(58)【調査した分野】(Int.Cl.,DB名)
取鍋内の溶鋼に真空槽の浸漬管を浸漬し、大気圧よりも低い減圧下において前記浸漬管を通じ前記取鍋と前記真空槽との間で前記溶鋼を環流させつつ前記溶鋼の脱炭処理を行う真空脱ガス装置を用いた溶鋼の脱炭処理方法において、
前記取鍋と前記真空槽との間における前記溶鋼の環流量を、前記溶鋼の環流に伴う前記浸漬管の内径の増減変化を加味して算出し、算出した前記溶鋼の環流量と、前記脱炭処理における前記溶鋼中の炭素に関する物質収支式と、前記溶鋼の脱炭速度と、前記真空槽内における前記溶鋼の脱炭反応を表す槽内反応モデル式とをもとに、前記溶鋼中の炭素濃度を推定する溶鋼炭素濃度推定ステップと、
前記溶鋼炭素濃度推定ステップによって推定した前記炭素濃度が所定の目標値に達したタイミングに前記脱炭処理を終了する脱炭処理終了ステップと、
を含むことを特徴とする溶鋼の脱炭処理方法。
【発明を実施するための形態】
【0015】
以下に、添付図面を参照して、本発明にかかる真空脱ガス装置およびこれを用いた溶鋼の脱炭処理方法の好適な実施の形態について詳細に説明する。なお、本実施の形態により、本発明が限定されるものではない。また、各図面において、同一構成部分には同一符号を付している。
【0016】
(真空脱ガス装置)
まず、本発明の実施の形態にかかる真空脱ガス装置について説明する。
図1は、本発明の実施の形態にかかる真空脱ガス装置の一構成例を示す図である。本実施の形態にかかる真空脱ガス装置1は、溶鋼16に浸漬する2つの浸漬管を有するRH方式の真空脱ガス装置である。具体的には、
図1に示すように、真空脱ガス装置1は、溶鋼16を収容する取鍋2と、取鍋2内の溶鋼16に浸漬する上昇側浸漬管3aおよび下降側浸漬管3bを有する真空槽3と、真空槽3内の圧力を減圧する真空排気装置4とを備える。また、真空脱ガス装置1は、取鍋2と真空槽3との間における溶鋼16の環流のための環流用ガス供給管5と、環流用ガスのガス弁6と、環流用ガス流量計7と、溶鋼16の脱炭処理を終了するための脱酸材投入部8とを備える。さらに、真空脱ガス装置1は、真空槽3内の圧力を計測する槽内真空度計9と、真空槽3からの排ガス流量を計測する排ガス流量計10と、排ガスの成分分析を行う排ガス成分分析計11と、溶鋼16の温度および溶鋼16中の酸素濃度を測定する測定プローブ12と、入力部13と、記憶部14と、制御部15とを備える。
【0017】
取鍋2は、転炉(図示せず)等によって精錬された溶鋼16を収容する。溶鋼16を収容した取鍋2は、真空槽3の下部側の位置に移動し、真空槽3に向かって上昇する等して、真空槽3の上昇側浸漬管3aおよび下降側浸漬管3bをこの溶鋼16中に浸漬させる。なお、本実施の形態において、溶鋼16は、真空脱ガス装置1による溶鋼16の脱炭処理に必要な酸素が溶存酸素として含有している。すなわち、この溶鋼16を脱炭処理するに際し、真空槽3内の溶鋼16の表面に酸素を吹き付けて供給する必要はない。また、溶鋼16を脱炭処理するための酸素が不足する場合は、上吹きランス等の酸素供給機構(図示せず)から溶鋼16に酸素を供給してもよい。
【0018】
真空槽3は、大気圧よりも低い減圧下で溶鋼16の脱炭処理を行うためのものである。具体的には、
図1に示すように、真空槽3は、取鍋2内の溶鋼16に浸漬する2つの浸漬管すなわち上昇側浸漬管3aおよび下降側浸漬管3bを下部に有し、排ガスを排出する排気管3cを上部に有する。真空槽3は、真空引き等によって排気管3cから真空槽3内のガスを排出し、これにより、大気圧よりも低い減圧空間を形成する。この減圧空間は、例えば、所定値以上の真空度を有する略真空状態の空間である。真空槽3は、上昇側浸漬管3aおよび下降側浸漬管3bを取鍋2内の溶鋼16に浸漬した状態において、この減圧空間を形成し、この減圧空間の圧力状態下(減圧下)で上昇側浸漬管3aおよび下降側浸漬管3bを通じ取鍋2から溶鋼16を吸引する。ついで、真空槽3は、上昇側浸漬管3aおよび下降側浸漬管3bを通じ取鍋2との間で溶鋼16を環流させつつ、この減圧空間に溶鋼16を曝すことにより、溶鋼16の脱炭処理を行う。
【0019】
真空排気装置4は、真空槽3からガスを排出する装置である。具体的には、
図1に示すように、真空排気装置4は、真空槽3の排気管3cに設けられる。真空排気装置4は、排気管3cを通じて真空槽3内を真空引きし、これにより、真空槽3内を上述した減圧状態(略真空状態)にする。また、真空排気装置4は、吸引動作等により、排気管3cを通じて真空槽3内から排ガスを真空脱ガス装置1の外部に排出する。この排ガスは、真空槽3内において行われる溶鋼16の脱炭処理の際に発生するガスを含む混合ガスである。この脱炭処理の際の発生ガスは、脱炭処理によって溶鋼16から離脱した炭素成分を含有するガス、例えば一酸化炭素(CO)および二酸化炭素(CO
