「変位用エンコーダB1の出力」によって、従動側クラッチ板6に伝達されるトルクを推定することとなる。
【0078】
また、従動側クラッチ板6に伝達されるトルクを推定する別の方法として次のものも考えられる。まず、「可変剛性部41の剛性」と「変位用エンコーダB1の出力」とを乗算して、「可変剛性部41に蓄えられた応力」を演算する。そして、この「演算された応力」に、上述のようにして得られる「可変粘性係数部42の剪断応力」を加算することで、「従動側クラッチ板6に伝達されるトルク」を推定する。
【0079】
以上のような従動側クラッチ板6に伝達されるトルクの推定は、駆動側クラッチ板46及び従動側クラッチ板6とが接触し、且つ当該2つのクラッチ板46,6が相対回転角度が変化しない状態(すなわち、滑りが発生していない状態)にのみ行われ、2つのクラッチ板46,6が互いに滑っている状態(所謂半クラッチの状態)においては行われない。
【0080】
なお、このように、制御装置A4は、入力ギアG2から出力されるトルク、及び従動側クラッチ板6に伝達されるトルクを推定できるので、動力伝達装置1に、入力側トルクセンサ5及び出力側トルクセンサ7を設けなくてもよい。
【0081】
次に、ステップST2に進み、ステップST1で取得された状態が異常状態か否かを判定する。異常状態であると判定された場合、モータA2の制御等を適切に行えない可能性がある。このため、ステップST3に進み、モータA2及び中間部材4の特性変更部43に供給する電流又は電圧を0にする。ここで、ステップST2の処理が、本発明における「第1判定手段」による処理に相当する。
【0082】
これにより、モータA2が駆動を停止すると共に、中間部材4の特性変更部43に印加される電圧が0となり、クラッチ6,46が非伝達状態となる。従って、ステップST3が処理される前に、従動側クラッチ板6にトルクが伝達されていた場合であっても、ステップST3が処理されることで、上記クラッチ6,46が非伝達状態となる。すなわち、機械的な接続が断たれ、出力部B側にモータA2から出力されたトルクが伝達されない状態になる(換言すれば、機械的にトルクの伝達を断っている)。従って、正常に動作していないセンサによって検知された情報に基づく制御等によって、モータA2及び中間部材4に供給する電圧が想定外の値になることにより動力伝達装置1が想定外の動作をすることを防止でき、当該動力伝達装置1の安全性を向上できる。ステップST3の処理が終了すると、本制御処理を終了する。
【0083】
ここで、ステップST3の処理が、本発明における「前記第1判定手段の判定結果が否定的であるとき、前記非伝達状態となるように制御する」ことに相当する。
【0084】
ステップST2で、正常状態であると判定された場合、ステップST4に進み、制御装置A4の図示しない処理によって決定された、中間部材4の可変剛性部41の剛性指令値を取得する。中間部材4の可変剛性部41の剛性指令値とは、中間部材4の可変剛性部41の剛性を当該値となるように制御するための値である。剛性指令値は、動力伝達装置1の作動に応じて制御装置A4によって適宜決定される値である。例えば、制御装置A4は、動力伝達装置1のアームを正確に駆動させる等のように関節を固くしたい場合には、動力伝達装置1としての剛性を高めるために、剛性指令値を大きな値に設定する。また、制御装置A4は、動力伝達装置1のアーム等に作用する意図しない衝撃の影響を緩和するため等の理由により関節を柔らかくしたい場合には、剛性指令値を小さな値に設定する。
【0085】
ステップST4の処理が終了すると、ステップST5及びステップST6に進む。すなわち、制御装置A4は、ステップST5とST6とを並列に処理をするために、スレッドを分岐し、当該分岐されたスレッドにおいてステップST5(又はST6)を実行し、分岐以前から動作していたスレッドにおいてステップST6(又はST5)を実行する。これにより、ステップST5とST6は並列処理される。
【0086】
ステップST5では、中間部材4の可変剛性部41の剛性が剛性指令値となるように、中間部材4の特性変更部43に印加する電圧を決定する。これは、図2(a)に示されるような、「電圧−剛性」のマップに応じて剛性指令値に対応する電圧を得ることにより電圧の決定を行う。ステップST5の処理が終了すると、当該ステップST5で得られた電圧が、中間部材4の特性変更部43に印加されるように制御信号を出力し、本制御処理を終了する。
【0087】
