特許第6011343号(P6011343)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東レ株式会社の特許一覧

特許6011343プレス成型用不織布及びその製造方法並びに成型体の製造方法
<>
  • 特許6011343-プレス成型用不織布及びその製造方法並びに成型体の製造方法 図000011
  • 特許6011343-プレス成型用不織布及びその製造方法並びに成型体の製造方法 図000012
  • 特許6011343-プレス成型用不織布及びその製造方法並びに成型体の製造方法 図000013
  • 特許6011343-プレス成型用不織布及びその製造方法並びに成型体の製造方法 図000014
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6011343
(24)【登録日】2016年9月30日
(45)【発行日】2016年10月19日
(54)【発明の名称】プレス成型用不織布及びその製造方法並びに成型体の製造方法
(51)【国際特許分類】
   D04H 1/435 20120101AFI20161006BHJP
   D04H 1/425 20120101ALI20161006BHJP
   B29C 43/18 20060101ALI20161006BHJP
   B29C 43/02 20060101ALI20161006BHJP
   B29K 105/08 20060101ALN20161006BHJP
【FI】
   D04H1/435ZBP
   D04H1/425
   B29C43/18
   B29C43/02
   B29K105:08
【請求項の数】10
【全頁数】40
(21)【出願番号】特願2012-551818(P2012-551818)
(86)(22)【出願日】2012年11月7日
(86)【国際出願番号】JP2012078801
(87)【国際公開番号】WO2013073425
(87)【国際公開日】20130523
【審査請求日】2015年10月7日
(31)【優先権主張番号】特願2011-248234(P2011-248234)
(32)【優先日】2011年11月14日
(33)【優先権主張国】JP
(31)【優先権主張番号】特願2012-159477(P2012-159477)
(32)【優先日】2012年7月18日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000003159
【氏名又は名称】東レ株式会社
(74)【代理人】
【識別番号】100077012
【弁理士】
【氏名又は名称】岩谷 龍
(72)【発明者】
【氏名】武田 寛貴
(72)【発明者】
【氏名】藤山 友道
(72)【発明者】
【氏名】梶山 宏史
【審査官】 相田 元
(56)【参考文献】
【文献】 特開2010−126816(JP,A)
【文献】 特開2005−290288(JP,A)
【文献】 特開2011−162904(JP,A)
【文献】 特開平09−095852(JP,A)
【文献】 特開2007−169852(JP,A)
【文献】 特開2007−098583(JP,A)
【文献】 特開平05−342903(JP,A)
【文献】 国際公開第2010/137514(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
D04H 1/00−18/04
B29C 39/00−39/44
B29C 43/00−43/58
C08K 3/00−13/08
C08L 1/00−101/16
D01F 1/00− 6/96、9/00−9/69
B27N 1/00− 9/00
(57)【特許請求の範囲】
【請求項1】
ポリ乳酸繊維と天然繊維とを含む不織布であって、ポリ乳酸繊維の降温結晶化温度が120℃以上であり、不織布の引張強度が20N/cm以上であり、200℃雰囲気における引張伸度30%の不織布の引張応力が80N/cm
以下であり、
前記不織布中の天然繊維において繊維長45mm以上の天然繊維の割合が30%以上であり、
ポリ乳酸繊維と天然繊維の比率が質量比で20〜60対80〜40であることを特徴とするプレス成型用不織布。
【請求項2】
前記不織布が、目付450〜3000g/mであることを特徴とする請求項1に記載のプレス成型用不織布。
【請求項3】
前記ポリ乳酸繊維がカーボンブラックを含んでいることを特徴とする請求項1または2に記載のプレス成型用不織布。
【請求項4】
前記ポリ乳酸繊維の乾熱収縮率が5%以下であることを特徴とする請求項1〜のいずれかに記載のプレス成型用不織布。
【請求項5】
前記天然繊維の引張強度が1.0cN/dtex以上であることを特徴とする請求項1〜のいずれかに記載のプレス成型用不織布。
【請求項6】
前記天然繊維が、ケナフ繊維であることを特徴とする請求項1〜5のいずれかに記載のプレス成型用不織布。
【請求項7】
請求項1〜6のいずれかに記載のプレス成型用不織布の製造方法であって、降温結晶化温度が120℃以上で乾熱収縮率5%以下のポリ乳酸繊維と、引張強度が1.0cN/dtex以上の天然繊維を混合し、その後、合計の針密度が30〜200本/cmでニードルパンチを行うことを特徴とするプレス成型用不織布の製造方法。
【請求項8】
請求項1〜6のいずれかに記載のプレス成型用不織布をプレス成型することを特徴とする成型体の製造方法。
【請求項9】
プレス成型が冷却手段を備えた金型を用いるものであって、冷却手段を備えた金型での成型時間が8秒以下であることを特徴とする請求項8に記載の成型体の製造方法。
【請求項10】
混合される天然繊維がケナフ繊維であることを特徴とする請求項8または9に記載の成型体の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明はプレス成型を行うための不織布及びその製造方法並びにその不織布を用いた成型体の製造方法に関する。
【背景技術】
【0002】
近年、環境問題に対してあらゆる分野が注目するようになり、例えば、森林伐採の低減を目的に、油ヤシ、ココヤシ、ケナフから得られるリグノセルロース短繊維と熱硬化性樹脂を加熱加圧成形する繊維板が提案されている(特許文献1)。
また、更に環境負荷の低減を目的に、植物由来のポリ乳酸樹脂及び天然繊維を混在させて加熱、加圧し、全体の見かけ密度を特定範囲とするように成形した繊維系ボードが提案されている(特許文献2)。
更に、特許文献2の発明の改良発明として、成型時間を短縮するために、ポリ乳酸繊維および天然繊維に、さらに無機フィラーを添加した木質成形体が開示されている(特許文献3)。
【0003】
ポリ乳酸繊維および天然繊維を含有する成型体に関しては、成型体になるまでの中間体となるポリ乳酸繊維および天然繊維を含有する不織布に関しても、不織布からの成型時間をより短縮する改良が求められていた。
また、成型体の製造方法は、不織布を熱処理し、金型を用いて圧縮するプレス立体成型方法が一般的である。しかしながら、金型の絞りの立ち上がり部位であって、成型体の角となるに部分において、成型体にシワが発生する問題があった。
更に、金型の深い絞りの立ち上がり部位では、その部位において成型体が薄肉化し、結果として透けや亀裂が発生する問題があった。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2003−260704号公報(請求項1、2および3)(米国特許第6197414号明細書)
【特許文献2】特開2004−130796号公報(請求項1、段落0006、0023、0024)(米国特許出願公開第2004/096623号明細書)
【特許文献3】特開2005−262559号公報(請求項1、段落0007)(欧州特許出願公開第1726418号明細書)
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明は、ポリ乳酸繊維と天然繊維とを含む不織布を用いた立体成型体におけるプレス成型性に関する課題を解決しようとするものである。
第1の課題は、成型速度である。特許文献3で用いられているタルクを混合したポリ乳酸繊維は、降温結晶化温度が99℃である。自動車内装材や建築材料などに用いる成型体の強度を保持するためには、成型後の成型体を99℃以下まで冷却する必要があり、冷却時間が長いという課題があった。
【0006】
第2の課題は、金型の絞りの立ち上がり部位に対応する成型体の角のシワ発生である。立ち上がり部位の角のシワは、繊維系ボード成型時に不織布の金型追従性が低いことに起因しており、成型温度の200℃で成型した場合の不織布の伸びが課題であった。
【0007】
第3の課題は、金型の深い絞りの立ち上がり部位に対応する成型体の透けや亀裂の発生である。立ち上がり部位の透けや亀裂は、金型で引張られた際に、不織布の引張強度が低いため、成型体が薄肉化することに起因しており、不織布の引張特性の最適化が課題であった。
【課題を解決するための手段】
【0008】
上記課題を解決するため、本発明は以下の構成を有する。
(1)ポリ乳酸繊維と天然繊維とを含む不織布であって、ポリ乳酸繊維の降温結晶化温度が120℃以上であり、不織布の引張強度が20N/cm以上であり、200℃雰囲気における引張伸度30%の不織布の引張応力が80N/cm以下であることを特徴とするプレス成型用不織布。
(2)前記不織布が、目付450〜3000g/mであることを特徴とする前記(1)に記載のプレス成型用不織布。
(3)前記不織布の中の天然繊維において、繊維長45mm以上の天然繊維の割合が30%以上であることを特徴とする前記(1)または(2)に記載のプレス成型用不織布。
(4)前記ポリ乳酸繊維がカーボンブラックを含んでいることを特徴とする前記(1)ないし(3)のいずれかに記載のプレス成型用不織布。
(5)前記ポリ乳酸繊維の乾熱収縮率が5%以下であることを特徴とする前記(1)ないし(4)のいずれかに記載のプレス成型用不織布。
(6)前記天然繊維の引張強度が1.0cN/dtex以上であることを特徴とする前記(1)ないし(5)のいずれかに記載のプレス成型用不織布。
(7)前記天然繊維が、ケナフ繊維であることを特徴とする前記(1)ないし(6)のいずれかに記載のプレス成型用不織布。
(8)降温結晶化温度が120℃以上で、乾熱収縮率5%以下のポリ乳酸繊維と、引張強度が1.0cN/dtex以上の天然繊維を混合し、その後、合計の針密度が30〜200本/cmでニードルパンチを行うことを特徴とするプレス成型用不織布の製造方法。
(9)前記(1)ないし(7)のいずれかに記載のプレス成型用不織布をプレス成型することを特徴とする成型体の製造方法。
(10)プレス成型が冷却手段を備えた金型を用いるものであって、冷却手段を備えた金型での成型時間が8秒以下であることを特徴とする前記(9)に記載の成型体の製造方法。
(11)混合される天然繊維がケナフ繊維であることを特徴とする前記(9)または(10)に記載の成型体の製造方法。
【発明の効果】
【0009】
本発明によれば、ポリ乳酸繊維と天然繊維とを含む不織布を用いた高強度の立体成型体を短時間で成型でき、金型の絞りの立ち上がり部位に対応する成型体にシワと透けと亀裂が発生しにくいものが得られる。
【図面の簡単な説明】
【0010】
図1図1(a)は成型体を作製したときの雄金型の一部破断斜視図であり、図1(b)は図1(a)の雄金型と図1(c)の雌金型で立体成型することによって得た成型体の一部破断斜視図であり、図1(c)は成型体を作製したときの雌金型の一部破断斜視図である。
図2図2(a)は図1(c)に示す雌金型の平面図、図2(b)はその雌金型の正面図、図2(c)はその雌金型の右側面図である(左側面は右側面と対称関係にある)。
図3図3は、成型体の厚さの測定部位(斜線を付した丸印)を示す平面図である。
図4図4は、成型体の密度と曲げ強度を測定するための試験片の採取位置(斜線を付した長方形)を示す平面図である。
【発明を実施するための形態】
【0011】
以下、発明の実施の形態を詳細に説明する。
[ポリ乳酸繊維]