2)等である。
【0020】
環流用ガス供給管5は、取鍋2と真空槽3との間において溶鋼16を環流させるための環流用ガスの供給管である。具体的には、
図1に示すように、環流用ガス供給管5は、その出口端を真空槽3の上昇側浸漬管3aに接続する態様に配置される。環流用ガス供給管5は、上昇側浸漬管3a内の溶鋼16に環流用ガスを吹き込み、これによって生じるエアリフトポンプ作用により、上昇側浸漬管3a内の溶鋼16を取鍋2側から真空槽3側へ上昇させる(
図1に示す破線矢印参照)。これに伴い、真空槽3内の溶鋼16は、減圧下で脱炭処理された後に下降側浸漬管3bを通じて真空槽3側から取鍋2側へ下降する(
図1に示す破線矢印参照)。溶鋼16は、このように上昇側浸漬管3aおよび下降側浸漬管3bを通じて、取鍋2と真空槽3との間で環流(循環)する。なお、上述したように環流用ガス供給管5から上昇側浸漬管3a内に供給される環流用ガスとして、例えば、アルゴンガス等の不活性ガスが用いられる。
【0021】
ガス弁6は、
図1に示すように環流用ガス供給管5に設けられ、制御部15によって弁開閉動作を制御される自動開閉弁である。ガス弁6は、制御部15の制御に基づいて弁開動作を行い、これにより、環流用ガス供給管5から上昇側浸漬管3a内への環流用ガスの供給を可能にする。また、ガス弁6は、制御部15の制御に基づいて弁閉動作を行い、これにより、この環流用ガスの供給を停止する。
【0022】
環流用ガス流量計7は、環流用ガス供給管5の所定の位置、例えば
図1に示すように環流用ガス供給管5の出口端(上昇側浸漬管3aとの接続端)からガス弁6との間の位置に設けられる。環流用ガス流量計7は、環流用ガス供給管5を通じて上昇側浸漬管3a内に供給される環流用ガスの流量(以下、環流用ガス流量という)を計測し、その都度、計測した環流用ガス流量を示す電気信号を制御部15に送信する。
【0023】
脱酸材投入部8は、溶鋼16の脱炭処理を終了させるための脱酸材を溶鋼16に投入するものである。具体的には、
図1に示すように、脱酸材投入部8は、取鍋2の開口部近傍に配置される。脱酸材投入部8は、制御部15によって脱酸材の投入タイミングを制御され、制御部15から指示された投入タイミングに、溶鋼16の脱炭処理の終了に要する量の脱酸材を取鍋2内の溶鋼16に投入する。なお、この脱酸材として、例えば、アルミニウム(Al)等が用いられる。
【0024】
槽内真空度計9は、真空槽3内の真空度を計測する。具体的には、
図1に示すように、槽内真空度計9は、真空槽3の上部内壁の所定位置(例えば排気管3cの近傍)に設けられる。槽内真空度計9は、上述した真空排気装置4の作用によって減圧される真空槽3内の圧力(以下、真空槽内圧力という)を真空度として計測し、その都度、計測した真空槽内圧力を示す電気信号を制御部15に送信する。
【0025】
排ガス流量計10は、真空槽3から排出される排ガスの流量を計測する。具体的には、
図1に示すように、排ガス流量計10は、真空槽3の排気管3cの所定位置に設けられる。排ガス流量計10は、溶鋼16の脱炭処理の際に真空槽3から排気管3cを通じて外部に排出される排ガスの流量(以下、排ガス流量という)(排ガス流量は標準状態とする。)を計測し、その都度、計測した排ガス流量を示す電気信号を制御部15に送信する。
【0026】
排ガス成分分析計11は、真空槽3から排出される排ガス中の炭素成分含有のガス濃度を計測する。具体的には、
図1に示すように、排ガス成分分析計11は、真空槽3の排気管3cの所定位置(例えば排ガス流量計10の近傍)に設けられる。排ガス成分分析計11は、溶鋼16の脱炭処理の際に真空槽3から排気管3cを通じて外部に排出される排ガスの成分分析を行う。これにより、排ガス成分分析計11は、この排ガス中の炭素成分含有のガス濃度、詳細には一酸化炭素濃度および二酸化炭素濃度を計測する。その都度、排ガス成分分析計11は、計測した排ガス中の一酸化炭素濃度(以下、排ガスCO濃度という)および二酸化炭素濃度(以下、排ガスCO
2濃度という)を示す電気信号を制御部15に送信する。
【0027】
測定プローブ12は、溶鋼16の温度と溶鋼16中の酸素濃度とを計測する温度濃度計測部として機能する。具体的には、測定プローブ12は、プローブ形状の筐体内に温度検出器と酸素濃度検出器とを内蔵したプローブ型測定器である。測定プローブ12は、
図1に示すように、取鍋2内の溶鋼16中に適宜浸漬し、この溶鋼16の温度(以下、溶鋼温度という)および溶鋼16中の酸素濃度(以下、溶鋼酸素濃度という)を計測する。その都度、測定プローブ12は、計測した溶鋼温度および溶鋼酸素濃度を示す電気信号を制御部15に送信する。
【0028】