ステップST6では、中間部材4の可変剛性部41の剛性及び可変粘性係数部42の粘性係数を推定する。これは、図2に示されるような、「電圧−剛性」及び「電圧−粘性係数」のマップに応じて、現時点で中間部材4の特性変更部43に印加されている電圧に対応する可変剛性部41の剛性及び可変粘性係数部42の粘性係数を得ることで推定している。
【0088】
ステップST6の処理が終了すると、ステップST7に進み、クラッチ6,46が伝達状態であるか否かを判定する。従動側クラッチ板6には、クラッチ6,46が伝達状態になることでトルクが発生する。一方、クラッチ6,46が非伝達状態であるときには、駆動側クラッチ板46に伝達されているトルクが、従動側クラッチ板6に伝達されないので、出力側トルクセンサ7によって検知されたトルクは0となる。このとき、出力側トルクセンサ7の測定誤差等により、当該センサ7の出力が0よりも大きな値になる可能性もある。
【0089】
従って、本ステップST7では、出力側トルクセンサ7によって検知されたトルクが、所定の値(所定の値は、0又は上記誤差を考慮した0よりも大きな値)より大きい場合にクラッチ6,46が伝達状態であると判定し、所定の値以下である場合にクラッチ6,46が非伝達状態であると判定する。所定の値は、予め実験等によって決定され、制御装置A4の記憶装置に記憶保持されている。ここで、ステップST7の処理が、本発明における「第2判定手段」による処理に相当する。
【0090】
ステップST7で、クラッチ6,46が接続されていないと判定された場合、ステップST8に進み、回転追従制御を行う。回転追従制御とは、従動側クラッチ板6の回転角度と駆動側クラッチ板46の回転角度との差が、所定の値以下となるようにモータA2を制御している。これにより、クラッチ6,46を非伝達状態から伝達状態に状態を変更するときに、すぐに伝達状態に変更できるようになる。
【0091】
すなわち、通常、クラッチ6,46を接続するときには、予め規定された被駆動要素と駆動要素との相対的な変位の差の範囲内で伝達状態にする必要がある。上記のような回転追従制御を実行しておくことで、制御装置A4が、伝達状態にすると判定したときに、すぐに伝達状態にすることができ、ひいては、制御処理の時間を短くできる。
【0092】
回転追従制御は、例えば、モータA2によって出力部Bを駆動中に、何かしらの要因により出力部Bの駆動を一時的に中断した後、出力部Bの駆動を再開するような場合等に実行される。
【0093】
ここで、ステップST8の処理が、本発明における「前記第1判定手段の判定結果が肯定的であり且つ前記第2判定手段の判定結果が否定的であるとき、前記被駆動要素の変位と前記駆動要素の変位との差が所定の値以下となるように前記駆動源を制御する」ことに相当する。
【0094】
ステップST7で、クラッチが接続されていると判定された場合、ステップST9に進み、フィードバックトルク制御を行う。ここで、フィードバックトルク制御とは、出力部Bに伝達されるトルクが、制御装置A4の図示しない処理によって決定された目標とするトルクになるように、モータA2の出力トルクを制御することである。
【0095】
このフィードバックトルク制御は、既に公知となっている様々な制御処理が適用できる。例えば、特開2011−115878号公報等には、駆動要素(モータA2)と被駆動要素(出力部B)との間に弾性要素が配置されている場合において、駆動要素を制御する技術について記載されている。ステップST9では、例えば、当該公報に記載されている制御を実行する。
【0096】
ステップST8又はステップST9の処理が終了すると、本制御処理を終了する。
【0097】
ここで、ステップST9の処理が、本発明における「前記第1判定手段の判定結果が肯定的であり且つ前記第2判定手段の判定結果が肯定的であるとき、前記被駆動要素に伝達される動力を制御する」ことに相当する。
【0098】
なお、中間部材4の特性変更部43に印加している電圧から、クラッチ6,46が伝達状態であるか否かを判定することができる。しかしながら、中間部材4の個体差又は周辺環境の状態(例えば、温度等)によって、中間部材4の特性変更部43に印加している電圧が、所定の電圧V1以上であったとしても駆動側クラッチ板46と従動側クラッチ板6とが接触していない(すなわち、非伝達状態である)可能性がある。
【0099】
このような場合のために、ステップST7の処理において、クラッチ6,46が伝達状態ではないと判定されたときに、中間部材4に印加されている電圧が所定の電圧V1以上であるような場合には、当該所定の電圧V1を補正してもよい(以下、このように補正することを「補正処理」という)。詳細には、制御装置A4は、補正処理において、クラッチ6,46が非伝達状態から伝達状態に遷移したときの、中間部材4に印加されている電圧を新たな所定の電圧V1となるように設定する。