本発明に用いられるポリ乳酸繊維は、−(O−CHCH−CO)−を主要な繰り返し単位とするポリマーであり、乳酸やそのオリゴマーを重合したものをいう。乳酸にはD−乳酸とL−乳酸の2種類の光学異性体が存在するため、その重合体もD体のみからなるポリ(D−乳酸)とL体のみからなるポリ(L−乳酸)および両者からなるポリ乳酸がある。ポリ乳酸中のD−乳酸、あるいはL−乳酸の光学純度は、低くなるとともに結晶性が低下し、融点が低下してくる。そのため、耐熱性を高めるために光学純度は90%以上であることが好ましい。より好ましい光学純度は93%以上、最も好ましい光学純度は97%以上である。なお、光学純度は前記した様に融点と強い相関が認められ、光学純度90%程度で融点が約150℃、光学純度93%で融点が約160℃、光学純度97%で融点が約170℃となる。また、成型性の観点よりポリ乳酸の融点は200℃以下であることが好ましく、より好ましくは190℃以下、最も好ましくは180℃以下である。
【0012】
ポリ乳酸繊維に用いられるポリ乳酸樹脂への重合方法としては、乳酸を有機溶媒及び触媒の存在下でそのまま脱水縮合する直接脱水縮合法や、ラクチドと、芳香族ポリエステル及び/または脂肪族ポリエステルとを、開環重合触媒の存在下に、開環共重合並びにエステル交換反応させる方法や、乳酸を一旦脱水して環状二量体とした後に開環重合する間接重合法等を挙げることができる。
【0013】
ポリ乳酸繊維の重量平均分子量は、耐熱性、成型性の観点より8万以上とすることが好ましく、より好ましくは10万以上、さらに好ましくは12万以上である。一方、曳糸性や延伸性を維持する上で、ポリ乳酸繊維の重量平均分子量は35万以下が好ましく、より好ましくは30万以下、さらに好ましくは25万以下である。
【0014】
本発明に用いられるポリ乳酸繊維は、ポリ乳酸中にはラクチド等の残存モノマーが存在するが、これら低分子量残留物は延伸や仮撚加工工程で使用される加熱ヒーターの汚れを誘発する原因となる。また、ポリ乳酸繊維の加水分解性を促進し、耐久性を低下させるため、これら低分子量残留物は好ましくは1質量%以下、より好ましくは0.5質量%以下、最も好ましくは0.2質量%以下である。
【0015】
ポリ乳酸繊維は、分子鎖のCOOH末端基末端の一部または全部が封鎖されていることが好ましい。ポリ乳酸の分子鎖の一部のCOOH末端基末端を封鎖することで、耐熱性や耐加水分解性を向上させることができる。
【0016】
ポリ乳酸繊維は、COOH末端基濃度が1〜20当量/tonの範囲にあることが好ましい。より好ましくは、1〜10当量/tonの範囲であることが好ましい。ポリ乳酸繊維のCOOH末端基濃度を20当量/ton以下とする理由については、保管時や船便での輸送などに際して、加水分解による劣化を受けやすいポリ乳酸繊維の耐久性を向上させることが可能となることが挙げられる。また、10当量/ton以下であると、更に耐久性に優れ、より条件の厳しい用途への適用が可能となる。また、COOH末端基濃度は1当量/ton未満であると、ステープルファイバーの製造が極めて難しくなる。ポリ乳酸繊維中のCOOH末端基をコントロールする方法としては、ポリ乳酸の重合工程におけるエステル化率を上げ、末端OH基同士を重縮合することを防ぐことや、エポキシ化合物とポリ乳酸を反応させ、COOH末端基を封鎖する方法があげられる。
【0017】
ポリ乳酸繊維はエポキシ残価が0.1〜0.5当量/kgであることが好ましい。そうすることで、より長期間の保管に適することや、繊維構造体として使用する際の耐久性により優れたものとなり、ポリ乳酸繊維の使用範囲を広げるものとして有用である。エポキシ残価とは、ポリ乳酸繊維中に残存するエポキシ化合物の量を示すものであり、未反応のエポキシ化合物は、ポリ乳酸繊維が保管および加工により加水分解する過程において、新たに反応し、ポリ乳酸繊維中のCOOH末端基と反応することにより、さらにポリ乳酸が加水分解するのを抑制する効果がある。ポリ乳酸繊維中のエポキシ残価が0.1当量/kg未満であると、ポリ乳酸繊維中に残留しているエポキシ化合物の量が少ないため、ポリ乳酸繊維が加水分解し始めるとポリ乳酸繊維中のCOOH末端基が加速度的に増加し、ポリ乳酸繊維の強伸度が低下するため、好ましくない。また、0.5当量/kg超であると、ポリ乳酸繊維中のエポキシ化合物の量が多くなり、紡糸性が悪くなることや、ポリ乳酸繊維中のエポキシ化合物がブリードすることから、使用上好ましくない。
【0018】
ポリ乳酸繊維中のエポキシ残価をコントロールする方法としては、添加するエポキシ化合物の量、ポリ乳酸繊維のCOOH末端と反応するエポキシ化合物の量、エポキシ化合物1分子中にあるエポキシ基の数を調整することにより行うことができる。特に、ポリ乳酸繊維のCOOH末端と反応するエポキシ化合物の量を調整するため、第1段階として、ポリ乳酸繊維のバージンチップにエポキシ化合物を10〜20質量%添加したベースチップを用い、190〜260℃で混練してマスターチップを作製し、次に紡糸エクストルーダー内において220〜240℃にてバージンチップとマスターチップを混練することで、更に反応を進める。このことで、ポリ乳酸繊維のCOOH末端とエポキシ化合物の反応を進め、エポキシ残価を所定の範囲に調整することができる。エポキシ化合物の添加量はポリ乳酸繊維に対して1〜5質量%を添加し、製造することが好ましい。
【0019】
エポキシ化合物は、耐熱性やエポキシ指数による反応効率を考慮した場合、7,8−ジメチル−1,7,8,14−テトラデカンテトラカルボン酸テトラキス(オキシラニルメチル)、7−オキサビシクロ[4.1.0]ヘプタン−3,4−ジカルボン酸ジグリシジル、トリグリシジルイソシアヌレートが好ましく、更に反応性が高く取り扱い性に優れることから、単量体としてトリグリシジルイソシアヌレートを用いると特に好適である。トリグリシジルイソシアヌレートは融点が約100℃の粉体であり、取り扱いが容易であるほか、ポリ乳酸と溶融混合した際にトリグリシジルイソシアヌレートが溶融することで、ポリ乳酸中に3官能以上のエポキシ化合物が微分散した構造とすることができ、樹脂の溶融粘度や分子量の斑を低減でき、本発明に用いるポリ乳酸繊維を安定して製造することが可能となる。更には、トリグリシジルイソシアヌレートは化合物自体の結晶性に優れることから、特に本発明に用いるポリ乳酸繊維を用いた溶融成形品の製造に際して、エポキシ化合物の飛散による発煙を抑制することが可能となることから好ましい。
【0020】
ポリ乳酸繊維は、降温結晶化温度が120℃以上であることが必要である。降温結晶化温度が120℃以上のポリ乳酸繊維を用いることで、プレス立体成型において、ポリ乳酸の結晶化が高い温度で始まるため、結晶化速度が速く、短いプレスサイクル(10秒未満)においても高い結晶化度を保持できる。つまり、降温結晶化温度が120℃以上であることより、成型体の曲げ強度に影響する立体成型時のプレス時間を短縮することができ、生産性良く成型することが可能になる。降温結晶化温度は、より好ましくは125℃以上、更に好ましくは130℃以上である。
【0021】
一般的にポリ乳酸繊維は結晶核剤を使用しない場合は、降温結晶化せず、熱処理された200℃の不織布を約50℃まで冷却することにより曲げ強度20N/mm以上の高い強度の成型体を得ることができる。この際は、立体成型時間を約15秒間必要とし、15秒間未満の場合は曲げ強度が低い成型体となる。
【0022】
また、ポリ乳酸繊維の公知の技術であるタルクを使用する場合は、降温結晶化温度が99℃となり、熱処理された200℃の不織布を99℃まで冷却することにより曲げ強度20N/mm以上の高い強度の成型体を得ることができる。この際は、立体成型時間を約10秒間必要とし、10秒間未満の場合は曲げ強度が低い成型体となる。
【0023】
本特許では、更に、ポリ乳酸繊維を改良することにより、降温結晶化温度を120℃以上とすることができ、熱処理された200℃の不織布を120℃まで冷却することにより曲げ強度20N/mm以上の高い強度の成型体を得ることができる。この際は、立体成型時間は約8秒間でよく、タルクを使用した場合に比べ、約2秒間短縮することが可能となる。
【0024】
この降温結晶化温度が120℃以上のポリ乳酸繊維は、有機系または無機系結晶核剤を使用することで達成することができる。特に無機系結晶核剤であるカーボンブラックによりポリ乳酸の結晶の核が短時間で作成され、降温結晶化温度を120℃以上にすることができるため好ましい。この理由は、粒子径が微小なことによると思われる。そこで、そのカーボンブラックの粒子径は50nm以下であることが好ましく、より好ましくは40nm以下、更に好ましくは30nm以下である。
【0025】
また、ポリ乳酸繊維に対する結晶核剤の添加量は、成型性及び生産コストの観点より、添加量の下の方の値としては、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、さらには0.5質量%以上であることが一層好ましい。ポリ乳酸繊維に対する結晶核剤の添加量の上の方の値としては、10.0質量%以下が好ましく、5質量%以下がより好ましく、さらには2質量%以下であることが一層好ましい。
【0026】
また、結晶核剤としてカーボンブラックを使用することで、不織布製造工程において静電気が除去されるため、加工性に優れたものとなる。更に、ポリ乳酸繊維が黒色となるため、ケナフ繊維等の天然繊維との分散性も見分けやすくなり、品質管理がし易くなる。
【0027】
ポリ乳酸繊維は、結晶核剤以外に、粒子、難燃剤、可塑剤、帯電防止剤、抗酸化剤、紫外線吸収剤、エチレンビスステアリンサンアミドなどの滑剤等を含有していてもよい。
【0028】
ポリ乳酸繊維の断面形状は、丸断面、中空断面、多孔中空断面、三葉断面(三角断面、Y断面、T断面など)等の多葉断面、扁平断面、W断面、X断面等を採用することが可能である。
【0029】
JIS L 1015(1999)8.4.1 A法に準じて測定したポリ乳酸繊維の引張強度は0.5cN/dtex以上が好ましい。引張強度が0.5cN/dtex未満であると、カーディング通過性が著しく悪化する。より好ましくは1.0cN/dtex以上、更に好ましくは2.0cN/dtex以上である。
【0030】
また、ポリ乳酸繊維の引張伸度は、60%以上であることが好ましい。引張伸度が60%以上のポリ乳酸繊維を不織布に用いることで、不織布が伸びやすくなり、不織布の金型への追従性が高くなるため、不織布の破れがなく、成型体の品位が良好になる。ポリ乳酸繊維の引張伸度は、より好ましくは65%以上、更に好ましくは70%以上である。
【0031】
また、JIS L 1015(1999)8.15.b)に準じて測定したポリ乳酸繊維の乾熱収縮率は、5%以下であることが好ましい。乾熱収縮率が5%以下であることで、成型体の寸法安定性が高くなる。乾熱収縮率が高すぎると不織布のプレス立体成型時にシワが発生し、成型体の品位が低下する場合がある。
【0032】
ポリ乳酸繊維は、捲縮を有することが好ましい。捲縮を有することで、ケナフ繊維等の天然繊維との絡まりを強固なものとし、また、カーディング時の工程通過性を向上させることができる。捲縮数としては、6〜20山/25mmが好ましく、より好ましくは8〜15山/25mmである。捲縮度としては、10〜50%が好ましく、より好ましくは15〜30%である。
【0033】
JIS L 1015(1999)8.5.1 A法に準じて測定したポリ乳酸繊維の繊度は、0.5〜100dtexであることが好ましい。繊度が0.5dtex未満であると、カーディング通過性が著しく悪化し、紡績糸や不織布を得ることが困難になる。一方、100dtex超であると、不織布製造工程における繊維分散性が低下する。より好ましくは1.0〜10dtex、更に好ましくは3.0〜7.0dtexである。
【0034】
JIS L 1015(1999)8.4.1 A法に準じて測定したポリ乳酸繊維の繊維長は、5〜150mmであることが好ましい。繊維長が5mmより短いと、不織布を構成する繊維同士の絡合が不十分となり、繊維系ボードとしての強度が低下する傾向がある。一方、繊維長が150mmより長いと、不織布製造工程において均一に分散させることが困難となる。その結果、生産性が低下すると共に強度が不均一となり、部分的に強度が低下する傾向がある。ポリ乳酸繊維の繊維長はより好ましくは10〜100mm、更に好ましくは30〜70mmである。
【0035】
ポリ乳酸繊維には、平滑剤を含有する紡糸油剤が付与されていることが好ましい。油剤の付与によって、ポリ乳酸繊維の滑り性が向上し、紡糸や延伸をはじめ、カーディングの工程通過性が向上する。さらに得られる繊維自体の捲縮斑が低下し、また毛羽等の品位を向上させるとともに、繊維の開繊性や繊維構造体中での繊維の分散性を向上させることができる。平滑剤としては例えば、脂肪酸エステル、多価アルコールエステル、エーテルエステル、ポリエーテル、シリコーン、鉱物油等が挙げられる。また、これらの平滑剤は単一成分で用いても良いし、複数の成分を混合して用いても良い。また、油剤の付着量としては、ポリ乳酸繊維に対して0.1〜2.0質量%が好ましく、より好ましくは、0.2〜0.7質量%である。当該範囲内とすることで、カーディング時の工程通過性を向上させることができる。油剤には、平滑剤の他に、油剤を水に乳化させ低粘度化して糸条への付着や浸透性を向上させる乳化剤、帯電防止剤、イオン性界面活性剤、集束剤、防錆剤、防腐剤、酸化防止剤等を配合することも好ましい。
