特許第6011662号(P6011662)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ リコーイメージング株式会社の特許一覧

特許6011662反射防止構造を備えた撮像光学装置および反射防止構造を備えた撮像光学系
<>
  • 特許6011662-反射防止構造を備えた撮像光学装置および反射防止構造を備えた撮像光学系 図000002
  • 特許6011662-反射防止構造を備えた撮像光学装置および反射防止構造を備えた撮像光学系 図000003
  • 特許6011662-反射防止構造を備えた撮像光学装置および反射防止構造を備えた撮像光学系 図000004
  • 特許6011662-反射防止構造を備えた撮像光学装置および反射防止構造を備えた撮像光学系 図000005
  • 特許6011662-反射防止構造を備えた撮像光学装置および反射防止構造を備えた撮像光学系 図000006
  • 特許6011662-反射防止構造を備えた撮像光学装置および反射防止構造を備えた撮像光学系 図000007
  • 特許6011662-反射防止構造を備えた撮像光学装置および反射防止構造を備えた撮像光学系 図000008
  • 特許6011662-反射防止構造を備えた撮像光学装置および反射防止構造を備えた撮像光学系 図000009
  • 特許6011662-反射防止構造を備えた撮像光学装置および反射防止構造を備えた撮像光学系 図000010
  • 特許6011662-反射防止構造を備えた撮像光学装置および反射防止構造を備えた撮像光学系 図000011
  • 特許6011662-反射防止構造を備えた撮像光学装置および反射防止構造を備えた撮像光学系 図000012
  • 特許6011662-反射防止構造を備えた撮像光学装置および反射防止構造を備えた撮像光学系 図000013
  • 特許6011662-反射防止構造を備えた撮像光学装置および反射防止構造を備えた撮像光学系 図000014
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6011662
(24)【登録日】2016年9月30日
(45)【発行日】2016年10月19日
(54)【発明の名称】反射防止構造を備えた撮像光学装置および反射防止構造を備えた撮像光学系
(51)【国際特許分類】
   H04N 5/225 20060101AFI20161006BHJP
   G02B 1/115 20150101ALI20161006BHJP
   G02B 5/20 20060101ALI20161006BHJP
   G02B 5/00 20060101ALI20161006BHJP
   G02B 13/00 20060101ALI20161006BHJP
   G02B 7/02 20060101ALI20161006BHJP
【FI】
   H04N5/225 D
   G02B1/115
   G02B5/20 101
   G02B5/00 B
   G02B13/00
   G02B7/02 D
【請求項の数】1
【全頁数】14
(21)【出願番号】特願2015-45174(P2015-45174)
(22)【出願日】2015年3月6日
(62)【分割の表示】特願2010-147850(P2010-147850)の分割
【原出願日】2010年6月29日
(65)【公開番号】特開2015-165661(P2015-165661A)
(43)【公開日】2015年9月17日
【審査請求日】2015年3月31日
(31)【優先権主張番号】特願2009-157007(P2009-157007)
(32)【優先日】2009年7月1日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】311015207
【氏名又は名称】リコーイメージング株式会社
(74)【代理人】
【識別番号】100090169
【弁理士】
【氏名又は名称】松浦 孝
(74)【代理人】
【識別番号】100124497
【弁理士】
【氏名又は名称】小倉 洋樹
(72)【発明者】
【氏名】加藤 浩司
(72)【発明者】
【氏名】松岡 祥平
(72)【発明者】
【氏名】小織 雅和
【審査官】 高野 美帆子
(56)【参考文献】
【文献】 特開2009−139416(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04N 5/222−5/257