【0100】
以上のように、制御装置A4によって、モータA2及び中間部材4が制御される。
【0101】
以上のように、本実施形態の動力伝達装置1は、モータA2のトルクが中間部材4を介して出力部Bに伝達される。すなわち、モータA2と出力部Bとの間の動力伝達経路上に、動力伝達要素として粘性を有する可変粘性係数部42を備えるので、出力部Bの制御時において、機械的に出力部Bの振動を収束させることができる。また、制御装置A4の制御によって可変剛性部41の剛性を変更できるので、状況に応じて出力部Bを柔軟に制御することができる。
【0102】
また、制御装置A4は、図2に示されるような電圧特性に応じて、剛性及び粘性係数を変更するので、出力部Bの振動の減衰率を一定にできる。このため、制御装置A4は、前回の制御周期の出力部Bの振動から、現時点の制御周期の出力部Bの振動を予測しやすくなり、制御処理を簡単にできる。このように、剛性及び粘性係数が変更可能な動力伝達要素を用いて、その剛性及び粘性係数を適宜変更することにより、制御対象の発振を効果的に抑制できる。
【0103】
[実施例1]
次に、本実施形態の動力伝達装置の具体的な実施例について説明する。まず、実施例1について説明する。
【0104】
図4は、実施例1の動力伝達装置11を示す図である。動力伝達装置11は、モータA2と、制御装置A4と、減速機2と、外枠3と、中間部材401と、入力側トルクセンサ5と、出力側トルクセンサ7と、出力部Bとを備える。モータA2は、実施形態の説明と同様に、電力が供給されることでモータ出力軸A2aを回転させるトルクを出力する電動機である。
【0105】
減速機2は、例えば、ハーモニックドライブ(登録商標)等が用いられる。減速機2には、略円柱状に形成された入力側トルクセンサ5が配置されている。入力側トルクセンサ5は、ひずみゲージを用いたトルクセンサである。入力側トルクセンサ5は、自身の歪みに応じて減速機2から出力されたトルクを検知し、当該トルクの大きさに応じた電気信号を出力する。
【0106】
入力側トルクセンサ5には、外枠3が接続されている。外枠3は、略円筒状に形成されており、その中空部には、略円筒状の中間部材401が固定されている。なお、中間部材401は、他の形状であってもよい。例えば、長さ方向に貫通孔が設けられた四角柱等であってもよい。本明細書においては、筒状とは、円筒状以外にもこのような形状のものも含むものとする。
【0107】
中間部材401は、電圧が印加されている状態であるとき、中空部の空間を減少するように構成されている。詳細には、中間部材401は、図4(b)及び(c)に示されるように、制御装置A4の制御によって、電圧が印加されている状態であるとき(図4(c))、電圧が印加されていない状態であるとき(図4(b))に比べて、当該中間部材401の中空部の径が小さくなる。ここで、制御装置A4が、本発明における「電圧印加部」に相当する。
【0108】
この中空部の空間の減少は、図5に模式的に示されるように、中間部材401を構成することで実現されている。図5(a)は、中間部材401に電圧が印加されていない状態を示し、図5(b)は、中間部材401に電圧が印加されている状態を示す。図5(a)に示されるように、中間部材401は、陽極Pと、陰極Mと、導電性高分子アクチュエータEとを備える。これらは、「陰極M→導電性高分子アクチュエータE→陽極P」の順に積層されている(以下、このように積層されたものをまとめていうときは「積層体M,E,P」という)。このような積層体M,E,Pは、陽極Pと陰極Mとの間に電位差が生じたときには、導電性高分子アクチュエータEの陽極P側が伸びると共に、導電性高分子アクチュエータEの陰極M側が縮む。
【0109】
このような積層体M,E,Pは、その径方向外側から径方向内側に向かうに従って、陰極M側から陽極P側に向かって傾斜するように形成されている。これにより、陽極Pと陰極Mとの間に電位差が生じた場合には、図5(b)に示されるように、陰極M側が縮み、陽極P側が伸びるので、前記積層体M,E,Pの傾斜が緩やかになる(傾斜の角度は、「中間部材401の径方向」と「傾斜」との間の角度とする。)。これにより、図5(b)の積層体M,E,Pの中空部の径は、図5(a)の積層体M,E,Pの中空部の径(図5(b)の破線)に比べて小さくなる。
【0110】
このとき、陽極Pと陰極Mとの間の電位差が大きい程、傾斜は緩やかになる。そして、傾斜が緩やかになるほど、積層体M,E,P(ひいては中間部材401)の中空部の径は小さくなる。