【0036】
ポリ乳酸繊維は、ポリ乳酸樹脂を溶融紡糸する方法など、公知の方法により製造できる。溶融したポリ乳酸樹脂からなる糸条は、冷却され、油剤が付与され、引き取られる。引取速度としては、400〜2000m/分が好ましい。次いで、ポリ乳酸繊維の未延伸糸は、引き揃えられ、延伸される。引き揃えは、延伸後のトウの総繊度が5万〜100万dtexとなるようにすると良い。ポリ乳酸繊維の延伸は、60〜100℃の温水を用いた液浴延伸にて行うことが、均一なトウを得る上で好ましい。ポリ乳酸繊維の延伸における延伸倍率としては、1.5〜6倍が好ましい。そうすることで、適切な強度を備えたポリ乳酸繊維が得られる。また、必要に応じて、仕上げ剤として油剤を、延伸後や次述する捲縮付与後に付与してもよい。次いで、延伸糸に捲縮を付与すると良い。捲縮付与方法としては例えば、スタッフィングボックス法、押し込み加熱ギア法、高速エアー噴射押し込み法等が挙げられる。ポリ乳酸繊維には、捲縮付与後、トウの状態で、弛緩熱処理を施すことが好ましい。そうすることで、捲縮を保持することができ、乾熱収縮率の低いポリ乳酸繊維を製造することができる。弛緩熱処理における温度は100〜170℃にすることでポリ乳酸繊維の乾熱収縮率が5%以下になるため好ましい。弛緩熱処理における温度は、より好ましくは120〜165℃、更に好ましくは140〜160℃である。その後、ポリ乳酸繊維は、例えばロータリーカッター等の切断装置により所望の繊維長にカットすることができる。
【0037】
[天然繊維]
本発明に用いられる天然繊維としては、木材パルプ、バガス、ムギワラ、アシ、パピルス、タケ、パルプ、木綿、ケナフ、ローゼル、アサ、アマ、ラミー、ジュート、ヘンプ、サイザルアサ、マニラアサ、ヤシ、バナナ等があり、これらを単独で用いても良いがこれらの中のから選ばれる1種以上の繊維が含まれていることが好ましい。特に、ケナフ繊維は、天然繊維の中でも優れた強度を有している。また、ケナフ繊維は比較的繊維長が長い。ケナフは一年草であって熱帯地方及び温帯地方での成長が極めて早く、容易に栽培できる草本類に属する。ケナフの靭皮にはセルロースが60質量%以上と高い含有率で存在しており、かつ高い強度を有しており、安価である。そこでケナフ靭皮から採取されるケナフ繊維を用いることが好ましい。したがって、本発明の天然繊維はケナフ繊維を含有することが好ましい。ケナフ繊維を含有する場合、天然繊維における割合は、30質量%以上が好ましく、50質量%以上がより好ましく、さらに90質量%以上が一層好ましい。
【0038】
ケナフ繊維は、ケナフの茎を刈り取った後、レッディング処理を行い、ギロチンカッターにて目的の繊維長に切断する。レッディング処理とは、ケナフのコア部分と靭皮繊維部分を剥がす方法である。この際、ケナフの茎をバクテリアで発酵させることにより、剥がし易くすることができる。発酵方法は、地面に放置し空気中の水分で発酵させる方法と、河川や沼の水に浸し発酵させる方法とがある。この発酵によりケナフ繊維は、不快な臭気が発生する。臭気の対策としては、水中で発酵させる際、綺麗な河川にて発酵させることにより臭気を低減することができるため好ましい。更に、ケナフ繊維を100℃の水酸化ナトリウム水溶液に入れ、20分間処理することにより臭いをさらに低減することができるため、より好ましい。水酸化ナトリウム水溶液は、水酸化ナトリウム濃度が10%以下であることが好ましく、より好ましくは5%以下、更に好ましくは2%以下である。そうすることで、ケナフ繊維の強度を保ちつつ、臭気成分を除去することができる。また、ケナフ繊維を、汚く流れのない沼などで処理した場合は、強烈な不快な臭気を発生する恐れがある。
【0039】
ケナフ繊維等の天然繊維は、後述の実施例の(2)ケナフ繊維等の天然繊維の臭気量測定方法(段落0081参照)にて測定した臭気量において、1−メトキシ−2−プロピルアセテート(C12)、エタノール,2−メトキシ−,アセテート(C10)、ホルムアルデヒドが、それぞれ2μg/kg以下であることが好ましい。より好ましくはそれぞれ1μg/kg以下、更に好ましくは0.5μg/kg以下である。また、酢酸、トリメチルベンゼン、アセトアルデヒドは、それぞれ10μg/kg以下であることが好ましい。より好ましくは、それぞれ5μg/kg以下、更に好ましくは3μg/kg以下である。このケナフ繊維を用いて不織布を加工することにより、臭気量の少ない不織布ができる。
【0040】
ケナフ繊維等の天然繊維は、後述の実施例の(2)ケナフ繊維等の天然繊維の引張強度・引張伸度測定方法(段落0079参照)にて測定した引張強度が1.0cN/dtex以上であることが好ましい。引張強度が1.0cN/dtex以上のケナフ繊維等の天然繊維を含む不織布を用いることにより、曲げ強度の高い成型体になる。より好ましくは天然繊維の引張強度は1.5cN/dtex以上、更に好ましくは2.0cN/dtex以上である。
【0041】
ケナフ繊維等の天然繊維は、後述の実施例の(2)ケナフ繊維等の天然繊維の繊維長測定方法(段落0077参照)にて測定した繊維長が150mm以下であることが好ましい。平均繊維長が長すぎると、不織布の製造工程において、ケナフ繊維等の天然繊維とポリ乳酸繊維とを均一に分散させることが難しくなる。その結果、生産性が低下すると共に、不織布及び成型体の強度が不均一となり、部分的に強度が低下する恐れがある。天然繊維の平均繊維長はより好ましくは120mm以下、更に好ましくは100mm以下である。
【0042】
ケナフ繊維等の天然繊維は、後述の実施例の(2)ケナフ繊維等の天然繊維の繊維径測定方法(段落0078参照)にて測定した繊維径が200μm以下であることが好ましい。繊維径が200μm以下であることより、不織布製造工程において天然繊維とポリ乳酸繊維との分散性が良好になり、均一な不織布を作成することができる。より好ましくは天然繊維の繊維径は150μm以下であり、更に好ましくは100μmである。
【0043】
ケナフ繊維等の天然繊維は、後述の実施例の(2)ケナフ繊維等の天然繊維の空隙数測定方法(段落0082参照)にて測定した導管に由来する空隙数が5個以上から構成されることが好ましい。ケナフ繊維内において導管に由来する空隙数が5個より少ないと引張強度が低く、不織布物性や成型体物性に悪影響を与える恐れがある。空隙数は、より好ましくは10個以上であり、更に好ましくは20個以上である。
【0044】
ケナフ繊維等の天然繊維は、後述の実施例の(2)ケナフ繊維等の天然繊維の含水率測定方法(段落0080参照)にて測定した含水率が20質量%以下であることが好ましい。含水率が20質量%であると、熱プレス成型時に水蒸気が発生し、プレス開放時に破裂し繊維ボードが損傷する恐れがある。含水率は、より好ましくは15質量%以下であり、更に好ましくは10質量%以下である。
【0045】
[不織布]
本発明に用いられる不織布は、ポリ乳酸繊維とケナフ繊維等の天然繊維とを混綿、そして開繊し、そして交絡させることにより作成することができる。まず、ポリ乳酸繊維と天然繊維をオープナーにかけて混綿する。得られたものを、カーディング法又はエアレイド法にて開繊し、ウェブ化する。さらに得られたものを複数積層する。そして、この積層体をまとめてニードルパンチ法などにより繊維間相互を交絡させて密度が高くなった不織布を得る。ケナフ繊維は、引張伸度が低く、繊維径がバラバラで、節などが存在する。そのため、オープナーからカーディング又はエアレイド、そしてニードルパンチを行う不織布化加工工程を通過することで、繊維が千切れ易く、繊維長が短くなる。特にニードルパンチの条件が大きく寄与する。ニードルパンチされた不織布の針密度は、合計で30〜200本/cmが好ましい。より好ましくは、40〜150本/cm、更に好ましくは50〜100本/cmである。不織布に針密度が200本/cmを超える過度のニードルパンチを行うと、ケナフ繊維等の天然繊維がニードルパンチの針に破壊され、ケナフ繊維等の天然繊維長が短くなり、繊維長45mm以上のケナフ繊維等の天然繊維が30質量%未満となり、ポリ乳酸繊維とケナフ繊維等の天然繊維の交絡が低下する傾向にある。また、針密度が30本/cm未満の場合も、ポリ乳酸繊維とケナフ繊維等の天然繊維の交絡が弱くなり、不織布の引張強度が低下、更にそれを用いた成型体の強度も低下する傾向がある。この不織布の針密度は、不織布がニードルパンチ機器の針に打たれた実本数であり、ニードルパンチ機器の針本数と不織布の移動速度により設定することができる。
【0046】
不織布は、後で説明する実施例の(3)不織布の引張強度・引張伸度測定方法(段落0088参照)にて測定した引張強度が20N/cm以上であることが必要である。より好ましくは50N/cm以上であり、更に好ましくは100N/cm以上である。引張強度が前記範囲にあることにより、不織布のプレス立体成型時の金型の立ち上がり部分で、繊維同士の絡まりが千切れることがなく成型され、シワや透けや亀裂のない成型体が製造できる。この引張強度が20N/cm以上の不織布は、例えば不織布中のケナフ繊維等の天然繊維の繊維長度数分布(ヒストグラム)において、繊維長45mm以上のケナフ繊維等の天然繊維が30%以上であることで達成することができるため好ましい。不織布の内部温度が200℃付近まで達するプレス成型においては、ケナフ繊維等の天然繊維の強度や交絡が、ポリ乳酸繊維の物性に比べ、特に重要となり、特定以上の繊維長のものを特定量以上とすることで繊維同士の交絡が強固なものとなる。ケナフ繊維等の天然繊維の繊維長度数分布は、より好ましくは繊維長45mm以上が40%以上、更に好ましくは繊維長45mm以上が50%以上である。
【0047】
また、不織布の目付は450g/m以上であることが好ましい。不織布の目付が450g/mより小さいとプレス立体成型時の金型の絞りの立ち上がり部分で薄肉化し、それにより透けや亀裂が発生する。より好ましくは、不織布の目付は700g/m以上であり、更に好ましくは1000g/m以上である。
【0048】
また、後述の実施例の(3)不織布の引張強度・引張伸度測定方法(段落0088参照)にて測定した引張伸度は30%以上であることが好ましい。不織布の引張伸度が30%以上であることで、プレス立体成型時の金型の絞りの立ち上がり部位における不織布の金型への追従性が高くなり、シワや透けや亀裂のない成型体となる。より好ましくは不織布の引張伸度は40%以上、更に好ましくは50%以上である。
【0049】
不織布は、後述の実施例の(3)不織布の引張強度・引張伸度測定方法(段落0088参照)にて測定した200℃雰囲気における引張伸度30%時の引張応力が80N/cm以下であることが必要である。より好ましくは200℃雰囲気における引張伸度30%時の引張応力が60N/cm以下であり、更に好ましくは50N/cm以下である。本発明で特定する200℃雰囲気における引張伸度30%時の引張応力は、不織布のプレス立体成型時の金型の絞りの立ち上がり部分の成型を想定したものである。
【0050】
200℃雰囲気における引張伸度30%時の引張応力が80N/cm以下であることより、不織布が金型の絞りの立ち上がり部分の角に抵抗なく追従し、立ち上がり部位の角にシワのない成型体が製造できる。この200℃雰囲気における引張伸度30%時の引張応力が80N/cm以下の不織布は、目付3000g/m以下とすることで達成できるため好ましい。不織布の目付を3000g/m以下とすることで、金型の絞りの立ち上がり部分の角に追従する柔軟な不織布となる。目付3000g/m超である不織布は、伸び難いため、金型の絞りの立ち上がり部分の角に不織布の目付が多く集まり、シワが発生する。不織布の目付は、より好ましくは2500g/m以下であり、更に好ましくは2000g/m以下である。
【0051】
不織布の通気度は30cc/cm/sec以上であることが好ましい。通気度が30cc/cm/sec以上であると、熱プレス機による成型時にケナフ繊維等の天然繊維から発生した水蒸気が外へ逃げやすいため、成型品位に優れたものとなる。通気度が30cc/cm/secより小さいと、熱プレス成型時に、ケナフ繊維等の天然繊維から発生した水蒸気が、外気に逃げることができずに不織布内部に存在することになる。そのため、プレス開放時に水蒸気の近傍が破裂することで、成型体が損傷し、強度の低い成型体になるおそれがある。不織布の通気度は、より好ましくは40cc/cm/sec以上であり、更に好ましくは通気度が50cc/cm/sec以上である。