入力部13は、脱炭処理対象の溶鋼16中の炭素濃度を推定するための演算処理に必要な各種情報を制御部15に入力する。例えば、入力部13は、取鍋2内に収容された1チャージ分の溶鋼16を真空脱ガス装置1が受け入れる都度、この受け入れた1チャージ分の溶鋼16の全重量(以下、溶鋼重量という)を示す電気信号を制御部15に入力する。また、入力部13は、真空槽3の浸漬管内径、演算処理に用いる定数等の各種情報を制御部15に入力する。本実施の形態において、真空槽3の浸漬管内径は、未使用または設備仕様上の浸漬管の内径等、浸漬管本来の内径である。このような浸漬管内径は、真空槽3の上昇側浸漬管3aおよび下降側浸漬管3bのうちの少なくとも一方の内径であってもよいし、これら上昇側浸漬管3aおよび下降側浸漬管3bの各内径の平均値、最大値、あるいは最小値であってもよい。
【0029】
記憶部14は、脱炭処理対象の溶鋼16中の炭素濃度を推定するための演算処理に必要な各種情報を記憶する。例えば、記憶部14は、過去に真空脱ガス装置1を用いて繰り返し行われた各種溶鋼の脱炭処理の操業によって蓄積した溶鋼炭素濃度の過去実績データから求めた補正係数等を記憶する。なお、上記の溶鋼炭素濃度は、脱炭処理対象の溶鋼16中の炭素濃度である。記憶部14は、これら記憶した各種情報の中から、制御部15によって読み出し指示された情報を制御部15に送信する。
【0030】
制御部15は、真空脱ガス装置1による溶鋼16の脱炭処理の終了タイミングを制御する。具体的には、制御部15は、演算パラメータ等の各種情報を記憶するメモリおよび予め設定されたプログラムを実行するCPU等を用いて構成される。脱炭処理対象の溶鋼16中の炭素濃度(溶鋼炭素濃度)を推定するための演算式として、制御部15には、溶鋼16中の炭素に関する系全体の物質収支を表す物質収支式と、溶鋼16の脱炭処理における脱炭速度を表す演算式とが予めプログラム設定される。また、制御部15には、溶鋼16の脱炭処理の際における溶鋼16の環流量を表す演算式と、真空槽3からの排ガス中の炭素流量を表す演算式と、真空槽3内における溶鋼16の脱炭反応を表す槽内反応モデル式とが予めプログラム設定される。さらに、制御部15には、溶鋼16の脱炭処理における炭素と酸素との反応の平衡定数を表す演算式と、溶鋼炭素濃度の推定式と、チャージ毎の浸漬管内径の変化量を表す演算式とが予めプログラム設定される。制御部15は、上述した環流用ガス流量計7、槽内真空度計9、排ガス流量計10、排ガス成分分析計11、および測定プローブ12からの各入力信号と、入力部13からの入力情報と、記憶部14から読み出した情報とを用い、上述した各演算式に基づいて演算処理を行う。
【0031】
詳細には、制御部15は、溶鋼16の脱炭処理の際に上昇側浸漬管3aおよび下降側浸漬管3bを通じ取鍋2と真空槽3との間で環流する溶鋼16の環流量(以下、溶鋼環流量という)を、この溶鋼16の環流に伴う浸漬管内径の変化を加味して算出する。また、制御部15は、真空槽3からの排ガス流量と排ガスCO濃度と排ガスCO
2濃度とを用いて、溶鋼16の脱炭速度を算出し、この算出した脱炭速度が所定速度以下であるか否かを判断する。この脱炭速度が所定速度以下である場合、制御部15は、上述したように浸漬管内径の変化を加味して算出した溶鋼環流量と、溶鋼16の脱炭処理における溶鋼16中の炭素に関する物質収支式と、溶鋼16の脱炭速度と、真空槽3内における溶鋼16の脱炭反応を表す槽内反応モデル式とをもとに、溶鋼炭素濃度を推定する。この際、制御部15は、予め設定された物質収支式と脱炭速度の演算式と槽内反応モデル式とをもとに導出した溶鋼炭素濃度の推定式に基づき、溶鋼16の溶鋼温度と溶鋼酸素濃度と溶鋼環流量とを用いて溶鋼炭素濃度を推定する。制御部15は、このように推定した溶鋼炭素濃度が所定の目標値に達したタイミングに、真空脱ガス装置1による溶鋼16の脱炭処理を終了させる。
【0032】
(溶鋼炭素濃度の推定に要する演算処理)
つぎに、本発明における溶鋼炭素濃度の推定に要する演算処理について説明する。本実施の形態にかかる真空脱ガス装置1の制御部15には、上述したように、脱炭処理対象の溶鋼16中の炭素濃度(溶鋼炭素濃度)を推定するために要する各種演算式が予め設定されている。これら各種演算式のうち、溶鋼16中の炭素に関する系全体の物質収支を表す物質収支式は、溶鋼炭素濃度[C]と、溶鋼環流量Qと、溶鋼重量Wと、下降管側溶鋼炭素濃度[C]
*とを用い、次式(1)によって表される。
【0034】
上式(1)において、d[C]/dtは、単位時間当りの溶鋼炭素濃度[C]の変化量であり、脱炭処理される溶鋼16の脱炭速度に相当する。また、下降管側溶鋼炭素濃度[C]
*は、
図1に示した真空槽3から取鍋2への溶鋼16の下降経路を形成する下降側浸漬管3b内の溶鋼16中の炭素濃度である。