【0111】
更に、導電性高分子アクチュエータEは、電圧が印加されることで、剛性及び粘性係数が変化する。実施例1の中間部材401に用いられる導電性高分子アクチュエータEは、電圧に対する剛性及び粘性係数の特性を、図2に示されるように構成している。
【0112】
中間部材401の中空部には、略円柱状に形成された出力側トルクセンサ7が配置されている。出力側トルクセンサ7は、入力側トルクセンサ5と同様に、ひずみゲージを用いたトルクセンサであり、その歪みに応じて当該出力側トルクセンサ7に伝達されたトルクを検知し、当該トルクの大きさに応じた電気信号を出力する。
【0113】
出力側トルクセンサ7は、中間部材401に電圧が印加されていないとき、中間部材401の中空部の壁面(以下、「中間部材壁面」という)401aに、当該出力側トルクセンサ7の壁面(以下、「出力側壁面」という)7aが接触しない大きさに形成されると共に、中間部材401に印加される電圧が所定の電圧V1以上であるとき、中間部材壁面401aに、出力側壁面7aが接触する大きさに形成される。また、「中間部材壁面4a」及び「出力側壁面7a」は、互いが接触しているときには、大きな摩擦力が発生するように構成されている。
【0114】
また、出力側トルクセンサ7には、負荷が接続される出力部Bが固定されている。
【0115】
以上のように構成されているので、所定の電圧V1以上の電圧が中間部材401に印加されているとき、中間部材壁面401aと出力側壁面7aとが接触するので、モータA2から出力されたトルクは、中間部材401を介して出力部Bに伝達される。このとき、モータA2、中間部材401、及び出力部Bは、互いに共通の軸心周りで回転する。一方、中間部材401に電圧が印加されていないか、又は所定の電圧V1未満の電圧が中間部材401に印加されているとき、中間部材壁面401aと出力側壁面7aとが接触していないので、モータA2から出力されたトルクは、出力部Bに伝達されない。
【0116】
このように、中間部材401に所定の電圧V1以上の電圧を印加するか否かによって、出力部Bへトルクが伝達されるか否かが決定される。すなわち、中間部材壁面401aと出力側壁面7aとによってクラッチ機構が構成されていることに相当している。
【0117】
ここで、実施例1の中間部材401が、実施形態の中間部材4に相当し、導電性高分子アクチュエータEが、実施形態の可変剛性部41及び可変粘性係数部42に相当する。更に、実施例1の中間部材壁面401aが、実施形態の駆動側クラッチ板46に相当する。また、実施例1の出力側壁面7aが、実施形態の従動側クラッチ板6に相当する。
【0118】
また、出力部Bには、外枠3との相対的な回転角度を検知するためのエンコーダB11が配置されている。これにより、エンコーダB11は、出力側壁面7a(ひいては出力部B)に対する外枠3の相対的な変位(回転角度)を検知していることとなる。従って、中間部材壁面401aと出力側壁面7aとが接触しているとき、これらの相対的な変位は0であるので、エンコーダB11が検知した変位は、中間部材401に伝達されたトルクに応じた当該中間部材401のねじれ方向の変位を示す。ここで、実施例1のエンコーダB11が、実施形態の変位用エンコーダB1に相当する。
【0119】
以上のように、本実施形態の動力伝達装置1は、中間部材401として導電性高分子アクチュエータを用いているので、その剛性及び粘性係数を変更することができる。
【0120】
[実施例2]
次に、本発明の実施例2の動力伝達装置12について図6を参照して説明する。実施例2の動力伝達装置12は、実施例1の動力伝達装置11に比べて、中間部材及び出力側の構成が異なっている。本実施形態においては、図6に示されるように、中間部材402は、導電性高分子アクチュエータからなり、略円柱状に形成されている。このため、導電性高分子アクチュエータは、電圧が印加されることで剛性及び粘性係数が変化する。なお、中間部材402は、略円柱状のみならず、例えば、柱状及び筒状等、他の形状であってもよい。
【0121】
そして、中間部材402の円柱状の左側の端部には、クラッチ板としての役目を果たす入力側クラッチ板462が固定されている。入力側クラッチ板462は、その径が中間部材402の径よりも大きく形成されている。ここで、入力側クラッチ板462が、本発明における「凸部」に相当する。
【0122】