【0052】
不織布の厚さは下の方としては1mm以上が好ましく、2mm以上がより好ましく、更には5mm以上が一層好ましく、上の方としては、300mm以下が好ましく、200mm以下がより好ましく、更に50mm以下が一層好ましい。上記目付け(450〜3000g/m)と厚さ(1〜300mm)の範囲にすることで、不織布の製造工程における加工性が良好で、かつ、この不織布を用いた成型体は曲げ強度、成型品位に優れるものとなる。
【0053】
不織布は、ポリ乳酸繊維とケナフ繊維等の天然繊維の比率が質量比で20〜60対80〜40であることが好ましい。ポリ乳酸繊維が20質量%より少ない場合、天然繊維との接着性が低下し、また、ポリ乳酸とケナフ繊維等の天然繊維との交絡が弱くなり、不織布の引張強度が低下し、成型体の強度が低下する傾向にある。また、ポリ乳酸繊維が60質量%より多い場合、生産コストが高くなる傾向がある。ポリ乳酸繊維とケナフ繊維等の天然繊維の比率は、より好ましくは質量比で25〜55対75〜45であり、30〜50対70〜50であることが更に好ましい。
【0054】
不織布は、後述の実施例の(3)不織布の臭気量測定方法(段落0090参照)にて測定した臭気量において、1−メトキシ−2−プロピルアセテート(C12)、エタノール,2−メトキシ−,アセテート(C10)、ホルムアルデヒドは、それぞれ2μg/kg以下であることが好ましい。より好ましくは、それぞれ1μg/kg以下、更に好ましくは0.5μg/kg以下である。また、酢酸、トリメチルベンゼン、アセトアルデヒドは、それぞれ10μg/kg以下であることが好ましい。より好ましくは、それぞれ5μg/kg以下、更に好ましくは3μg/kg以下である。この不織布を用いて成型することにより、臭気の少ない成型体を成形することができる。
【0055】
[成型体]
本発明の成型体は、上記の不織布をプレス成型して得られる。プレス成型は、射出成型や押出し成型とは違い、例えば1m角などの比較的大きな成型体を効率的に得ることができる。素材として不織布を使用することから、通常は成型体の一部または全部が板状となる。
【0056】
成型体の成型方法を例示すると以下のとおりである。まず不織布をカットし、目標の目付けになるように積層する。積層した不織布に対し、熱プレスと冷却プレスとを行い平板形状のプレボードを作成する。その後、プレボードを熱処理し、金型を用いて立体成形を行う。成型条件としては、下記の範囲で成型することが、曲げ強度が高くなるため好ましい。
【0057】
・熱プレス条件:定盤温度150〜220℃、圧力10〜5000kN/m、プレス時間5〜240秒間。
・冷プレス条件:定盤温度10℃〜40℃、圧力10〜5000kN/m、プレス時間5〜240秒間。
・熱処理条件 :プレボードの内部温度150〜220℃となるまで加熱する。
・立体成型条件:金型温度10〜40℃、圧力10〜5000kN/m、プレス時間5〜240秒。
【0058】
また、成型体の別の成型方法としては、まず不織布をカットし、目標の目付けになるように積層する。積層した不織布を熱処理し、金型を用いて立体成形を行う。この方法は、成型に必要な工程の数を少なくできるため好ましい。成型条件としては、下記の範囲で成型することで曲げ強度が高くなるため好ましい。
・熱処理条件:不織布の内部温度が170〜220℃となるまで加熱する。
・立体成型条件:金型温度10〜40℃、圧力10〜5000kN/m、プレス時間5〜240秒間。
【0059】
なお、不織布は、1枚で目標目付となる場合は積層しなくとも良い。
プレス方法は、ロールプレス機、平板プレス機などを使用することができる。成型体の強度を高めるためには、上下一対の熱プレス定盤にてプレスする熱プレス機が、十分な熱プレス時間を確保できるため好ましい。
【0060】
熱処理方法は、熱風、遠赤外線熱、マイクロ波熱を使用することができ、その中でも遠赤外線熱、マイクロ波熱は、不織布内部まで短時間で熱を与えることができるため好ましい。
【0061】
立体成型は、空気、水等の汎用の冷却手段を備え、金型を取り付けた冷却プレス機により、プレス立体成型を行うことが好ましい。特に、熱処理後のプレボード又は不織布のプレス時間(加圧開始から開放までの時間)は、8秒間以下が好ましく、より好ましくは7.5秒以下、更に好ましくは7秒以下である。そうすることで、成型時間が短縮でき、生産コストを低くすることができる。
【0062】
得られる成型体の密度は0.4〜1.2g/cmであることが好ましい。密度が0.4〜1.2g/cmであることより、成型体の曲げ強度を高めることができる。密度が0.4g/cm未満の場合は、自動車内装材や建築材料に必要な強度が足りない。また、密度が1.2g/cm超は、軽量性が失われるため好ましくない。成型体の密度は、より好ましくは0.5〜1.1g/cmであり、更に好ましくは0.6〜1.0g/cmである。
【0063】
成型体の曲げ強度は10N/mm以上が好ましく、より好ましくは20N/mm以上、更に好ましくは25N/mm以上である。曲げ強度が10N/mm未満の成型体は、強度が弱く、自動車内装材や建築材料に適用することが難しい。
【0064】
成型体は、後述の実施例(4)成型体の臭気官能試験方法(段落0096参照)にて判定した数値において、3以下である(明らかな臭気はあるが、不快臭なし)ことが好ましい。より好ましくは2以下(臭気はあるが、不快臭なし)、更に好ましくは1(無臭)である。これは、本発明の不織布を用いて上記の熱処理条件にて成型することで可能となる。特に熱処理条件の上限値が220℃超となると、不織布中のケナフ繊維等の天然繊維が焦げ、成型体より強烈な不快臭が発生する。
【実施例】
【0065】
以下に本発明の実施例を説明するが、本発明は下記実施例に限定されるものではなく、本発明の技術的範囲を逸脱しない範囲において、様々な変形や修正が可能である。
【0066】
[測定方法]
(1)ポリ乳酸繊維
A.繊度
JIS L 1015(1999)8.5.1 A法に準じて測定した。試料若干量を金ぐしで平行に引きそろえ、これを切断台上に置いたラシャ紙の上に載せ、適度の力でまっすぐに張ったままゲージ板を圧縮し、安全かみそりで30mmの長さに切断し、繊維を数えて300本を一組とし、その質量を量り、見かけ繊度を求めた。見かけ繊度から、次の式によって正量繊度を求め、算術平均値を繊度とした。
正量繊度(dtex)=D′×(100+Rc)/(100+Re)
ここに、D′:見かけ繊度(dtex)、Rc:公定水分率(%)、Re:平衡水分率(%)。
【0067】
B.繊維長
JIS L 1015(1999)8.4.1 A法に準じて測定した。試料を800mg量り取り、ステープルダイヤグラムを作成し、ステープルダイヤグラムを50の繊維長群に等分し、各区分の境界及び両端の繊維長を測定し、両端繊維長の平均に49の境界繊維長を加えて50で除して平均繊維長(mm)を算出し、2回の平均値を繊維長とした。
【0068】
C.引張強度・引張伸度
JIS L 1015(1999)8.7.1に準じて測定した。引張速度20mm/min、つかみ間隔20mmで試験し、次の式により引張強度と引張伸度を求めた。試験回数は10回とし、その算術平均値を算出した。
引張強度(cN/dtex)=SD/F0
ここに、SD:最大荷重(cN)、F0:試料の単糸繊度(dtex)
引張伸度(%)=(E1−E2)/(L+E1)×100
ここに、E1:緩み(mm)、E2:最大荷重時の伸び(mm)、L :つかみ間隔(mm)。
【0069】
D.乾熱収縮率
JIS L 1015(1999)8.15.b)に準じて測定した。JIS L 1015(1999)8.7.1の引張強度・引張伸度と同様の方法にて区分線を作り(ただし、空間距離は25mmとした)、初荷重をかけたときの距離(mm)を読んだ。試料を装置から取り出し、150℃の乾燥機中につり下げ、30分間放置後取り出し、室温まで冷却後、再び装置に取り付け、初荷重をかけたときのつかみ間の距離を読み、次の式によって乾熱収縮率を測定した。
乾熱収縮率(%)=((L−L’)/L)×100
L:150℃処理前の初荷重をかけたときのつかみ間の距離(mm)
L’:150℃処理後の初荷重をかけたときのつかみ間の距離(mm)
【0070】
E.分子量
ポリ乳酸をクロロホルムに溶解させて測定溶液とし、ゲルパーミエーションクロマトグラフィー(GPC)でカラム温度40℃、流量1ミリリットル/minの条件にて測定し、ポリスチレン換算で数平均分子量(Mn)、重量平均分子量(Mw)を求めた。測定数は5回とし、その算術平均値を算出した。
【0071】
F.粒子径
粒子径は、島津製作所製SALD−7100を用い、レーザー回折法のメディアン径d50(分布基準は個数であり、大径側の粒子数と小径側の粒子数が等しくなる累積50%の粒径を測定)を測定した。試験回数は5回とし、その算術平均値を粒子径とした。
【0072】
G.融点、降温結晶化温度
島津製作所社製示差走査熱量計DSC−60型を用い、試料2.0mgを昇温速度10℃/min、目標温度250℃、ホールド時間5分間、その後、降温速度10℃/min、目標温度30℃にて測定した。得た融解吸熱曲線(昇温時)の極値の温度を融点(℃)、結晶化発熱曲線(降温時)の極値の温度を降温結晶化温度(℃)とした。試験回数は5回とし、その算術平均値を算出した。
【0073】
G.エポキシ残価
JIS K7236(2001)エポキシ樹脂のエポキシ当量に準じて測定した。試料をビーカーにとり、クロロホルム20mlを加え、溶解し、酢酸40mlおよび臭化テトラエチルアンモニウム酢酸溶液10mlを加え、0.1mol/リットル過塩素酸酢酸溶液で電位差滴定を行った。その後、試料による0.1mol/リットル過塩素酸酢酸溶液消費量を補正するため、試料にクロロホルムと酢酸のみを加え、滴定した値を差し引きし、補正を行う方法によりエポキシ残価を算出した。
【0074】
H.COOH末端基濃度
秤量した試料をo−クレゾールに溶解し、ジクロロメタンを適量添加した後、0.02規定のKOHメタノール溶液で滴定した。この時、乳酸の環状2量体であるラクチド等のオリゴマーは加水分解され、COOH基末端を生じるため、ポリマーのCOOH基末端およびモノマー由来のCOOH基末端、オリゴマー由来のCOOH基末端の全てを合計したCOOH基末端濃度が求められる。この濃度をCOOH末端基濃度とした。
【0075】
I.捲縮数
JIS L 1015(1999)8.12.1に準じて測定した。JIS L 1015(1999)8.7.1の引張強度・引張伸度と同様の方法にて区分線を作り(ただし、空間距離は25mmとした)、これに捲縮が損なわれていない数個の部分から採取した試料を1本ずつ、空間距離に対して25±5%の緩みをもたせて、両端を接着剤ではり付け固着させた。この試料を1本ずつ、捲縮試験機のつかみに取り付け、紙片を切断した後、試料に初荷重(0.18mN×表示テックス数)をかけたときのつかみ間の距離(空間距離:mm)を読み、そのときの捲縮数を数えて、25mm長当たりの捲縮数を求め、20回の算術平均値を捲縮数とした。
【0076】
J.捲縮度
JIS L 1015(1999)8.12.2に準じて測定した。試料に初荷重(0.18mN×表示テックス数)かけたときの長さと、これに荷重(4.41mN×表示テックス数)をかけたときの長さを測り、次式によって捲縮度を算出した。
Cp={(b−a)/b}×100
Cp:捲縮度(%)
a:初荷重をかけたときの長さ(mm)
b:4.41mN×表示テックス数をかけたときの長さ(mm)
【0077】
(2)ケナフ繊維等の天然繊維
A.繊維長
ケナフ繊維長等の天然繊維は、ケナフ繊維等の天然繊維1kgの中よりランダムで100本採取した。採取する際に、折れ・千切れなどのあるケナフ繊維等の天然繊維は試験片としなかった。採取したケナフ繊維等の天然繊維を両面テープを貼り付けた台紙に、適度の力でまっすぐに貼り付け、ノギスにて繊維長を1mmまで測定し、100本の算術平均値を繊維長とした。
【0078】
B.繊維径
ケナフ繊維等の天然繊維の繊維径はケナフ繊維等の天然繊維1kgの中よりランダムで60本の繊維を採り、走査電子顕微鏡による拡大鏡によってその断面径(外接円の直径)を測定し、60本の算術平均値を繊維径とした。繊維径は0.1μmの精度で測定した。