【0035】
一方、上述した制御部15に設定された各種演算式のうち、溶鋼16の脱炭処理における脱炭速度を表す演算式は、真空槽3からの排ガス中に含まれる炭素成分の流量(以下、排ガス炭素流量という)G
Cと、溶鋼重量Wとを用い、次式(2)によって表される。また、溶鋼16の脱炭処理の際における溶鋼環流量Qを表す演算式は、環流用ガス流量Fと、真空槽3の浸漬管内径dと、チャージ毎の浸漬管内径dの変化量(以下、浸漬管内径変化量という)d
gNと、大気圧Pa(=1[atm])と、真空槽内圧力Pとを用い、次式(3)によって表される。
【0038】
また、上式(2)に含まれる排ガス炭素流量G
Cは、真空槽3からの排ガス流量Gと、排ガスCO濃度[CO]と、排ガスCO
2濃度[CO
2]と、定数aとを用い、次式(4)によって表される。
G
C=a・G・([CO]+[CO
2]) ・・・(4)
【0039】
他方、上述した制御部15に設定された各種演算式のうち、真空槽3内における溶鋼16の脱炭反応を表す槽内反応モデル式は、下降管側溶鋼炭素濃度[C]
*と、真空槽内圧力Pと、溶鋼16の脱炭処理における炭素と酸素との反応の平衡定数Kと、溶鋼酸素濃度[O]と、補正係数Bと、溶鋼炭素濃度[C]とを用い、次式(5)によって表される。
【0041】
上式(5)において、補正係数Bは、過去に真空脱ガス装置1を用いて繰り返し行われた各種溶鋼の脱炭処理の操業によって蓄積した溶鋼炭素濃度[C]の過去実績データから求めた補正係数である。この補正係数Bは、
図1に示した記憶部14に保存される。また、平衡定数Kは、溶鋼温度Tを用い、次式(6)によって表される。
K=exp(2671/T+4.612) ・・・(6)
【0042】
また、上述した溶鋼炭素濃度[C]の推定式は、式(1)のような物質収支式と、式(2)のような脱炭速度の演算式と、式(5)のような槽内反応モデル式とをもとに導出され、次式(7)のように表される。
【0044】
本実施の形態にかかる真空脱ガス装置1において、制御部15は、環流用ガス流量計7、槽内真空度計9、排ガス流量計10、排ガス成分分析計11、および測定プローブ12からの各入力信号と、入力部13からの入力情報と、記憶部14から読み出した情報とを用い、上述した式(1)〜(7)に基づいて演算処理を行う。特に、制御部15は、式(3)の演算処理において、溶鋼16の環流に伴う浸漬管内壁の磨耗または金属付着に起因する浸漬管内径dの変化を加味する。すなわち、制御部15は、真空槽3の本来の浸漬管内径dに溶鋼16の環流に伴う浸漬管内径変化量d
gNを加えた値を、溶鋼16の脱炭処理の実操業における浸漬管内径推定値とし、この実操業上の浸漬管内径推定値等を用い、式(3)に基づいて溶鋼環流量Qを算出する。制御部15は、このように算出した溶鋼環流量Qを、溶鋼16の脱炭処理の実操業における溶鋼環流量推定値として取得する。また、制御部15は、式(4)に基づいて、真空槽3からの排ガス炭素流量G
Cを算出し、この算出した排ガス炭素流量G
Cを、溶鋼16の脱炭処理の実操業における排ガス炭素流量推定値として取得する。制御部15は、このように取得した溶鋼環流量Qおよび排ガス炭素流量G
Cと、槽内真空度計9からの真空槽内圧力Pと、式(6)による平衡定数Kと、測定プローブ12からの溶鋼酸素濃度[O]と、記憶部14から読み出した補正係数Bとを用い、式(7)に基づいて溶鋼炭素濃度[C]を算出する。すなわち、制御部15は、溶鋼16の環流に伴う浸漬管内径dの変化を加味して溶鋼炭素濃度[C]を算出する。制御部15は、このように算出した溶鋼炭素濃度[C]を、溶鋼16の脱炭処理の実操業における溶鋼炭素濃度推定値として取得する。
【0045】
(溶鋼の環流に伴う浸漬管内径の変化)
つぎに、溶鋼16の環流に伴う浸漬管内径dの変化について説明する。
図1に示した真空脱ガス装置1を用いて溶鋼16の脱炭処理を行う際、脱炭処理対象である1チャージ分の溶鋼16は、上述したように、上昇側浸漬管3aおよび下降側浸漬管3b(以下、2つの浸漬管と適宜いう)を通じて取鍋2と真空槽3との間で環流する。この脱炭処理の実操業中において、これら2つの浸漬管の各内径は、溶鋼16の環流に伴って増減変化する。
【0046】
具体的には、取鍋2と真空槽3との間で溶鋼16が環流する際、溶鋼16は、上昇側浸漬管3a内を通って上昇し、また、下降側浸漬管3b内を通って下降する。この際、これら2つの浸漬管の各内壁には、溶鋼16の通過(流通)による磨耗、環流時の溶鋼16に添加された合金鉄の付着等の現象が発生する。この溶鋼16の浸漬管内通過による浸漬管内壁の磨耗(以下、溶鋼環流による浸漬管内磨耗という)は、真空槽3の浸漬管内径dを増加させる。一方、この溶鋼16の浸漬管内通過時における浸漬管内壁への合金鉄の付着(以下、溶鋼環流時の添加合金鉄の浸漬管内付着という)は、真空槽3の浸漬管内径dを減少させる。