中間部材402は、図7(a)に模式的に示されるように構成されている。中間部材402は、「陰極M→導電性高分子アクチュエータE→陽極P」の順に積層した複数の積層体M,E,Pを、絶縁層Iを介して積層している。これにより、陰極Mと陽極Pとの間に電位差が生じたときには、図7(b)に模式的に示されるように、導電性高分子アクチュエータEの伸縮により、陰極Mと陽極Pとの間の電位差が0のときに比べて、軸線方向に短くなる。このとき、電位差が大きい程軸線方向に短くなる。
【0123】
従って、中間部材402は、図6に示されるように、電圧の印加の有無により伸縮する。図6(b)は、中間部材402に電圧が印加されていない状態を示し、図6(c)は、中間部材402に電圧が印加されている状態を示す。これらに示されるように、中間部材402は、電圧が印加されることで円柱状の軸線方向(図6の左右方向)に縮むように構成されている。
【0124】
また、動力伝達装置12は、中心部に、中間部材402の径よりも大きな孔が設けられた出力側トルクセンサ72を備えている。出力側トルクセンサ72は、その孔に中間部材402が配置される。このとき、入力側クラッチ板462が出力側トルクセンサ72よりも図6の左側に位置するように配置される。そして、出力側トルクセンサ72には、負荷が接続される出力部Bが固定されている。
【0125】
また、入力側クラッチ板462の表面、特に図6の右側の表面(以下、「入力側クラッチ板摩擦面」という)462aと、出力側トルクセンサ72の表面、特に図6の左側の表面(以下、「出力側摩擦面」という)72aとは、互いが接触したときに、大きな摩擦力が発生するように構成されている。すなわち、出力側トルクセンサ72は、従動側のクラッチ板としても機能する。
【0126】
そして、中間部材402に所定の電圧V1以上の電圧が印加されたとき、中間部材402が軸方向に縮み、入力側クラッチ板摩擦面462aと出力側摩擦面72aとが接触する。また、中間部材402に印加される電圧が所定の電圧V1未満であるとき、中間部材402は軸方向に伸び、入力側クラッチ板摩擦面462aと出力側摩擦面72aとが離れる。
【0127】
以上のように、動力伝達装置12が構成されているので、中間部材402に印加する電圧を調整することで、駆動要素としてのモータA2の動力を、被駆動要素としての出力部Bに伝達するか否かを切り替えることができる。
【0128】
ここで、実施例2の中間部材402が、実施形態の中間部材4に相当し、導電性高分子アクチュエータEが、実施形態の可変剛性部41及び可変粘性係数部42に相当する。更に、実施例2の入力側クラッチ板462が、実施形態の駆動側クラッチ板46に相当する。また、実施例2の出力側摩擦面72aが、実施形態の従動側クラッチ板6に相当する。
【0129】
また、出力側トルクセンサ72には、入力側トルクセンサ5との相対的な回転角度を検知するためのエンコーダB12が配置されている。これにより、エンコーダB12は、出力側トルクセンサ72(ひいては出力部B)に対する入力側トルクセンサ5の相対的な変位(回転角度)を検知していることとなる。従って、入力側クラッチ板摩擦面462aと出力側摩擦面72aとが接触しているとき、これらの相対的な変位は0であるので、エンコーダB12が検知した変位は、中間部材402に伝達されたトルクに応じた当該中間部材402のねじれ方向の変位を示す。ここで、実施例2のエンコーダB12が、実施形態の変位用エンコーダB1に相当する。
【0130】
[実施例3]
次に、本発明の実施例3の動力伝達装置13について図8を参照して説明する。実施例3の動力伝達装置13は、実施例2の動力伝達装置12に比べて、入力側トルクセンサ5から出力部Bまでの構成が異なっている。
【0131】
実施例3の動力伝達装置13では、減速機2に、円柱状の入力側トルクセンサ5が固定されている。そして、入力側トルクセンサ5の減速機2が固定されている側とは反対側の端部には、円盤状の入力側クラッチ板463が固定されている。入力側クラッチ板463は、その径が入力側トルクセンサ5の径よりも大きく形成されている。
【0132】
また、動力伝達装置13は、略円筒状の出力側トルクセンサ73を備えている。出力側トルクセンサ73の径は、入力側トルクセンサ5の径よりも大きく且つ入力側クラッチ板463の径よりも小さく形成されている。そして、出力側トルクセンサ73の孔に、入力側トルクセンサ5が挿通して配置されている。このとき、入力側クラッチ板463が、出力側トルクセンサ73よりも図8の左側に位置するように配置される。
【0133】