【0079】
C.引張強度・引張伸度
ケナフ繊維等の天然繊維を標準状態(20℃、相対湿度65%)で48hr放置した後、そのケナフ繊維等の天然繊維から繊維量600dtex(繊維の折れや切れがない部分を使用)を10点採取し、10本の繊維束を得た(繊維長75mmの場合4.5mgを採取した)。各繊維束の両端を2つの厚紙を用いて、厚紙間が10mmになるように両面テープにて貼り付けた。そして、繊維束の厚紙部分を引張試験機のチャックにつかみ間隔10mmで取付けた。引張試験機にて引張速度10mm/minで、繊維束が切断するまで荷重を加え、次式によって10回の算術平均値を算出した。
引張強度(cN/dtex)=[最大荷重時の引張強さ(cN)]/[繊維量600dtex]
引張伸度(%)=[最大荷重時の伸び(mm)]/[つかみ間隔10(mm)]。
【0080】
D.含水率
試験繊維は、1kgのケナフ繊維等の天然繊維の中から繊維10gを3点採取し、そのケナフ繊維等の天然繊維を秤量瓶に入れた。標準状態(20℃、相対湿度65%)で48hr放置した後、初期重量を電子天秤にて測定した。その後、105℃で48hr乾燥処理して(これを絶対乾燥状態という)、重量を測定し、次式によって含水率を算出した。放置および乾燥処理の際は秤量瓶の蓋を取って処理を行った。
含水率(%)=[初期質量(g)−絶対乾燥状態の質量(g)]/
[絶対乾燥状態の質量(g)]×100
【0081】
E.臭気量
ケナフ繊維等の天然繊維から22gの試験片を2個採取する。各試験片を600ミリリットルのデュラン瓶に入れ、密閉し、20℃、相対湿度65%の標準状態にて24時間放置した。放置後、上記デュラン瓶内に高純度窒素ガスを送りながら、デュラン瓶内の雰囲気を捕集管に2L採気した。
アルデヒド類(アセトアルデヒド、ホルムアルデヒド)は、捕集管(DNPH SILICAサンプラー)を用いてアセトニトリル5mlで溶出、抽出液を窒素パージにて10倍濃縮した。その試験液をGC/MS(ガスクロマトグラフィーを直結した質量分析計)に導入して分析を行い、下記の式にて臭気量を算出した。
アルデヒド類の臭気量(μg/kg)=[抽出液中の成分量(μg/ml)×抽出液量(ml)×アルデヒド分子量×1000]/[濃縮倍率×(アルデヒド分子量+180)/サンプル量(g)]
VOC(揮発性有機化合物)は、捕集管(カーボントラップ400)より捕集成分を加熱脱離し、脱離成分をGC/MSに導入、分析を行い、下記の式にて臭気量を算出した。
VOCの臭気量(μg/kg)=成分量(ng)/サンプル量(g)。
【0082】
F.空隙数
ケナフ繊維等の天然繊維の断面をSEM(走査型電子顕微鏡)にて観察し、導管に由来する空隙数を数えた。ケナフ繊維等の天然繊維10本の空隙数を数え、その空隙数を10で除して1本当たりの算術平均値を空隙数とした。
【0083】
(3)不織布
A.混率
試料の異なる箇所から、50mm×50mmの大きさの正方形の試験片を5枚採取した。標準状態(20℃、相対湿度65%)で48hr放置した後、初期重量を電子天秤にて測定した。その試験片をクロロホルムに浸漬させ、ポリ乳酸繊維を全て溶かした。その後、標準状態(20℃、相対湿度65%)で48hr放置し、放置後の重量を測定し、下記式にて混率を求めた。
ポリ乳酸繊維混率(%)=[初期重量−放置後の質量]/初期重量×100
ケナフ等の天然繊維混率(%)=[100−ポリ乳酸繊維混率]。
【0084】
B.ケナフ繊維等の天然繊維の繊維長度数分布(ヒストグラム)
ポリ乳酸繊維とケナフ繊維等の天然繊維とを含む不織布から200mm×200mmの大きさの正方形状のものを採取し、その中よりランダムでケナフ繊維等の天然繊維を100点採取した。採取する際に、折れ・千切れなどのあるケナフ繊維等の天然繊維は試験片としなかった。採取したケナフ繊維等の天然繊維を両面テープを貼り付けた台紙に、適度の力でまっすぐに貼り付け、ノギスにて繊維長を1mmまで測定した。度数分布は、繊維長45mm未満、繊維長45mm以上65mm未満、65mm以上85mm未満、85mm以上に分け、それぞれの本数を数え、下記の式により繊維長の割合を計算した。
繊維長45mm未満のケナフ繊維等の天然繊維(%)=(繊維長45mm未満のケナフ繊維等の天然繊維の本数/100)×100
繊維長45mm以上65mm未満のケナフ繊維等の天然繊維(%)=(繊維長45mm以上65mm未満のケナフ繊維等の天然繊維の本数/100)×100
繊維長65mm以上85mm未満のケナフ繊維等の天然繊維(%)=(繊維長65mm以上85mm未満のケナフ繊維等の天然繊維の本数/100)×100
繊維長85mm以上のケナフ繊維等の天然繊維(%)=(繊維長85mm以上のケナフ繊維等の天然繊維の本数/100)×100
繊維長45mm以上のケナフ繊維等の天然繊維(%)=(100−繊維長45mm未満のケナフ繊維等の天然繊維(%))。
【0085】
C.目付
目付はJIS L 1906(2000)5.2に準じて測定した。試料の異なる箇所から200mm×250mmの大きさの試験片を3枚採取し、温度20℃、相対湿度65%の標準状態にて24hr放置後、それぞれの質量(g)を量り、その算術平均値を1m当たりの質量(g/m)で表し、目付とした。
【0086】
D.厚さ
試料の異なる箇所から200mm×250mmの大きさの試験片を3枚採取し、温度20℃、相対湿度65%の標準状態にて24hr放置後、それぞれの中央と4隅の5点の厚さ(mm)を測定器(TECLOCK type SM−123)にて0.01mmまで測定し、その算術平均値を厚さとした。
【0087】
E.通気度
JIS L 1096(1999)8.27.1 A法(フラジール形法)に準じて測定した。試料の異なる箇所から200mm×250mmの大きさの試験片を5枚採取し、フラジール形試験機を用い、円筒の一端(吸気側)に試験片を取り付けた。試験片の取り付けに際し、円筒の上に試験片を置き、試験片上から吸気部分を塞がないように均等に約98N(10kgf)の荷重を加え試験片の取り付け部におけるエアーの漏れを防止した。試験片を取り付けた後、加減抵抗器によって傾斜形気圧計が125Paの圧力を示すように吸込みファンを調整し、そのときの垂直形気圧計の示す圧力と、使用した空気孔の種類とから、試験機に付属の表によって試験片を通過する空気量を求め、5枚の試験片についての算術平均値を通気度とした。
【0088】
F.引張強度・引張伸度
不織布から50mm×200mmの大きさの試験片をタテ方向、ヨコ方向それぞれ5枚採取した。各試験片を温度20℃、相対湿度65%の標準状態にて48hr放置後、試験片を引張試験機につかみ間隔100mmで取付けた。引張速度100mm/minで、試験片が切断するまで荷重を加え、最大荷重時の強さを測定し、下記式にて、タテ方向とヨコ方向のそれぞれについて、5回の算術平均値を算出した。
引張強度(N/cm)=[最大荷重時の引張強さ(N)]/[5(cm)×厚さ(cm)]
引張伸度(%)=[最大荷重時の伸び(mm)]/[つかみ間隔100(mm)]
【0089】
G.200℃雰囲気における引張伸度30%の引張応力
不織布から50mm×200mmの大きさの試験片をタテ方向、ヨコ方向それぞれ5枚採取した。引張試験機に加熱炉を取り付け、試験片を当該加熱炉により200℃雰囲気下においた状態で、引張試験機につかみ間隔100mmで取付け1min放置後、引張速度100mm/minで、試験片が切断するまで荷重を加え、最大荷重時の強度を測定し、引張伸度30%の際の試験片の引張強さを求め、下記式にて引張応力を算出した。
200℃雰囲気における引張伸度30%の引張応力(N/cm
=[伸率30%時の引張強さ(N)]/[5(cm)×厚さ(cm)]
【0090】
H.臭気量
不織布から22gの試験片を2枚採取した。採取した試験片を前述の実施例の(2)ケナフ繊維等の天然繊維の臭気量測定方法(段落0081参照)と同様に臭気量を測定した。
【0091】
(4)成型体
A.目付
目付は不織布の目付と同じと仮定し、下記式にて算出した。
成型体の目付(g/m)=不織布の目付(g/m
【0092】
B.厚さ
厚さは、成型体を温度20℃、相対湿度65%の標準状態にて24hr放置後、図3に記載の3点の部位で(図3の斜線を付した丸印参照)、成型体の厚さ(mm)を測定器(PEACOCK社製のtype LA−2)にて0.1mmまで測定し、3点の平均値を厚さとした。
【0093】
C.密度
密度はJIS A 5905(2003)6.3に準じて測定した。図4に記載の部位で(図4の斜線を付した長方形参照)、成型体3から、タテ方向(斜線を付した縦長の長方形)およびヨコ方向(斜線を付した横長の長方形)のそれぞれについて、幅50mm、長さ150mmの試験片を3枚ずつ採取した。各試験片を温度20℃、相対湿度65%の標準状態にて24hr放置後、試験片の幅、長さ及び厚さを測定し、それぞれについて3枚の平均値を求め、その試験片の幅、長さ及び厚さの平均値から体積(v)を求めた。次に、質量(g)を測定し、次式によって、密度を算出した。厚さ、幅及び長さは0.1mm、質量は0.01gの精度まで測定し、密度は0.01g/cm単位まで次式によって算出した。1枚の試験片ごとに密度を求めた上で、3枚の試験片の平均値を求め、この平均値を密度とした。
密度(g/cm)=m/v
ここに、m:質量(g)
v:体積(cm)。
【0094】
D.成型性
成型性は下記の成型方法により成型した成型体の立ち上がり部位の外観を評価した。
a.成型方法
目的密度に合わせた不織布を遠赤外線ヒーターにて不織布内部温度200℃まで加熱、その後、温度30℃に設定した、図1(a)に示す雄金型1と図1(c)に示す雌金型2からなる金型にて、圧力3000kN/mで冷却プレスを8秒間行い、図1(b)に示すような厚さ5mm以下の成型体3を作成した。
b.成型体の立ち上がり部位の角のシワ
成型体の立ち上がり部位の角のシワの判定は、次のように行った。
A:成型体の立ち上がり部位の角にシワがない(優)
B:成型体の立ち上がり部位の角に、段差0.5mm未満のシワがある(良)
C:成型体の立ち上がり部位の角に、段差0.5mm以上のシワがある(不良)
c.成型体の立ち上がり部位の透け、亀裂
成型体の立ち上がり部位の透け、亀裂の判定は、次のように行った。
A:成型体の立ち上がり部位に透けや亀裂がない(優)
B:成型体の立ち上がり部位に亀裂はないが、透けがある(良)
C:成型体の立ち上がり部位に亀裂がある(不良)
【0095】
E.曲げ強度
曲げ強度はJIS A 5905:2003 6.6に準じて測定した。図4に記載の部位で(図4の斜線を付した長方形参照)、成型体3から、タテ方向(斜線を付した縦長の長方形)およびヨコ方向(斜線を付した横長の長方形)のそれぞれについて、幅50mm、長さ150mmの試験片を3枚ずつ採取した。各試験片を温度20℃、相対湿度65%の標準状態にて48時間放置後、曲げ強さ試験装置に、スパン(L)100mmとして試験片を設置し、スパンの中間位置にて試験片の表面から50mm/minの速度で荷重を加え、その最大荷重を測定し、次式によって曲げ強度を求め、3枚の平均値を曲げ強度とした。
曲げ強度(N/mm)=[3×最大荷重(N)×L(mm)]/
[2×幅(mm)×厚さ(mm)]
判定
A:曲げ強度が20N/mm以上(タテ、ヨコ両方)(優)
B:曲げ強度が10N/mm以上(タテ、ヨコ両方)(良)
C:曲げ強度が10N/mm未満(タテ、ヨコ両方)(不良)
【0096】
F.臭気官能試験
成型体より幅50mm、長さ100mmの大きさの試験片を5枚ずつ採取した。試験片を2リットルのガラス瓶に1枚ずつ入れ、蓋をした。ガラス瓶を乾燥機(90℃)に入れ、1時間加熱した。その後、乾燥機から取り出し、室温まで冷却した。ガラス瓶の入口に鼻を近づけ、蓋を開け、臭いを嗅ぎ、判定は下記の通り行った。臭気官能試験者は5人にて行い、各人が5枚の試験片の臭いを嗅ぎ、25枚についての5人の平均値を求めた。
1.無臭
2.臭気はあるが、不快臭なし
3.明らかな臭気はあるが、不快臭なし
4.不快臭あり
5.強烈な不快臭あり
【0097】
(実施例1)
ポリ乳酸チップ(融点170℃、重量平均分子量11.3×10)と、結晶核剤としてのメディアン径d50が20nmのカーボンブラック1質量%と、加水分解抑制剤としてトリグリシジルイソシアヌレート(日産化学工業株式会社製「TEPIC」(登録商標。以下同じ。))2質量%を紡糸機ホッパーに仕込み、エクストルーダー型紡糸機にて、紡糸温度230℃にて溶融紡糸し、この紡糸糸条を冷却させ、油剤を付与して収束した後、1000m/分で引き取り、未延伸糸を得た。