G02B 1/115
G02B 5/00
G02B 5/20
G02B 7/02
G02B 13/00
(57)【特許請求の範囲】
【請求項1】
開口絞りを有する撮像光学系と、複数の光電変換素子を有し、前記撮像光学系を透過し
た被写体からの入射光が入射する撮像素子とを備えた撮像光学装置において、
前記撮像光学系の中で少なくとも前記開口絞りと前記撮像素子との間に配置されている
撮影レンズの1面に、複数の層を積層させた反射防止膜を有する反射防止構造が形成され
ており、
前記撮像素子は、前記入射光を所定の透過波長域に分光する波長選択素子を画素ごとに
有し、
所定の波長選択素子の分光透過波長域における代表波長と、前記撮像素子における前記
所定の波長選択素子に対応する画素の単位面積あたりの数との乗算値に応じて、前記反射
防止膜が形成される撮影レンズ表面における反射率が調整されていることを特徴とする撮
像光学装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、反射防止構造を備えた撮像光学装置および撮像光学系に関し、特に、ゴーストの発生を抑制可能な撮像光学装置および撮像光学系に関する。
【背景技術】
【0002】
撮像光学系に入射した光の一部がレンズ面間で一回ないし複数回反射した後に撮像素子に入射することにより、画像にゴーストと呼ばれるノイズが生じることがある。このゴーストの発生を防止するために、撮像光学系のレンズ表面に真空蒸着等によってある種の薄膜を設け、あるいはレンズ表面に微細な凹凸を設けるといった、いわゆる反射防止構造を設けることにより、ゴーストの原因となる反射を抑制することが知られている(特許文献1〜3)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2000−275402号公報
【特許文献2】特開2006−215542号公報
【特許文献3】特開2008−233585号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
上述のようにレンズの面間反射により生じる一般的なゴーストは、上述の反射防止構造により効果的に抑制され得る。また、一般的なゴーストは単体の円状または多角形状の形態であり、ノイズではありながらも、映像表現の一部としてむしろ積極的に用いられることもある。しかしながら、撮像素子を有するデジタル光学機器においては、撮像素子表面ないし内部にて反射された光が撮像光学系に再入射し、撮像光学系内のレンズ等によってさらに反射されて撮像素子に再入射した際に、特異なゴーストが出現する。すなわち、CCD等の固体撮像素子を有するデジタル光学機器においては、撮像素子内部に光電変換素子が周期的に分割配置(2次元配列)されており、光電変換素子表面に入射した光に対して反射型回折格子に似た作用をする。そのため、反射光は周期的に明暗が繰り返される強度分布を有し、その反射光が再度撮像素子に入射することで、光点が一定間隔に整列した水玉模様(ドットパターン)状のゴーストが発生する。
【0005】
この水玉模様のゴーストは、特異な形態をしているため、同等の強度においては、一般のゴーストに比べて、視認されやすく、画像を大きく劣化させる原因となる。そのため、単に一般的なレンズ面間反射によるゴーストを防止する為に設計された反射防止構造を闇雲にレンズ面に設けることによって、水玉模様のゴーストを確実に防止することは困難である。すなわち、特許文献1〜3に示したような従来の反射防止法では不十分であり、水玉模様のゴーストに特化した抑制方法を採る必要がある。
【0006】
本発明は、反射回折光により生じたゴーストが画像を劣化させることを効果的に抑制する撮像光学系および撮像光学装置の実現を目的とする。
【課題を解決するための手段】
【0007】
本発明の撮像光学装置は、開口絞りを有する撮像光学系と、撮像光学系を透過した被写体からの入射光が入射する撮像素子とを備えており、撮像素子は、複数の光電変換素子を有し、通常2次元配列されている。撮像光学装置においては、入射光の光電変換素子表面における反射によって生じる反射回折光が、撮像光学系内で反射して再び撮像素子に入射することを抑制する構成として、撮像光学系の中で少なくとも開口絞りと撮像素子との間に配置されている撮影レンズの1面に、複数の層を積層させた反射防止膜を有する反射防止構造が形成されている。例えば反射防止構造は、撮像素子を向くレンズ表面、すなわち開口絞りとは反対側のレンズ面に形成すればよい。