そして、出力側トルクセンサ73には、略円柱状に形成された3つの中間部材403の各々の一端が固定されている。3つの中間部材403の各々の他端は、負荷が接続される出力部Bに固定されている。3つの中間部材403の各々は、実施例2の中間部材402と同様に、電圧が印加されたときに、軸線方向に伸縮するように構成されている。なお、中間部材403は3つのみならず他の数であってもよい。また、中間部材403は円柱状のみならず他の柱状及び筒状等他の形状であってもよい。
【0134】
また、入力側クラッチ板463の表面、特に図8の右側の表面(以下、「入力側クラッチ板摩擦面」という)463aと、出力側トルクセンサ73の表面、特に図8の左側の表面(以下、「出力側摩擦面」という)73aとは、互いが接触したときに、大きな摩擦力が発生するように構成されている。すなわち、出力側トルクセンサ72は、従動側のクラッチ板としても機能する。
【0135】
そして、中間部材403に所定の電圧V1以上の電圧が印加されたとき、図8(c)に示されるように、中間部材403が軸方向に縮み、入力側クラッチ板摩擦面463aと出力側摩擦面73aとが接触する。また、中間部材403に印加される電圧が所定の電圧V1未満であるとき、図8(b)に示されるように、中間部材403は軸方向に伸び、入力側クラッチ板摩擦面463aと出力側摩擦面73aとが離れる。
【0136】
以上のように、動力伝達装置13が構成されているので、中間部材403に印加する電圧を調整することで、駆動要素としてのモータA2の動力を、被駆動要素としての出力部Bに伝達するか否かを切り替えることができる。
【0137】
ここで、実施例3の中間部材403が、実施形態の中間部材4に相当し、導電性高分子アクチュエータEが、実施形態の可変剛性部41及び可変粘性係数部42に相当する。更に、実施例3の入力側クラッチ板463が、実施形態の駆動側クラッチ板46に相当する。また、実施例3の出力側摩擦面73aが、実施形態の従動側クラッチ板6に相当する。
【0138】
また、出力側トルクセンサ73には、入力側トルクセンサ5との相対的な回転角度を検知するためのエンコーダB13が配置されている。これにより、エンコーダB13は、出力側トルクセンサ73(ひいては出力部B)に対する入力側トルクセンサ5の相対的な変位(回転角度)を検知していることとなる。従って、入力側クラッチ板摩擦面463aと出力側摩擦面73aとが接触しているとき、これらの相対的な変位は0であるので、エンコーダB13が検知した変位は、中間部材403に伝達されたトルクに応じた当該中間部材403のねじれ方向の変位を示す。ここで、実施例3のエンコーダB13が、実施形態の変位用エンコーダB1に相当する。
【0139】
[実施例4]
次に、実施例4の動力伝達装置14について図9及び図10を参照して説明する。実施例4の動力伝達装置14は、実施例1の動力伝達装置11に比べて、入力側トルクセンサから出力部までの構成が異なっている。
【0140】
図9(a)に示されるように、入力側トルクセンサ54は、略円柱状に形成されている。入力側トルクセンサ54の一端には、減速機2が固定され、他端には、3つの非線形ばね414が固定されている。なお、非線形ばね414は3つに限らずいくつであってもよい。また、図10(a)に示されるように、入力側トルクセンサ54の他端には、その面に対する法線方向に沿って見たときに円形状となる凹部541が設けられている。そして、凹部541内を満たすように、粘性液としてのグリス542が充填されている。
【0141】
3つの非線形ばね414の入力側トルクセンサ54が接続されている側とは反対側の端部は、円盤状に形成された入力側クラッチ板464が固定されている。そして、入力側クラッチ板464の非線形ばね414が固定されている面とは反対側の面(以下、「入力側クラッチ板摩擦面」という)464aに対して、略円柱状の出力側トルクセンサ74が、当該センサ74の一方の面である出力側摩擦面74aを向けた状態で配置されている。このとき、入力側クラッチ板摩擦面464aと出力側摩擦面74aとは、互いに距離を設けて配置されている。
【0142】
出力側トルクセンサ74の出力側摩擦面74aとは反対側の面には、略柱状に形成された3つの圧電素子434の各々の一端が接続されている。そして、3つの圧電素子434の各々の他端が、出力部Bに接続されている。なお、圧電素子434は3つに限らずいくつであってもよい。また、圧電素子は、柱状及び筒状等、他の様々な形状であってもよい。
【0143】
圧電素子434は、電圧を加えると変形する圧電体Zと、当該圧電体Zを陰極Mと陽極Pとで挟持するように積層されている。実施例2及び実施例3において、積層体M,E,Pは、導電性高分子アクチュエータEを陰極Mと陽極Pとで挟持するように積層して構成されていたが、実施例4においては、この積層体M,E,Pの導電性高分子アクチュエータEを圧電体Zに置きかえた積層体M,Z,Pを用いている。そして、この実施例4における積層体M,Z,Pを、実施例2及び実施例3と同様に、複数積層することで、圧電素子434を構成している。