【0047】
上述した溶鋼16の環流に伴う浸漬管内径dの増減変化は、溶鋼16の脱炭処理における溶鋼炭素濃度[C]の推定に影響する。
図2は、溶鋼の脱炭処理における溶鋼炭素濃度の推定値と真空槽の浸漬管内径との相関を例示する図である。溶鋼16の脱炭処理において、溶鋼炭素濃度[C]の推定値は、
図2に示すように、真空槽3の浸漬管内径dの変化に応じて変化する。したがって、溶鋼16の脱炭処理における溶鋼炭素濃度[C]は、溶鋼16の環流に伴う浸漬管内径dの変化すなわち浸漬管内径変化量d
gNを加味して推定されるべきである。
【0048】
本発明において、溶鋼16の環流に伴う浸漬管内径変化量d
gNは、溶鋼16の環流の際に浸漬管内壁に生じる2つの現象、具体的には、溶鋼環流による浸漬管内磨耗と、溶鋼環流時の添加合金鉄の浸漬管内付着と、に着目して算出される。すなわち、浸漬管内径変化量d
gNは、溶鋼16の環流による単位時間当りの浸漬管内磨耗量d
aと、溶鋼16の合金鉄添加による単位時間当りの浸漬管内径減少量d
bと、溶鋼環流時間t
Nと、溶鋼16の環流時の合金鉄添加量J
Nとを用い、次式(8)によって表される。なお、溶鋼環流時間t
Nは、溶鋼16が取鍋2と真空槽3との間で環流している時間である。
d
gN=d
a×t
N−d
b×J
N ・・・(8)
【0049】
上式(8)の各項のうち、浸漬管内径変化量d
gN、溶鋼環流時間t
N、および合金鉄添加量J
Nは、真空脱ガス装置1を用いた溶鋼16の脱炭処理の実操業データと、溶鋼16のチャージ毎に交換する2つの浸漬管(上昇側浸漬管3aおよび下降側浸漬管3b)の交換前後の各内径測定値とを用いることにより、求めることが可能である。具体的には、前回の溶鋼16の脱炭処理が終了した後に交換した2つの浸漬管の未使用状態(交換直後の状態)における各内径測定値と、今回の溶鋼16の脱炭処理が終了した後に交換を予定する2つの浸漬管の使用済み状態(交換直前の状態)における各内径測定値とを用い、これら各内径測定値の差をとることにより、浸漬管内径変化量d
gNの実測値が得られる。また、今回の2つの浸漬管を溶鋼16の環流に使用し始めてから使用し終わるまでの経過時間が、溶鋼環流時間t
Nとして実測される。さらに、今回の2つの浸漬管を溶鋼16の環流に使用した際に環流中の溶鋼16に添加した合金鉄の量が、合金鉄添加量J
Nとして実測される。
【0050】
上述したような浸漬管の内径測定、溶鋼環流の時間測定、および合金鉄の添加量測定を各々N回(Nは正の整数)行い、N回目の測定結果である浸漬管内径変化量d
gNと、溶鋼環流時間t
Nと、合金鉄添加量J
Nとを式(8)に代入する。これにより、式(8)は、浸漬管内磨耗量d
aと浸漬管内径減少量d
bとを二変数とする一次関数式となる。上述したようにN回(N=1,2,3,・・・)行った浸漬管の内径測定、溶鋼環流の時間測定、および合金鉄の添加量測定の各々に対応して、上記二変数の一次関数式をN個、導出する。これらN個の一次関数式をもとに、最小二乗法によって、最適な浸漬管内磨耗量d
aと浸漬管内径減少量d
bとを求める。このようにして求めた最適な浸漬管内磨耗量d
aと浸漬管内径減少量d
bとを、上述した式(8)に代入する。この結果、式(8)は、最適な浸漬管内磨耗量d
aと浸漬管内径減少量d
bとを係数とし、溶鋼環流時間t
Nと合金鉄添加量J
Nとを変数として、浸漬管内径変化量d
gNを算出する演算式となる。このような式(8)によって表される浸漬管内径変化量d
gNは、上述した式(3)に示されるように、1チャージ分の溶鋼16の環流に伴う浸漬管内径dの変化量として、溶鋼環流量Qの演算式に含まれる。すなわち、真空槽3の本来の浸漬管内径dに浸漬管内径変化量d
gNを加えた項(d+d
gN)を含む式(3)は、1チャージ分の溶鋼16の環流に伴う浸漬管内径dの変化(チャージ毎の浸漬管内径変化)を加味して溶鋼環流量Qを算出する演算式となる。なお、式(8)の変数としての溶鋼環流時間t
Nおよび合金鉄添加量J
Nは、例えば、
図1に示した入力部13によって、溶鋼16のチャージ毎に制御部15に入力される。
【0051】
(溶鋼の脱炭処理方法)
つぎに、本発明の実施の形態にかかる溶鋼の脱炭処理方法について説明する。
図3は、本発明の実施の形態にかかる溶鋼の脱炭処理方法の一例を示すフローチャートである。本実施の形態にかかる溶鋼の脱炭処理方法では、取鍋2内の溶鋼16に真空槽3の2つの浸漬管を浸漬し、大気圧よりも低い減圧下において、これら2つの浸漬管を通じ取鍋2と真空槽3との間で溶鋼16を環流させつつ溶鋼16の脱炭処理を行う真空脱ガス装置1(
図1参照)を用い、溶鋼16のチャージ毎に、
図3に示すステップS101〜S109が順次行われる。