【0008】
さらに、撮像素子は、入射光を所定の透過波長域に分光する波長選択素子を画素ごとに有し、所定の波長選択素子の分光透過波長域における代表波長と、該所定の波長選択素子に対応する画素同士の画素ピッチとに応じて、反射率が調整されており、反射防止構造は、波長選択素子の分光透過波長域において、最短透過波長と最長透過波長との間の中央波長よりも長波長側における反射率が最も低くなるように調整されている。また他の態様によれば、代表波長を画素ピッチで除した算出値である回折角が最も大きくなる代表波長の近傍において、反射率が最も低くなるように調整されている。すなわち、本発明の他の態様における撮像装置は、開口絞りを有する撮像光学系と、複数の光電変換素子を有し、撮像光学系を透過した被写体からの入射光が入射する撮像素子とを備えた撮像光学装置において、撮像光学系の中で少なくとも開口絞りと撮像素子との間に配置されている撮影レンズの1面に、複数の層を積層させた反射防止膜を有する反射防止構造が形成されており、撮像素子において、入射光をそれぞれ所定の透過波長域に分光する複数の波長選択素子が受光面上に2次元配列されており、所定の波長選択素子の分光透過波長域における代表波長を該所定の波長選択素子に対応する画素同士の画素ピッチで除した算出値である回折角が最も大きくなる波長選択素子の代表波長の近傍において、反射防止構造が形成される撮影レンズ表面における反射率が最も低くなるように調整されている。
【0009】
撮像素子の受光面において、R,G,Bなどに応じた波長域の光を分光、すなわち選択的に所定の波長域の光を透過する複数の波長選択素子(色要素)を2次元配列させたカラーフィルタ(フィルタアレイ)が撮像素子の受光面面上に配設されている場合、撮影条件によっては、R,G,Bの水玉模様(ドットパターン)状のゴースが撮影画像に発生する。本発明の反射防止構造は、このようなデジタルカメラ等の撮像装置において特有なゴースト発生を防ぐ反射防止膜の積層構造によって、低波長〜長波長においてゴースト発生に起因する所定の波長域の光に対し、撮像素子側へ再反射しないようにすることが可能となる。
【0010】
反射防止構造の反射率は、撮像素子側から反射防止構造の形成されたレンズ面に入射してくる反射回折光の波長帯域を考慮しながら定められる。例えば、それぞれ入射光を所定の透過波長域に分光する複数の波長選択素子を配列させたカラーフィルタを設けた場合、反射防止膜が形成される撮影レンズ表面において、各波長選択素子の透過波長域の代表波長に対する反射率の平均値が、撮像光学系の各レンズ面における平均値を平均化した値よりも小さくなるように、反射率を定めるのがよい。
【0011】
代表波長としては、例えば最も透過スペクトルの大きい波長に定める。または、各波長選択素子の透過波長域の代表波長に対する反射率の平均値が、反射防止膜が形成されていない他のレンズ面におけるいずれの平均値よりも小さくなるように、反射率を定めてもよい。例えば、R,G,Bのカラーフィルタを配設した撮像素子の場合、波長630nmに対する反射率と波長530nmに対する反射率と波長420nmに対する反射率の平均値が、撮像光学系の各レンズ面におけるR,G,Bの反射率の平均値をレンズ全体で平均化した値よりも小さくなるように定めるのがよい。あるいは、波長630nmに対する反射率と波長530nmに対する反射率と波長420nmに対する反射率の平均値が、反射防止膜が形成されていない他のレンズ面におけるいずれの平均値よりも小さいように定めるのがよい。
【0012】
本発明の撮像光学系は、複数の撮影レンズから成り、被写体からの入射光を、複数の光電変換素子を有する撮像素子に結像させる撮像光学系であって、開口絞りを有し、撮像光学系の中で少なくとも開口絞りと撮像素子との間に配置されている撮影レンズの1面に、反射防止構造が形成されており、反射防止構造が、複数の層を積層させた反射防止膜を有し、入射光の光電変換素子表面における反射回折光が撮影光学系内での反射によって再び撮像素子に入射するのを抑制することを特徴とする。
【0013】
さらに、撮像素子は、入射光を所定の透過波長域に分光する波長選択素子を画素ごとに有し、所定の波長選択素子の分光透過波長域における代表波長と、該所定の波長選択素子に対応する画素同士の画素ピッチとに応じて、反射率が調整されており、反射防止構造は、波長選択素子の分光透過波長域において、最短透過波長と最長透過波長との間の中央波長よりも長波長側における反射率が最も低くなるように調整されている。