【0098】
得られた未延伸糸を収束して80万dtexとして、90℃の液浴中で4.0倍に延伸した後、スタッファーボックスで機械捲縮を付与し、145℃で10分間加熱後、油剤を繊維に対し0.5重量%になるようにスプレー方式にて付与し、51mmに切断し、単子繊度6.6dtexのポリ乳酸短繊維を得た。紡糸、延伸工程で糸切れや毛羽の発生もなく、安定して原綿を得ることができた。得られたポリ乳酸短繊維は、引張強度2.1cN/dtex、引張伸度72%、捲縮数10.2山/25mm、捲縮度14%、乾熱収縮率1.2%と十分実用性のある力学特性であり、降温結晶化温度も127℃と結晶化速度の早いものであり、エポキシ残価は0.18当量/kgであった。
【0099】
ケナフ繊維は、ケナフの茎を河川にてレッディング処理し靭皮繊維を採取し、ギロチンカッターにて切断することにより作製した。得られたケナフ繊維は、繊維長119mm、繊維径58μm、導管に由来する空隙が41個、含水率が17質量%、引張強度2.0cN/dtexであった。ケナフ繊維の臭気量は1−メトキシ−2−プロピルアセテートが0.3μg/kg、エタノール,2−メトキシ−,アセテートが0.9μg/kg、酢酸が0.3μg/kg、トリメチルベンゼンが1.1μg/kg、アセトアルデヒドが4.2μg/kg、ホルムアルデヒドは検出されなかった。
【0100】
前記ポリ乳酸短繊維とケナフ繊維とを30対70の質量比でローラーカードを用いて混綿し、開繊し、ウェブを作製した。次に針密度60本/cmの条件にてニードルパンチを行い、交絡させて、目付529g/m、厚さ3.4mmの不織布を得た。その不織布は、タテ方向の引張強度が98N/cm、ヨコ方向の引張強度が56N/cm、200℃雰囲気における引張伸度30%のタテ方向の引張応力が14N/cm、ヨコ方向の引張応力が10N/cmであった。また、不織布中のポリ乳酸繊維の降温結晶化温度は127℃で、結晶化速度の早いものであった。また、不織布中の繊維長45mm以上のケナフ繊維の繊維長度数分布は86%であり、ポリ乳酸繊維とケナフ繊維の交絡は非常に強固な構造であった。不織布の臭気量は1−メトキシ−2−プロピルアセテートが0.3μg/kg、エタノール,2−メトキシ−,アセテートが0.9μg/kg、酢酸が2.7μg/kg、トリメチルベンゼンが1.8μg/kg、アセトアルデヒドが5.2μg/kg、ホルムアルデヒドは検出されなかった。
【0101】
次に表1に示す目的密度に合わせた不織布1枚を遠赤外線ヒーターにて不織布内部温度200℃まで加熱した。その後、温度30℃に設定した金型(図1(a)、図1(c)参照)にて、圧力3000kN/mで冷却プレスを8秒間行い、密度0.76g/cm、厚さ0.7mmの立体型の成型体を作成した。その成型体は、立ち上がり部位に透け、亀裂がなく、角はシワがないものであった。また、金型の冷却プレス時間が8秒間と短いが、タテ方向の曲げ強度は25N/mm、ヨコ方向の曲げ強度は27N/mmと高いものであった。成型体の臭気官能試験の判定は2であり、臭気はあるが、不快臭がないものであった。
【0102】
(実施例2)
実施例1と同じのポリ乳酸短繊維とケナフ繊維とを50対50の質量比でローラーカードを用いて混綿し、開繊し、ウェブを作製した。次に針密度60本/cmの条件にてニードルパンチを行い、交絡させて、目付556g/m、厚さ3.6mmの不織布を得た。その不織布は、タテ方向の引張強度が128N/cm、ヨコ方向の引張強度が84N/cm、200℃雰囲気における引張伸度30%のタテ方向の引張応力が19N/cm、ヨコ方向の引張応力が16N/cmであった。また、不織布中のポリ乳酸繊維の降温結晶化温度は127℃であった。また、不織布中の繊維長45mm以上のケナフ繊維の繊維長度数分布は87%であり、ポリ乳酸繊維とケナフ繊維の交絡は非常に強固な構造であった。不織布の臭気量は1−メトキシ−2−プロピルアセテートが0.3μg/kg、エタノール,2−メトキシ−,アセテートが0.9μg/kg、酢酸が2.4μg/kg、トリメチルベンゼンが1.5μg/kg、アセトアルデヒドが4.1μg/kg、ホルムアルデヒドは検出されなかった。
【0103】
次に、実施例1と同様の成型体の成型条件にて、密度0.70g/cm、厚さ0.8mmの成型体を作製した。その成型体は成型速度が速く、立ち上がり部位に透け、亀裂がなく、角はシワがないものであった。また、金型の冷却プレス時間が8秒間と短いが、タテ方向の曲げ強度は24N/mm、ヨコ方向の曲げ強度は22N/mmと高いものであった。成型体の臭気官能試験の判定は2であり、臭気はあるが、不快臭がないものであった。
【0104】
(実施例3)
実施例1と同じポリ乳酸短繊維とケナフ繊維とを30対70の質量比でローラーカードを用いて混綿し、開繊し、ウェブを作製した。次にファーストパンチ80本/cm、セカンドパンチ80本/cm、合計針密度160本/cmの条件にてニードルパンチを行い、交絡させて、目付514g/m、厚さ3.4mmの不織布を得た。その不織布は、タテ方向の引張強度が58N/cm、ヨコ方向の引張強度が34N/cm、200℃雰囲気における引張伸度30%のタテ方向の引張応力が9N/cm、ヨコ方向の引張応力が8N/cmであった。また、不織布中のポリ乳酸繊維の降温結晶化温度は127℃であった。また、不織布中の繊維長45mm以上のケナフ繊維の繊維長度数分布は57%であり、ポリ乳酸繊維とケナフ繊維の交絡は強固な構造であった。
【0105】
次に、実施例1と同様の成型体の成型条件にて、密度0.73g/cm、厚さ0.7mmの成型体を作製した。その成型体は成型速度が速く、立ち上がり部位において、亀裂はないが、透けがあり、立ち上がり部位の角は、シワがないものであった。また、金型の冷却プレス時間が8秒間と短いが、タテ方向の曲げ強度は17N/mm、ヨコ方向の曲げ強度は15N/mmと高いものであった。
【0106】
(実施例4)
実施例1と同じポリ乳酸短繊維とケナフ繊維とを実施例1と同様の不織布加工条件にて目付1012g/m、厚さ6.1mmの不織布を得た。その不織布は、タテ方向の引張強度が131N/cm、ヨコ方向の引張強度が107N/cm、200℃雰囲気における引張伸度30%のタテ方向の引張応力が32N/cm、ヨコ方向の引張応力が21N/cmであった。また、不織布中のポリ乳酸繊維の降温結晶化温度は127℃であった。
【0107】
また、不織布中の繊維長45mm以上のケナフ繊維の繊維長度数分布は、91%であり、ポリ乳酸繊維とケナフ繊維の交絡は非常に強固な構造であった。次に、実施例1と同様の成型体の成型条件にて、密度0.72g/cm、厚さ1.4mmの成型体を作成した。その成型体は成型速度が速く、立ち上がり部位に透け、亀裂がなく、角はシワがないものであった。また、金型の冷却プレス時間が8秒間と短いが、タテ方向の曲げ強度は20N/mm、ヨコ方向の曲げ強度が23N/mmと高いものであった。
【0108】
(実施例5)
実施例1と同じポリ乳酸短繊維とケナフ繊維とを実施例1と同様の不織布加工条件にて目付1584g/m、厚さ8.2mmの不織布を得た。その不織布は、タテ方向の引張強度が157N/cm、ヨコ方向の引張強度が110N/cm、200℃雰囲気における引張伸度30%のタテ方向の引張応力が56N/cm、ヨコ方向の引張応力が17N/cmであった。また、不織布中のポリ乳酸繊維の降温結晶化温度は127℃であった。また、不織布中の繊維長45mm以上のケナフ繊維の繊維長度数分布は94%であり、ポリ乳酸繊維とケナフ繊維の交絡は非常に強固な構造であった。不織布の臭気量は1−メトキシ−2−プロピルアセテートが0.3μg/kg、エタノール,2−メトキシ−,アセテートが0.9μg/kg、酢酸が2.9μg/kg、トリメチルベンゼンが1.8μg/kg、アセトアルデヒドが5.1μg/kg、ホルムアルデヒドは検出されなかった。
【0109】
次に、実施例1と同様の成型体の成型条件にて、密度0.75g/cm、厚さ2.1mmの成型体を作成した。その成型体は成型速度が速く、立ち上がり部位に透け、亀裂がなく、角はシワがないものであった。また、金型の冷却プレス時間が8秒間と短いが、タテ方向の曲げ強度は27N/mm、ヨコ方向の曲げ強度は29N/mmと高いものであった。成型体の臭気官能試験の判定は3であり、明らかな臭気はあるが、不快臭がないものであった。
【0110】
(実施例6)
実施例1と同じポリ乳酸短繊維とケナフ繊維とを50対50の質量比でローラーカードを用いて混綿し、開繊し、ウェブを作製した。次に針密度60本/cmの条件にてニードルパンチを行い、交絡させて、目付1615g/m、厚さ8.2mmの不織布を得た。その不織布は、タテ方向の引張強度が175N/cm、ヨコ方向の引張強度が107N/cm、200℃雰囲気における引張伸度30%のタテ方向の引張応力が44N/cm、ヨコ方向の引張応力が15N/cmであった。また、不織布中のポリ乳酸繊維の降温結晶化温度は127℃であった。また、不織布中の繊維長45mm以上のケナフ繊維の繊維長度数分布は92%であり、ポリ乳酸繊維とケナフ繊維の交絡は非常に強固な構造であった。不織布の臭気量は1−メトキシ−2−プロピルアセテートが0.3μg/kg、エタノール,2−メトキシ−,アセテートが0.9μg/kg、酢酸が2.2μg/kg、トリメチルベンゼンが1.5μg/kg、アセトアルデヒドが3.9μg/kg、ホルムアルデヒドは検出されなかった。
【0111】
次に、実施例1と同様の成型体の成型条件にて、密度0.73g/cm、厚さ2.2mmの成型体を作製した。その成型体は成型速度が速く、立ち上がり部位に透け、亀裂がなく、角はシワがないものであった。また、金型の冷却プレス時間が8秒間と短いが、タテ方向の曲げ強度は26N/mm、ヨコ方向の曲げ強度は27N/mmと高いものであった。成型体の臭気官能試験の判定は3であり、明らかな臭気はあるが、不快臭がないものであった。
【0112】
(実施例7)
ケナフ繊維として、ケナフの茎を河川にてレッディング処理し靭皮繊維を採取し、ギロチンカッターにて切断することによりケナフ繊維を作製した。その後、100℃の10%水酸化ナトリウム水溶液にてケナフ繊維を20分間処理した。得られたケナフ繊維は、繊維長142mm、繊維径40μm、導管に由来する空隙が28個、含水率が16質量%、引張強度が1.5cN/dtexであった。ケナフ繊維の臭気量は1−メトキシ−2−プロピルアセテートが0.1μg/kg、エタノール,2−メトキシ−,アセテートが0.4μg/kg、酢酸が0.2μg/kg、トリメチルベンゼンが0.9μg/kg、アセトアルデヒドが1.8μg/kg、ホルムアルデヒドは検出されなかった。
【0113】
実施例1と同じポリ乳酸短繊維と前記ケナフ繊維とを、実施例1と同様の不織布加工条件にて目付1571g/m、厚さ10.4mmの不織布を得た。その不織布は、タテ方向の引張強度が61N/cm、ヨコ方向の引張強度が33N/cm、200℃雰囲気における引張伸度30%のタテ方向の引張応力が10N/cm、ヨコ方向の引張応力が5N/cmであった。また、不織布中のポリ乳酸繊維の降温結晶化温度は127℃であった。また、不織布中の繊維長45mm以上のケナフ繊維の繊維長度数分布は68%であり、ポリ乳酸繊維とケナフ繊維の交絡は強固な構造であった。不織布の臭気量は1−メトキシ−2−プロピルアセテートが0.2μg/kg、エタノール,2−メトキシ−,アセテートが0.4μg/kg、酢酸が1.5μg/kg、トリメチルベンゼンが1.1μg/kg、アセトアルデヒドが2.4μg/kg、ホルムアルデヒドは検出されなかった。
【0114】
次に、実施例1と同様の成型体の成型条件にて、密度0.71g/cm、厚さ2.2mmの成型体を作製した。その成型体は成型速度が速く、立ち上がり部位に透け、亀裂がなく、角はシワがないものであった。また、金型の冷却プレス時間が8秒間と短いが、タテ方向の曲げ強度は23N/mm、ヨコ方向の曲げ強度は19N/mmと高いものであった。成型体の臭気官能試験の判定は1であり、臭気の無いものであった。
【0115】
(実施例8)
実施例1と同じポリ乳酸短繊維とケナフ繊維とを実施例1と同様の不織布加工条件にて目付1982g/m、厚さ13.1mmの不織布を得た。その不織布は、タテ方向の引張強度が193N/cm、ヨコ方向の引張強度が157N/cm、200℃雰囲気における引張伸度30%のタテ方向の引張応力が63N/cm、ヨコ方向の引張応力が27N/cmであった。また、不織布中のポリ乳酸繊維の降温結晶化温度は127℃であった。
【0116】