【0144】
このように構成された実施例4における積層体M,Z,Pは、陰極Mと陽極Pとの間に電位差が生じたときに圧電体Zが積層方向に向かって長くなるので、その積層方向に向かって長くなる。従って、圧電素子434は、電圧が印加されることで(詳細には、圧電素子434を構成する陰極Mと陽極Pとの間に電位差を生じさせることで)、当該圧電素子434の円柱上の軸線方向に長くなる(図9の右方向に向かって伸びる)。このとき、圧電素子434は、電位差が大きいほど長くなる。
【0145】
圧電素子434に電圧が印加されると、互いに距離を設けて配置されていた入力側クラッチ板摩擦面464aと出力側摩擦面74aとの距離が近付く。そして、圧電素子434に印加される電圧が所定の電圧V1以上になると、図9(b)に示されるように、入力側クラッチ板摩擦面464aと出力側摩擦面74aとが接触する。この状態において、入力側クラッチ板464に伝達されたトルクが、出力側トルクセンサ74に伝達される伝達状態になる。このように動力伝達装置14が構成されているので、圧電素子434に印加する電圧を調整することで、駆動要素としてのモータA2の動力を、被駆動要素としての出力部Bに伝達するか否かを切り替えることができる。
【0146】
更に、圧電素子434に印加される電圧が所定の電圧V1より大きくなると、非線形ばね414が図9の右方向に向かって付勢される。これにより、非線形ばね414の剛性が大きくなる。実施例4で用いられる非線形ばね414は、押圧方向(図9の右方向)に変位することで、ねじり方向(モータ出力軸A2aの回転方向)の剛性が変化するように構成されている。従って、非線形ばね414は、圧電素子434に付勢されることで、入力側トルクセンサ54に伝達されたモータA2の出力トルクに対する剛性が変化する。
【0147】
また、入力側クラッチ板464の入力側クラッチ板摩擦面464aとは反対の面には、入力側トルクセンサ54に向かって突出した凸部464bが設けられている。凸部464bは、円筒状の径方向断面の一部が欠けた円弧状に形成されている。この凸部464bは、その先端が凹部541に挿入される。
【0148】
凹部541は、上述したように、入力側トルクセンサ54の面の法線方向に沿って見たときに円形状に形成されている。このとき、凹部541の円形状の中心点と入力側トルクセンサ54の回転軸の中心点とは同一となっている。これにより、入力側トルクセンサ54と入力側クラッチ板464との相対角度が変化した場合であっても、その回転方向において凹部541と凸部464bとが互いに移動を邪魔することが防止されている。
【0149】
なお、凸部464bは、円筒状の一部が欠けている必要はなく「円筒状(径方向断面が環状)」であってもよい。また、入力側トルクセンサ54と入力側クラッチ板464との相対角度が変化した場合であっても、その回転方向において凹部541と凸部464bとが互いに移動を邪魔することがなければ、どのような形状であってもよい。
【0150】
図10(b)は、圧電素子434に電圧が印加されていない状態を示し、図10(c)は、圧電素子434に所定の電圧V1以上の電圧が印加されていない状態を示す。図10(b)に示されるように、凸部464bの側面の一部がグリス542に接触しているので、入力側トルクセンサ54と入力側クラッチ板464との相対回転速度が変化する場合には、当該接触している面積に応じて、回転方向に対する粘性力が発生する。
【0151】
圧電素子434に所定の電圧V1以上の電圧が印加されることで、図10(c)に示されるように、凸部464bが凹部541の底辺側に向かって(図10(c)の右方向に向かって)移動する。これにより、凸部464bとグリス542との接触面積が増加する。このように接触面積が増加すると、増加する前と比べて前記粘性力が大きくなる。すなわち、圧電素子434に所定の電圧V1以上の電圧が印加された場合、その電圧が大きくなるほど粘性力が大きくなる。
【0152】
以上のように、制御装置A4は、圧電素子434に印加する電圧に応じて、「非線形ばね414の剛性」及び「凸部464bとグリス542による粘性係数」を変化させることができる。
【0153】