【0052】
すなわち、本実施の形態にかかる溶鋼の脱炭処理方法において、真空脱ガス装置1は、
図3に示すように、まず、1チャージ分の溶鋼16の脱炭処理を開始する(ステップS101)。ステップS101において、真空脱ガス装置1は、取鍋2内に収容された1チャージ分の溶鋼16を受け入れる。ついで、真空槽3は、この取鍋2内の溶鋼16に2つの浸漬管すなわち上昇側浸漬管3aおよび下降側浸漬管3bを浸漬する。この状態において、制御部15は、真空槽3の内部ガスを吸引して外部に排出するように真空排気装置4を制御する。真空排気装置4は、制御部15の制御に基づいて、真空槽3の内部ガスを排気管3cから外部に排出し、これにより、真空槽3内の圧力を略真空状態に減圧する。この結果、取鍋2内の溶鋼16は、上昇側浸漬管3aおよび下降側浸漬管3bを通じて真空槽3内に吸引される。このタイミングに、制御部15は、弁開動作をガス弁6に行わせる。これに伴い、環流用ガス供給管5は、上昇側浸漬管3a内の溶鋼16に環流用ガスを供給する。これによって生じるエアリフトポンプ作用により、溶鋼16は、上昇側浸漬管3aを通じて取鍋2側から真空槽3側へ上昇する。真空槽3内の溶鋼16は、大気圧よりも低い減圧下で脱炭処理される。真空槽3内の溶鋼16は、下降側浸漬管3bを通じて真空槽3側から取鍋2側へ下降する。このように、溶鋼16は、上昇側浸漬管3aおよび下降側浸漬管3bを通じて取鍋2と真空槽3との間で環流しつつ、真空槽3内の減圧空間に順次曝されて連続的に脱炭処理される。
【0053】
続いて、真空脱ガス装置1は、真空槽3からの排ガス流量Gを計測する(ステップS102)。ステップS102において、排ガス流量計10は、溶鋼16の脱炭処理の際に真空槽3から排気管3cを通じて外部に排出される排ガスの流量を計測する。排ガス流量計10は、この計測した排ガス流量Gを示す電気信号を制御部15に送信する。
【0054】
ついで、真空脱ガス装置1は、真空槽3からの排ガス中の一酸化炭素(CO)濃度および二酸化炭素(CO
2)濃度を計測する(ステップS103)。ステップS103において、排ガス成分分析計11は、溶鋼16の脱炭処理の際に真空槽3から排気管3cを通じて外部に排出される排ガスの成分分析を行う。この成分分析の結果をもとに、排ガス成分分析計11は、この排ガス中の一酸化炭素濃度(排ガスCO濃度[CO])および二酸化炭素濃度(排ガスCO
2濃度[CO
2])を計測する。排ガス成分分析計11は、計測した排ガスCO濃度[CO]および排ガスCO
2濃度[CO
2]を示す電気信号を制御部15に送信する。
【0055】
つぎに、真空脱ガス装置1は、計測した排ガス流量Gと排ガスCO濃度[CO]と排ガスCO
2濃度[CO
2]とを用いて、溶鋼16の脱炭速度を算出する(ステップS104)。ステップS104において、制御部15は、排ガス流量計10からの入力信号に基づく排ガス流量Gと、排ガス成分分析計11からの入力信号に基づく排ガスCO濃度[CO]および排ガスCO
2濃度[CO
2]とを取得する。制御部15は、取得した排ガス流量Gと排ガスCO濃度[CO]と排ガスCO
2濃度[CO
2]とを用い、式(4)に基づいて排ガス炭素流量G
Cを算出する。ついで、制御部15は、この算出した排ガス炭素流量G
Cと入力部13によって入力された溶鋼重量Wとを用い、式(2)に基づいて溶鋼16の脱炭速度d[C]/dtを算出する。
【0056】
続いて、真空脱ガス装置1は、ステップS104によって算出した溶鋼16の脱炭速度d[C]/dtが所定速度以下であるか否かを判断する(ステップS105)。ステップS105において、制御部15は、上述したように式(2)に基づいて算出した脱炭速度d[C]/dtと、予め設定された所定速度とを比較処理する。脱炭速度d[C]/dtが所定速度を超過すると制御部15が判断した場合(ステップS105,No)、真空脱ガス装置1は、上述したステップS102に戻り、このステップS102以降の処理ステップを繰り返す。
【0057】
一方、脱炭速度d[C]/dtが所定速度以下であると制御部15が判断した場合(ステップS105,Yes)、真空脱ガス装置1は、溶鋼温度Tおよび溶鋼酸素濃度[O]を計測する(ステップS106)。ステップS106において、測定プローブ12は、制御部15の制御に基づき駆動して、溶鋼温度Tおよび溶鋼酸素濃度[O]を計測する。この際、測定プローブ12は、取鍋2内の溶鋼16に浸漬し、この溶鋼16の温度(溶鋼温度T)と、この溶鋼16中の酸素濃度(溶鋼酸素濃度[O])とを計測する。測定プローブ12は、計測した溶鋼温度Tおよび溶鋼酸素濃度[O]を示す電気信号を制御部15に送信する。
【0058】