また、不織布中の繊維長45mm以上のケナフ繊維の繊維長度数分布は、95%であり、ポリ乳酸繊維とケナフ繊維の交絡は非常に強固な構造であった。次に、実施例1と同様の成型体の成型条件にて、密度0.73g/cm、厚さ2.7mmの成型体を作製した。その成型体は成型速度が速く、立ち上がり部位に透け、亀裂がなく、角はシワがないものであった。また、金型の冷却プレス時間が8秒間と短いが、タテ方向の曲げ強度は25N/mm、ヨコ方向の曲げ強度は26N/mmと高いものであった。
【0117】
(実施例9)
実施例1と同じポリ乳酸短繊維とケナフ繊維とを30対70の重量比でローラーカードを用いて混綿し、開繊し、ウェブを作製した。次にファーストパンチ50本/cm、セカンドパンチ50本/cm、合計針密度100本/cmの条件にてニードルパンチを行い、交絡させて、目付2538g/m、厚さ13.8mmの不織布を得た。その不織布は、タテ方向の引張強度が281N/cm、ヨコ方向の引張強度が237N/cm、200℃雰囲気における引張伸度30%のタテ方向の引張応力が78N/cm、ヨコ方向の引張応力が/53N/cmであり、通気度26cc/cm/secと低いものであった。また、不織布中の繊維長45mm以上のケナフ繊維の繊維長度数分布は96%であり、ポリ乳酸繊維とケナフ繊維の交絡は非常に強固な構造であった。また、不織布中のポリ乳酸繊維の降温結晶化温度は127℃であった。
【0118】
次に、実施例1と同様の成型体の成型条件にて、密度1.21g/cm、厚さ2.1mmの成型体を作製した。その成型体は成型速度が速く、立ち上がり部位において、透け、亀裂がなく、立ち上がり部位の角は、段差が0.5mm未満の小さいシワがあった。また、金型の冷却プレス時間が8秒間と短いが、タテ方向の曲げ強度は55N/mm、ヨコ方向の曲げ強度は48N/mmと高いものであった。
【0119】
(実施例10)
ケナフ繊維として、ケナフの茎を沼にてレッディング処理し靭皮繊維を採取し、ギロチンカッターにて切断することによりケナフ繊維を作製した。得られたケナフ繊維は、繊維長184mm、繊維径93μm、導管に由来する空隙が30個、含水率が13質量%、引張強度が0.9cN/dtexであった。ケナフ繊維の臭気量は1−メトキシ−2−プロピルアセテートが0.4μg/kg、エタノール,2−メトキシ−,アセテートが1.8μg/kg、酢酸が3.7μg/kg、トリメチルベンゼンが2.2μg/kg、アセトアルデヒドが5.8μg/kg、ホルムアルデヒドは検出されなかった。
【0120】
実施例1と同じポリ乳酸短繊維と前記ケナフ繊維とを実施例1と同様の不織布加工条件にて目付530g/m、厚さ3.0mmの不織布を得た。その不織布は、タテ方向の引張強度が81N/cm、ヨコ方向の引張強度が35N/cm、200℃雰囲気における引張伸度30%のタテ方向の引張応力が12N/cm、ヨコ方向の引張応力が7N/cmであった。また、不織布中のポリ乳酸繊維の降温結晶化温度は127℃であった。
【0121】
また、不織布中の繊維長45mm以上のケナフ繊維の繊維長度数分布は、52%であり、ポリ乳酸繊維とケナフ繊維の交絡は強固な構造であった。不織布の臭気量は1−メトキシ−2−プロピルアセテートが0.5μg/kg、エタノール,2−メトキシ−,アセテートが2.1μg/kg、酢酸が4.9μg/kg、トリメチルベンゼンが2.7μg/kg、アセトアルデヒドが6.8μg/kg、ホルムアルデヒドは検出されなかった。
【0122】
次に、実施例1と同様の成型体の成型条件にて、密度0.76g/cm、厚さ0.7mmの成型体を作製した。その成型体は成型速度が速く、立ち上がり部位において、亀裂はないが、透けがあり、立ち上がり部位の角は、シワがないものであった。また、金型の冷却プレス時間が8秒間と短いが、タテ方向の曲げ強度は28N/mm、ヨコ方向の曲げ強度は26N/mmと高いものであった。成型体の臭気官能試験の判定は4であり、不快臭のあるものであった。
【0123】
(実施例11)
ポリ乳酸チップ(融点170℃、重量平均分子量10.8×10)と、結晶核剤としてのメディアン径d50が20nmのカーボンブラック1質量%と、加水分解抑制剤としてトリグリシジルイソシアヌレート(日産化学工業株式会社製「TEPIC」)2質量%を紡糸機ホッパーに仕込み、エクストルーダー型紡糸機にて、紡糸温度230℃にて溶融紡糸し、この紡糸糸条を冷却させ、油剤を付与して収束した後、1000m/分で引き取り、未延伸糸を得た。
【0124】
得られた未延伸糸を収束して80万dtexとして、90℃の液浴中で4.0倍に延伸した後、スタッファーボックスで機械捲縮を付与し、90℃で10分間加熱後、油剤を繊維に対し0.5重量%になるようにスプレー方式にて付与し、51mmに切断し、単子繊度6.6dtexのポリ乳酸短繊維を得た。紡糸、延伸工程で糸切れや毛羽の発生もなく、安定して原綿を得ることができた。得られたポリ乳酸短繊維は引張強度2.3cN/dtex、引張伸度56%、捲縮数10.8山/25mm、捲縮度12%、乾熱収縮率7.5%と十分実用性のある力学特性であり、降温結晶化温度も127℃と結晶化速度の早いものであった。
【0125】
前記ポリ乳酸短繊維と、実施例1と同様のケナフ繊維を用いて、実施例1と同様の不織布加工条件にて目付1534g/m、厚さ8.1mmの不織布を得た。その不織布は、タテ方向の引張強度が166N/cm、ヨコ方向の引張強度が114N/cm、200℃雰囲気における引張伸度30%のタテ方向の引張応力が59N/cm、ヨコ方向の引張応力が23N/cmであった。また、不織布中のポリ乳酸繊維の降温結晶化温度は127℃であった。また、不織布中の繊維長45mm以上のケナフ繊維の繊維長度数分布は92%であり、ポリ乳酸繊維とケナフ繊維の交絡は非常に強固な構造であった。
【0126】
次に、実施例1と同様の成型体の成型条件にて、密度0.73g/cm、厚さ2.1mmの成型体を作製した。その成型体は成型速度が速く、立ち上がり部位において、透け、亀裂がなく、立ち上がり部位の角には、段差が0.5mm未満の小さいシワがあった。また、金型の冷却プレス時間が8秒間と短いが、タテ方向の曲げ強度は22N/mm、ヨコ方向の曲げ強度は23N/mmと高いものであった。
【0127】
(実施例12)
ポリ乳酸チップ(融点170℃、重量平均分子量11.3×10)と、結晶核剤としてのメディアン径d50が20nmのカーボンブラック1質量%と、加水分解抑制剤としてトリグリシジルイソシアヌレート(日産化学工業株式会社製「TEPIC」)0.5質量%を紡糸機ホッパーに仕込み、エクストルーダー型紡糸機にて、紡糸温度230℃にて溶融紡糸し、この紡糸糸条を冷却させ、油剤を付与して収束した後、1000m/分で引き取り、未延伸糸を得た。
【0128】
得られた未延伸糸を収束して80万dtexとして、90℃の液浴中で4.0倍に延伸した後、スタッファーボックスで機械捲縮を付与し、145℃で10分間加熱後、油剤を繊維に対し0.5重量%になるようにスプレー方式にて付与し、51mmに切断し、単子繊度6.6dtexのポリ乳酸短繊維を得た。紡糸、延伸工程で糸切れや毛羽の発生もなく、安定して原綿を得ることができた。得られたポリ乳酸短繊維は、引張強度2.2cN/dtex、引張伸度71%、捲縮数10.5山/25mm、捲縮度13%、乾熱収縮率1.4%と十分実用性のある力学特性であり、降温結晶化温度も127℃と結晶化速度の早いものであり、エポキシ残価は0.04当量/kgであった。
【0129】
前記ポリ乳酸短繊維と、実施例1と同様のケナフ繊維を用いて、実施例1と同様の不織布加工条件にて目付516g/m、厚さ3.5mmの不織布を得た。その不織布は、タテ方向の引張強度が74N/cm、ヨコ方向の引張強度が44N/cm、200℃雰囲気における引張伸度30%のタテ方向の引張応力が10N/cm、ヨコ方向の引張応力が8N/cmであった。また、不織布中のポリ乳酸繊維の降温結晶化温度は127℃であった。また、不織布中の繊維長45mm以上のケナフ繊維の繊維長度数分布は89%であり、ポリ乳酸繊維とケナフ繊維の交絡は非常に強固な構造であった。
【0130】
次に、実施例1と同様の成型体の成型条件にて、密度0.74g/cm、厚さ0.7mmの成型体を作製した。その成型体は成型速度が速く、立ち上がり部位において、亀裂はないが、透けがあり、立ち上がり部位の角は、シワがないものであった。また、金型の冷却プレス時間が8秒間と短いが、タテ方向の曲げ強度は18N/mm、ヨコ方向の曲げ強度は13N/mmであった。
【0131】
(実施例13)
ポリ乳酸チップ(融点170℃、重量平均分子量11.3×10)と、結晶核剤としてのメディアン径d50が10nmのカーボンブラック1質量%と、加水分解抑制剤としてトリグリシジルイソシアヌレート(日産化学工業株式会社製「TEPIC」)2質量%を紡糸機ホッパーに仕込み、エクストルーダー型紡糸機にて、紡糸温度230℃にて溶融紡糸し、この紡糸糸条を冷却させ、油剤を付与して収束した後、1000m/分で引き取り、未延伸糸を得た。
【0132】
得られた未延伸糸を収束して80万dtexとして、90℃の液浴中で4.0倍に延伸した後、スタッファーボックスで機械捲縮を付与し、145℃で10分間加熱後、油剤を繊維に対し0.5重量%になるようにスプレー方式にて付与し、51mmに切断し、単子繊度6.6dtexのポリ乳酸短繊維を得た。紡糸、延伸工程で糸切れや毛羽の発生もなく、安定して原綿を得ることができた。得られたポリ乳酸短繊維は、引張強度2.0cN/dtex、引張伸度70%、捲縮数10.9山/25mm、捲縮度13%、乾熱収縮率1.1%と十分実用性のある力学特性であり、降温結晶化温度も138℃と結晶化速度の早いものであり、エポキシ残価は0.18当量/kgであった。
【0133】
前記ポリ乳酸短繊維と、実施例1と同様のケナフ繊維を用いて、実施例1と同様の不織布加工条件にて目付1534g/m、厚さ8.1mmの不織布を得た。その不織布は、タテ方向の引張強度が154N/cm、ヨコ方向の引張強度が108N/cm、200℃雰囲気における引張伸度30%のタテ方向の引張応力が51N/cm、ヨコ方向の引張応力が18N/cmであった。また、不織布中のポリ乳酸繊維の降温結晶化温度は138℃と、結晶化速度の早いものであった。
【0134】
また、不織布中の繊維長45mm以上のケナフ繊維の繊維長度数分布は、95%であり、ポリ乳酸繊維とケナフ繊維の交絡は非常に強固な構造であった。不織布の臭気量は1−メトキシ−2−プロピルアセテートが0.3μg/kg、エタノール,2−メトキシ−,アセテートが0.9μg/kg、酢酸が2.5μg/kg、トリメチルベンゼンが1.4μg/kg、アセトアルデヒドが4.0μg/kg、ホルムアルデヒドは検出されなかった。
【0135】
次に表1に示す目的密度に合わせた不織布1枚を遠赤外線ヒーターにて不織布内部温度200℃まで加熱した。その後、温度30℃に設定した金型(図1(a)、図1(c)参照)にて、圧力3,000kN/mで冷却プレスを7秒間行い、密度0.72g/cm、厚さ2.1mmの立体型の成型体を作製した。その成型体は、立ち上がり部位に透け、亀裂がなく、角はシワがないものであった。また、金型の冷却プレス時間が7秒間と短いが、タテ方向の曲げ強度は28N/mm、ヨコ方向の曲げ強度は29N/mmと高いものであった。成型体の臭気官能試験の判定は3であり、明らかな臭気はあるが、不快臭がないものであった。
【0136】
(実施例14)
実施例1と同じポリ乳酸短繊維とケナフ繊維とを20対80の質量比でローラーカードを用いて混綿し、開繊し、ウェブを作製した。次に針密度60本/cmの条件にてニードルパンチを行い、交絡させて、目付563g/m、厚さ3.5mmの不織布を得た。その不織布は、タテ方向の引張強度が52N/cm、ヨコ方向の引張強度が31N/cm、200℃雰囲気における引張伸度30%のタテ方向の引張応力が12N/cm、ヨコ方向の引張応力が8N/cmであった。また、不織布中のポリ乳酸繊維の降温結晶化温度は127℃であった。また、不織布中の繊維長45mm以上のケナフ繊維の繊維長度数分布は90%であり、ポリ乳酸繊維とケナフ繊維の交絡は非常に強固な構造であった。
【0137】
次に、実施例1と同様の成型体の成型条件にて、密度0.70g/cm、厚さ0.8mmの成型体を作製した。その成型体は成型速度が速く、立ち上がり部位において、亀裂はないが、透けがあり、立ち上がり部位の角は、シワがないものであった。また、金型の冷却プレス時間が8秒間と短いが、タテ方向の曲げ強度は19N/mm、ヨコ方向の曲げ強度は16N/mmと高いものであった。
【0138】
(実施例15)