ここで、実施例4の非線形ばね414が、実施形態の可変剛性部41に相当する。実施例4の凸部464b及びグリス542が、実施形態の可変粘性係数部42に相当する。また、実施例4の圧電素子434が、実施形態の特性変更部43に相当する。更に、実施例4の入力側クラッチ板464が、実施形態の駆動側クラッチ板46に相当すると共に、本発明の第3要素に相当する。また、入力側トルクセンサが、本発明の第4要素に相当する。また、実施例4の出力側摩擦面74aが、実施形態の従動側クラッチ板6に相当する。
【0154】
また、入力側クラッチ板464には、入力側トルクセンサ54との相対的な回転角度を検知するためのエンコーダB14が配置されている。これにより、エンコーダB14は、入力側クラッチ板464に対する入力側トルクセンサ54の相対的な変位(回転角度)を検知していることとなる。従って、エンコーダB14が検知した変位は、非線形ばね414のねじれ方向の変位を示す。ここで、実施例4のエンコーダB14が、実施形態の変位用エンコーダB1に相当する。
【0155】
なお、実施例4においては、凸部464bを入力側クラッチ板464に設け、凹部541を入力側トルクセンサ54に設けているがこれに限らない。例えば、凸部を入力側トルクセンサに設け、凹部を入力側クラッチ板に設けてもよい。この場合には、入力側クラッチ板が本発明の第4要素に相当し、入力側トルクセンサが本発明の第3要素に相当する。
【0156】
また、実施例4においては、凸部464b及び凹部541(第3要素及び第4要素)が、入力側クラッチ板464とモータA2との間(クラッチ機構より駆動要素側)に設けられており、圧電素子434(圧電素子)が出力側トルクセンサ74と出力部Bとの間(クラッチ機構より被駆動要素側)に設けられているが、これに限らない。例えば、第3要素及び第4要素を、クラッチ機構より非駆動要素側に設け、圧電素子をクラッチ機構より駆動要素側に設けてもよい。
【0157】
導電性高分子アクチュエータは、電動機等のモータの駆動源に比べた場合には作動が遅い。このため、導電性高分子アクチュエータを高速な制御に用いることは難しい。しかしながら、導電性高分子アクチュエータは、「単位重量又は単位体積辺りの発生力が大きい」、「軽量」、「駆動構造が単純で小型化できる」、「分子レベルの作動であるため駆動音がない(又はあってもノイズとなるような音にはならない)」及び「低電圧で駆動可能」等の様々な利点がある。
【0158】
このため、導電性高分子アクチュエータの反応速度が許容できる用途であれば、採用するメリットが大きい。例えば、クラッチのような伝達状態と非伝達状態を切り替えるような用途においては、1[ms]等といった高速な制御が必須とはなりにくい。
【0159】
また、導電性高分子アクチュエータは、電圧を印加することにより、剛性及び粘性係数が変化する。
【0160】
そこで、本発明者は、この点に着目し、実施例1〜3において、負荷を動かすための駆動源としてではなく、剛性及び粘性係数を変化させる部材、及びクラッチ機能を果たす部材として採用するに至った。これにより、動力伝達装置に従来のクラッチ機構を配置するものに比べて、重量及び大きさの点で有利な動力伝達装置を構成できる。
【0161】
更に、導電性高分子アクチュエータは、剛性及び粘性係数を変化させることができるので、弾性部材の剛性を変化させるための機構と粘性部材の粘性係数を変化させるための機構とを別途備えるものに比べて、構造を簡単にでき、部品点数を減少でき、軽量化及び小型化が可能となった。
【符号の説明】
【0162】
1…動力伝達装置(本実施形態の動力伝達装置)、A2…モータ(駆動要素)、A4…制御装置(第1変更部、第2変更部、電圧印加部、制御手段)、B…出力部(被駆動要素)、V1…所定の電圧(所定の電圧)、41…可変剛性部(第1要素)、42…可変粘性係数部(第2要素)、11…動力伝達装置(実施例1の動力伝達装置)、401…中間部材(実施例1の第1要素、第2要素、導電性高分子アクチュエータ)、12…動力伝達装置(実施例2の動力伝達装置)、402…中間部材(実施例2の第1要素、第2要素、導電性高分子アクチュエータ)、462…入力側クラッチ板(凸部)、13…動力伝達装置(実施例3の動力伝達装置)、403…中間部材(実施例3の第1要素、第2要素、導電性高分子アクチュエータ)、14…動力伝達装置(実施例4の動力伝達装置)、414…非線形ばね(第1要素、剛性変化部)、424…可変粘性係数部(粘性係数変化部)、541…凹部(第2要素、第4要素、凹部)、542…グリス(粘性液)、464…入力側クラッチ板(第2要素、第3要素)、464b…凸部(第2要素、凸部)、434…圧電素子。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10