つぎに、真空脱ガス装置1は、溶鋼16の環流に伴う真空槽3の浸漬管内径dの変化を加味して、溶鋼炭素濃度[C]を推定する(ステップS107)。ステップS107において、制御部15は、入力部13によって入力された溶鋼環流時間t
Nと溶鋼16の環流時の合金鉄添加量J
Nとを用い、式(8)に基づいて、溶鋼16の環流に伴う浸漬管内径変化量d
gNを算出する。ついで、制御部15は、この算出した浸漬管内径変化量d
gNと、入力部13によって入力された浸漬管内径dと、環流用ガス流量計7によって計測された環流用ガス流量Fと、槽内真空度計9によって計測された真空槽内圧力Pと、大気圧Paとを用い、式(3)に基づいて、取鍋2と真空槽3との間における溶鋼環流量Qを算出する。これにより、制御部15は、溶鋼16の環流に伴う浸漬管内径dの変化を加味して溶鋼環流量Qを算出する。その後、制御部15は、算出した溶鋼環流量Qと、溶鋼16の脱炭処理における溶鋼16中の炭素に関する物質収支式(式(1))と、溶鋼16の脱炭速度d[C]/dtと、真空槽3内における溶鋼16の脱炭反応を表す槽内反応モデル式(式(5))とをもとに、溶鋼16中の炭素濃度を推定する。この際、制御部15は、式(1)の物質収支式と式(2)の脱炭速度の演算式と式(5)の槽内反応モデル式とをもとに導出した溶鋼炭素濃度[C]の推定式(式(7))に基づき、溶鋼温度Tと溶鋼酸素濃度[O]と溶鋼環流量Qとを用いて溶鋼16中の炭素濃度を推定する。詳細には、制御部15は、ステップS106によって計測した溶鋼温度Tを用い、式(6)に基づいて、溶鋼16の脱炭処理における炭素と酸素との反応の平衡定数Kを算出する。ついで、制御部15は、上述したように算出した溶鋼環流量Qおよび平衡定数Kと、槽内真空度計9からの真空槽内圧力Pと、ステップS106によって計測した溶鋼酸素濃度[O]と、記憶部14から読み出した補正係数Bと、排ガス炭素流量G
Cとを用い、式(7)に基づいて溶鋼炭素濃度[C]を算出する。この演算処理において、制御部15は、脱炭速度d[C]/dtが所定速度以下であるという条件を満足する際の排ガス炭素流量G
Cを用いる。以上の演算処理により、制御部15は、溶鋼16の環流に伴う浸漬管内径dの変化を加味して、推定される溶鋼炭素濃度[C]を算出する。
【0059】
ステップS107を実行後、真空脱ガス装置1は、ステップS107によって推定した溶鋼炭素濃度[C]が目標値に達したか否かを判断する(ステップS108)。ステップS108において、制御部15は、上述したように式(7)に基づいて算出した溶鋼炭素濃度[C](推定値)と、溶鋼16中の目標とする炭素濃度(目標値)とを比較処理する。なお、制御部15は、例えば、入力部13によって入力された溶鋼16のオーダ情報等をもとに、溶鋼16の要求仕様等に応じた炭素濃度の目標値を予め設定する。この比較処理の結果、溶鋼炭素濃度[C]が目標値に達していないと制御部15が判断した場合(ステップS108,No)、真空脱ガス装置1は、上述したステップS106に戻り、このステップS106以降の処理ステップを適宜繰り返す。
【0060】
一方、溶鋼炭素濃度[C]が目標値に達したと制御部15が判断した場合(ステップS108,Yes)、真空脱ガス装置1は、溶鋼16の脱炭処理を終了する(ステップS109)。ステップS109において、制御部15は、ステップS107によって推定した溶鋼炭素濃度[C]が上述した目標値に達したタイミングに、溶鋼16の脱炭処理を終了させる各種制御動作を行う。具体的には、制御部15は、溶鋼16に脱酸材を投入するように脱酸材投入部8を制御し、この制御を通して、溶鋼16の脱炭処理を終了させる。これに加えて、制御部15は、真空槽3の内部ガスの吸引動作を停止するように真空排気装置4を制御し、これにより、真空槽3内の圧力を大気圧に戻す。また、制御部15は、弁閉動作をガス弁6に行わせ、これにより、環流用ガス供給管5から上昇側浸漬管3a内への環流用ガスの供給を停止する。
【0061】
(実施例)
つぎに、本発明の実施例について説明する。本実施例では、
図1に示した真空脱ガス装置1を用い、
図3に示したステップS101〜S109の各処理ステップに沿って、溶鋼16の脱炭処理を行った。この際、上述した式(1)〜(8)に基づいて演算処理を行うことにより、溶鋼16の脱炭処理の際における溶鋼炭素濃度[C]を推定した。特に、取鍋2と真空槽3との間における溶鋼16の環流に伴う真空槽3の浸漬管内径dの変化量(浸漬管内径変化量d
gN)を式(8)に基づいて算出し、算出した浸漬管内径変化量d
gNを式(3)に適用して溶鋼環流量Qを算出した。このように浸漬管内径変化量d
gNを加味した溶鋼環流量Qを式(7)に適用して、溶鋼16の脱炭処理終了時における溶鋼炭素濃度[C]の推定値を算出した。
【0062】