実施例1と同じポリ乳酸短繊維とケナフ繊維とを60対40の質量比でローラーカードを用いて混綿し、開繊し、ウェブを作製した。次に針密度60本/cmの条件にてニードルパンチを行い、交絡させて、目付580g/m、厚さ3.6mmの不織布を得た。その不織布は、タテ方向の引張強度が149N/cm、ヨコ方向の引張強度が98N/cm、200℃雰囲気における引張伸度30%のタテ方向の引張応力が24N/cm、ヨコ方向の引張応力が18N/cmであった。また、不織布中のポリ乳酸繊維の降温結晶化温度は127℃であった。また、不織布中の繊維長45mm以上のケナフ繊維の繊維長度数分布は95%であり、ポリ乳酸繊維とケナフ繊維の交絡は非常に強固な構造であった。
【0139】
次に、実施例1と同様の成型体の成型条件にて、密度0.73g/cm、厚さ0.8mmの成型体を作成した。成型体は成型速度が速く、立ち上がり部位に透け、亀裂がなく、角はシワがないものであった。また、金型の冷却プレス時間が8秒間と短いが、タテ方向の曲げ強度は26N/mm、ヨコ方向の曲げ強度は25N/mmと高いものであった。成型体の臭気官能試験の判定は2であり、臭気はあるが、不快臭がないものであった。
【0140】
(実施例16)
ジュート繊維として、ジュートの茎を沼にてレッディング処理し靭皮繊維を採取し、ギロチンカッターにて切断することによりジュート繊維を作製した。得られたジュート繊維は、繊維長123mm、繊維径43μm、導管に由来する空隙が38個、含水率が15質量%、引張強度が1.7cN/dtexであった。
【0141】
実施例1と同じポリ乳酸短繊維と前記ジュート繊維とを、実施例1と同様の不織布加工条件にて目付1513g/m、厚さ8.2mmの不織布を得た。その不織布は、タテ方向の引張強度が151N/cm、ヨコ方向の引張強度が110N/cm、200℃雰囲気における引張伸度30%のタテ方向の引張応力が54N/cm、ヨコ方向の引張応力が23N/cmであった。また、不織布中のポリ乳酸繊維の降温結晶化温度は127℃であった。また、不織布中の繊維長45mm以上のケナフ繊維の繊維長度数分布は88%であり、ポリ乳酸繊維とケナフ繊維の交絡は強固な構造であった。
【0142】
次に、実施例1と同様の成型体の成型条件にて、密度0.72g/cm、厚さ2.1mmの成型体を作製した。その成型体は成型速度が速く、立ち上がり部位に透け、亀裂がなく、角はシワがないものであった。また、金型の冷却プレス時間が8秒間と短いが、タテ方向の曲げ強度は26N/mm、ヨコ方向の曲げ強度は28N/mmと高いものであった。
【0143】
(実施例17)
実施例1と同じポリ乳酸繊維とケナフ繊維とを30対70の質量比でエアレイドを用いて混綿し、開繊し、ウェブを作製した。次に針密度60本/cmの条件にてニードルパンチを行い、交絡させて、目付1542g/m、厚さ8.3mmの不織布を得た。その不織布は、タテ方向の引張強度が163N/cm、ヨコ方向の引張強度が117N/cm、200℃雰囲気における引張伸度30%のタテ方向の引張応力が52N/cm、ヨコ方向の引張応力が19N/cmであった。また、不織布中のポリ乳酸繊維の降温結晶化温度は127℃であった。また、不織布中の繊維長45mm以上のケナフ繊維の繊維長度数分布は95%であり、ポリ乳酸繊維とケナフ繊維の交絡は非常に強固な構造であった。
【0144】
次に、実施例1と同様の成型体の成型条件にて、密度0.73g/cm、厚さ2.1mmの成型体を作製した。その成型体は成型速度が速く、立ち上がり部位に透け、亀裂がなく、角はシワがないものであった。また、金型の冷却プレス時間が8秒間と短いが、タテ方向の曲げ強度は30N/mm、ヨコ方向の曲げ強度は29N/mmと高いものであった。
【0145】
(比較例1)
ポリ乳酸チップ(融点170℃、重量平均分子量10.6×10)と、結晶核剤としてのメディアン径d50が200×10nmのタルク1質量%と、加水分解抑制剤としてトリグリシジルイソシアヌレート(日産化学工業株式会社製「TEPIC」)2質量%を用いて実施例1と同様の方法で、単子繊度6.6dtex、繊維長51mmのポリ乳酸短繊維を得た。紡糸、延伸工程で糸切れや毛羽の発生もなく、安定して原綿を得ることができた。得られたポリ乳酸短繊維は引張強度2.1cN/dtex、引張伸度69%、捲縮数11.6山/25mm、捲縮度13%、乾熱収縮率1.4%と十分実用性のある力学特性であるが、降温結晶化温度は99℃と結晶化速度の遅いものであった。
【0146】
前記ポリ乳酸短繊維と、実施例1と同じケナフ繊維とを、実施例1と同様の不織布加工条件にて目付1571g/m、厚さ10.6mmの不織布を得た。その不織布は、タテ方向の引張強度が149N/cm、ヨコ方向の引張強度は117N/cm、200℃雰囲気における引張伸度30%のタテ方向の引張応力が51N/cm、ヨコ方向の引張応力が18N/cmであった。また、不織布中のポリ乳酸繊維の降温結晶化温度は99℃と結晶化速度の遅いものであった。また、不織布中の繊維長45mm以上のケナフ繊維の繊維長度数分布は70%であり、ポリ乳酸繊維とケナフ繊維の交絡は非常に強固な構造であった。
【0147】
次に、実施例1と同様の成型体の成型条件にて、密度0.75g/cm、厚さ2.1mmの成型体を作製した。その成型体は成型速度が遅いが、立ち上がり部位に透け、亀裂がなく、角はシワがないものであった。また、金型の冷却プレス時間が8秒間と短いため、ポリ乳酸(PLA)が結晶化できず、タテ方向の曲げ強度は12N/mm、ヨコ方向の曲げ強度は8N/mmと低いものであった。
【0148】
(比較例2)
ポリ乳酸チップ(融点170℃、重量平均分子量12.8×10)と、加水分解抑制剤としてトリグリシジルイソシアヌレート(日産化学工業株式会社製「TEPIC」)2質量%を用いて実施例1と同様の方法で、単子繊度6.6dtex、繊維長51mmのポリ乳酸短繊維を得た。紡糸、延伸工程で糸切れや毛羽の発生もなく、安定して原綿を得ることができた。得られたポリ乳酸短繊維は引張強度2.3cN/dtex、引張伸度71%、捲縮数11.8山/25mm、捲縮度15%、乾熱収縮率1.5%と十分実用性のある力学特性であるが、降温結晶化温度は検出されなかった。
【0149】
前記ポリ乳酸短繊維と、実施例1と同じケナフ繊維とを、実施例1と同様の不織布加工条件にて目付1542g/m、厚さ10.1mmの不織布を得た。その不織布は、タテ方向の引張強度が168N/cm、ヨコ方向の引張強度が102N/cm、200℃雰囲気における引張伸度30%のタテ方向の引張応力が58N/cm、ヨコ方向の引張応力が16N/cmであった。また、不織布中のポリ乳酸繊維の降温結晶化温度は検出されなかった。また、不織布中の繊維長45mm以上のケナフ繊維の繊維長度数分布は64%であり、ポリ乳酸繊維とケナフ繊維の交絡は強固な構造であった。
【0150】
次に、実施例1と同様の成型体の成型条件にて、密度0.70g/cm、厚さ2.2mmの成型体を作製した。その成型体は成型速度が遅いが、立ち上がり部位に透け、亀裂がなく、角はシワがないものであった。また、金型の冷却プレス時間が8秒間と短いため、ポリ乳酸(PLA)が結晶化できず、タテ方向の曲げ強度は9N/mm、ヨコ方向の曲げ強度は7N/mmと低いものであった。
【0151】
(比較例3)
実施例1と同じポリ乳酸短繊維とケナフ繊維とを30対70の重量比でローラーカードを用いて混綿し、開繊し、ウェブを作製した。次にファーストパンチ80本/cm、セカンドパンチ80本/cm、サードパンチ80本/cm、合計針密度240本/cmの条件にてニードルパンチを行い、交絡させて、目付521g/m、厚さ3.4mmの不織布を得た。その不織布は、タテ方向の引張強度が14N/cm、ヨコ方向の引張強度が9N/cm、200℃雰囲気における引張伸度30%のタテ方向の引張応力が2N/cm、ヨコ方向の引張応力が1N/cmであり、不織布中からケナフ繊維の脱落が多く発生した。また、不織布中のポリ乳酸繊維の降温結晶化温度は127℃であった。また、不織布中の繊維長45mm以上のケナフ繊維の繊維長度数分布は8%であり、ポリ乳酸繊維とケナフ繊維の交絡は弱い構造であった。
【0152】
次に、実施例1と同様の成型体の成型条件にて、密度0.65g/cm、厚さ0.8mmの成型体を作製した。その成型体は成型速度が速いが、立ち上がり部位において、亀裂が発生し、立ち上がり部位の角は、シワがないものであった。また、金型の冷却プレス時間が8秒間と短いが、タテ方向の曲げ強度は5N/mm、ヨコ方向の曲げ強度は3N/mmと強度の低いものであった。
【0153】
(比較例4)
実施例10と同じポリ乳酸短繊維とケナフ繊維とを、実施例10と同様の不織布加工条件にて目付428g/m、厚さ2.9mmの不織布を得た。その不織布は、タテ方向の引張強度が45N/cm、ヨコ方向の引張強度が18N/cm、200℃雰囲気における引張伸度30%のタテ方向の引張応力が4N/cm、ヨコ方向の引張応力が3N/cmであった。また、不織布中のポリ乳酸繊維の降温結晶化温度は127℃であった。また、不織布中の繊維長45mm以上のケナフ繊維の繊維長度数分布は42%であり、ポリ乳酸繊維とケナフ繊維の交絡は強固な構造であった。
【0154】
次に、実施例1と同様の成型体の成型条件にて、密度0.71g/cm、厚さ0.6mmの成型体を作製した。その成型体は成型速度が速いが、立ち上がり部位において、亀裂が発生し、立ち上がり部位の角は、シワがないものであった。また、金型の冷却プレス時間が8秒間と短いが、タテ方向の曲げ強度は18N/mm、ヨコ方向の曲げ強度は15N/mmと高いものであった。
【0155】
(比較例5)
実施例1と同じポリ乳酸短繊維とケナフ繊維とを、実施例1と同様の不織布加工条件にて目付3428g/m、厚さ14.0mmの不織布を得た。その不織布は、タテ方向の引張強度が378N/cm、ヨコ方向の引張強度が341N/cm、200℃雰囲気における引張伸度30%のタテ方向の引張応力が93N/cm、ヨコ方向の引張応力が84N/cmであり、通気度は21cc/cm/secと低いものであった。また、不織布中のポリ乳酸短繊維の降温結晶化温度は127℃であった。また、不織布中の繊維長45mm以上のケナフ繊維の繊維長度数分布は97%であり、ポリ乳酸繊維とケナフ繊維の交絡は非常に強固な構造であった。
【0156】
次に、実施例1と同様の成型体の成型条件にて、密度0.69g/cm、厚さ5.0mmの成型体を作製した。その成型体は成型速度が速いが、立ち上がり部位において、透け、亀裂がなく、立ち上がり部位の角は、段差が0.5mm以上のシワがあった。また、金型の冷却プレス時間が8秒間と短いが、タテ方向の曲げ強度は22N/mm、ヨコ方向の曲げ強度は20N/mmと高いものであった。
【0157】
(比較例6)
実施例1と同じポリ乳酸短繊維とケナフ繊維とを10対90の質量比でローラーカードを用いて混綿し、開繊し、ウェブを作製した。次に針密度60本/cmの条件にてニードルパンチを行い、交絡させて、目付524g/m、厚さ3.5mmの不織布を得た。その不織布は、タテ方向の引張強度が32N/cm、ヨコ方向の引張強度が17N/cm、200℃雰囲気における引張伸度30%のタテ方向の引張応力が6N/cm、ヨコ方向の引張応力が4N/cmであった。また、不織布中のポリ乳酸繊維の降温結晶化温度は127℃であった。また、不織布中の繊維長45mm以上のケナフ繊維の繊維長度数分布は86%であったが、ポリ乳酸繊維とケナフ繊維の交絡は弱いものであった。
【0158】
次に、実施例1と同様の成型体の成型条件にて、密度0.66g/cm、厚さ0.8mmの成型体を作製した。その成型体は成型速度が速いが、立ち上がり部位において、亀裂が発生し、立ち上がり部位の角は、シワがないものであった。また、金型の冷却プレス時間が8秒間と短いが、タテ方向の曲げ強度は13N/mm、ヨコ方向の曲げ強度は9N/mmと強度の低いものであった。
【0159】
【表1-1】
【0160】
【表1-2】
【0161】
【表2-1】
【0162】
【表2-2】
【0163】
【表3-1】
【0164】
【表3-2】
【0165】
【表4】
【0166】
【表5-1】
【0167】
【表5-2】
【産業上の利用可能性】
【0168】
本発明の不織布は、プレス成型品として有用であり、例えば自動車部品、電気・電子部品、建材、土木資材、家具部材、遊技機用資材への利用が可能である。自動車部品は、特に内装材の天井基材、パッケジトレイ、フロントシートやリアシートの内のバックボード、ドアトリム、ピラーなどに適用が可能である。
【符号の説明】
【0169】
1 雄金型
2 雌金型
3 成型体
図1
図2
図3
図4