一方、本実施例に対する比較例として、上述した溶鋼16の環流に伴う真空槽3の浸漬管内径dの変化量を加味せずに、溶鋼炭素濃度[C]を推定した。すなわち、式(3)から浸漬管内径変化量d
gNの項を除去し、これにより、溶鋼16の環流によらず浸漬管内径dを一定値として、溶鋼環流量Qを算出し、この溶鋼環流量Qを式(7)に適用して溶鋼16の脱炭処理終了時における溶鋼炭素濃度[C]の推定値を算出した。なお、比較例の条件は、浸漬管内径dの変化量を加味せずに溶鋼炭素濃度[C]を推定すること以外、本実施例と同じとした。
【0063】
真空脱ガス装置1による脱炭処理終了後の溶鋼16から、その一部分をサンプルとして採取し、このサンプルの溶鋼炭素濃度[C]を実測した。この溶鋼炭素濃度[C]の実測値と、本実施例および比較例における溶鋼炭素濃度[C]の各推定値との比較結果を表1に示す。
【0065】
表1に示すように、本実施例による溶鋼炭素濃度[C]の推定値は、比較例による溶鋼炭素濃度[C]の推定値に比して、脱炭処理終了後の溶鋼炭素濃度[C]の実測値に近い値となった。このことから、溶鋼16の環流に伴う浸漬管内径変化量d
gNを加味することにより、溶鋼16の脱炭処理の際における溶鋼炭素濃度[C]の推定精度を、浸漬管内径変化量d
gNを加味しない場合に比して向上できることが明らかとなった。
【0066】
以上、説明したように、本発明の実施の形態では、取鍋内の溶鋼に真空槽の浸漬管を浸漬し、大気圧よりも低い減圧下において浸漬管を通じ取鍋と真空槽との間で溶鋼を環流させつつ溶鋼の脱炭処理を行う際、取鍋と真空槽との間における溶鋼環流量を、溶鋼の環流に伴う浸漬管の内径変化を加味して算出し、この算出した溶鋼環流量と、脱炭処理における溶鋼中の炭素に関する物質収支式と、溶鋼の脱炭速度と、真空槽内における溶鋼の脱炭反応を表す槽内反応モデル式とをもとに、溶鋼炭素濃度を推定し、この推定した溶鋼炭素濃度が所定の目標値に達したタイミングに、この溶鋼の脱炭処理を終了している。
【0067】
このため、溶鋼の環流に伴って実際に変化することが想定される浸漬管内径の変化量を加味して、演算処理時の浸漬管内径を、実操業上の浸漬管内径に近づけるように補正し、この補正後の浸漬管内径に応じて溶鋼炭素濃度の推定値を算出することができる。これにより、浸漬管内径を一定値に固定して溶鋼炭素濃度を推定していた従来技術に比べ、溶鋼の脱炭処理の実操業における溶鋼炭素濃度の実績値に近い溶鋼炭素濃度の推定値を得ることができる。この結果、従来技術に比べて溶鋼炭素濃度の推定精度を向上することができ、高精度に得られた溶鋼炭素濃度の推定値に基づいて、溶鋼の脱炭処理を適切なタイミングに終了することができる。
【0068】
本発明を溶鋼の脱炭処理に適用することにより、チャージ毎に溶鋼の脱炭処理を適切なタイミングに終了できることから、溶鋼の脱炭処理の過剰な継続を抑制して、溶鋼の脱炭処理時間の短縮を促進することができる。この結果、溶鋼に要求される炭素濃度の規格値を外すことなく、目標とする低炭素濃度の溶鋼を効率よく製造できるとともに、溶鋼の脱炭処理に要するユーティリティコストの削減を図ることができる。
【0069】
なお、上述した実施の形態では、脱炭処理に必要な酸素を溶存酸素として含有する溶鋼16を用いていたが、本発明は、これに限定されるものではない。例えば、真空脱ガス装置1の真空槽3に酸素吹付け羽口または酸素吹付けランス等の酸素供給機構を適宜設け、真空槽3内の溶鋼16に対し、脱炭処理に必要な酸素を吹き込み、これにより、この溶鋼16の脱炭処理を行ってもよい。この場合、制御部15は、溶鋼16の脱炭処理の終了タイミングに、真空槽3の酸素供給機構による溶鋼16への酸素供給を停止するように構成されてもよい。
【0070】
また、上述した実施の形態では、2つの浸漬管を備えたRH方式の真空脱ガス装置1を例示したが、本発明は、これに限定されるものではない。すなわち、本発明は、単一の浸漬管を有するDH方式の真空脱ガス装置に適用することも可能である。
【0071】
さらに、上述した実施の形態では、真空槽3からの排ガスの流量を計測した後、この排ガス中の一酸化炭素濃度および二酸化炭素濃度を計測していたが、本発明は、これに限定されるものではない。本発明において、真空槽3からの排ガス中の一酸化炭素濃度および二酸化炭素濃度を計測した後、この排ガスの流量を計測してもよいし、これら一酸化炭素濃度、二酸化炭素濃度、および排ガスの流量を同時に計測してもよい。
【0072】
また、上述した実施の形態または実施例により本発明が限定されるものではなく、上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。その他、上述した実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例および運用技術等は全て本発明に含まれる。