【0014】
また他の態様によれば、代表波長を画素ピッチで除した算出値である回折角が最も大きくなる代表波長の近傍において、反射率が最も低くなるように調整されている。すなわち、本発明の他の態様における撮像光学系は、複数の撮影レンズから成り、被写体からの入射光を、複数の光電変換素子を有する撮像素子に結像させる撮像光学系であって、開口絞りを有し、撮像光学系の中で少なくとも開口絞りと撮像素子との間に配置されている撮影レンズの1面に、複数の層を積層させた反射防止膜を有する反射防止構造が形成されており、撮像素子において、入射光をそれぞれ所定の透過波長域に分光する複数の波長選択素子が受光面上に2次元配列されており、所定の波長選択素子の分光透過波長域における代表波長を該所定の波長選択素子に対応する画素同士の画素ピッチで除した算出値である回折角が最も大きくなる波長選択素子の代表波長の近傍において、反射防止構造が形成される撮影レンズ表面における反射率が最も低くなるように調整されている。
【発明の効果】
【0015】
本発明によれば、反射回折光により生じたゴーストが画像を劣化させることを効果的に抑制する撮像光学系および撮像光学装置を実現できる。
【図面の簡単な説明】
【0016】
図1】一般的なゴーストの原因となる入射光の反射を示す図である。
図2】反射回折光によるゴーストの原因となる入射光の反射を示す図である。
図3】撮像光学装置における撮像素子の一部を示す断面図である。
図4】撮像素子の一部を概略的に示す平面図である。
図5】撮像素子により生じる回折光を概略的に示す平面図である。
図6】本実施形態の撮像光学装置を概略的に示す図である。
図7】反射防止膜の断面図である。
図8】反射防止膜の分光反射特性を示す図である。
図9】第1変形例の撮像光学装置において、回折光が撮像素子に再入射する状態を示す図である。
図10】撮像素子に再入射した回折光の受光面における入射領域の大きさを例示する図である。
図11】第2変形例の撮像光学装置において、回折光が撮像素子に再入射する状態を示す図である。
図12】回折光の共役位置を示す図である。
図13】特殊な画素配列におけるR、G、Bの各画素を概略的に示す図である。
【発明を実施するための形態】
【0017】
以下、本発明の実施形態を、図面を参照して説明する。図1は、一般的なゴーストの原因となる入射光の反射を示す図である。図2は、反射回折光によるゴーストの原因となる入射光の反射を示す図である。
【0018】
太陽Sから撮影装置(図示せず)の光学系に入射する入射光Lにより、被写体像にゴーストが生じることが知られている。例えば、図1に示されるように、撮像光学系30の内部で反射された入射光Lが撮像素子40に入射することにより、ゴーストが生じ得る。このゴーストは、主に単体の円状または絞り羽根の開口形による多角形状である。
【0019】
これに対し、入射光Lが撮像素子40によって反射される場合、図2に示されるように異なる角度に向かって進む複数の回折光DLが生じる。この回折光DLが、さらに撮像光学系32によって反射されて再度、撮像素子40に入射すると、発生するゴースト(以下、反射回折ゴーストという)は複数の点が整列したような水玉模様となる。
【0020】
このような水玉模様の反射回折ゴーストは非常に不自然な形態であるため、観察者に視認されやすく、被写体像の評価を大きく低下させる傾向にある。そこで本実施形態では、以下のように、反射回折ゴーストを抑制するための反射防止構造を撮像光学装置に設け、画質に影響を及ぼすことを防止している。
【0021】
図3は、本実施形態の撮像光学装置における撮像素子の一部を示す断面図である。図4は、本実施形態の撮像素子の一部を概略的に示す平面図である。図5は、撮像素子により生じる回折光DLを概略的に示す平面図である。
【0022】
本実施形態の撮像素子10は、フォトダイオード12(光電変換素子)、カラーフィルタ14(波長選択素子)、およびアレイレンズ16を含む。撮像素子10は、複数の画素、例えば第1画素101と第2画素102を含む。被写体からの入射光Lは、撮像光学系(図示せず)を透過し、撮像素子10の表面を覆うアレイレンズ16に入射する。そして入射光Lは、カラーフィルタ14を通過してフォトダイオード12の受光面12Sに到達する。
【0023】
この入射光Lの一部が受光面12Sで反射し、反射光RLが生じる場合がある。このような入射光Lの反射により、第1および第2画素101、102の画素間で回折光DLが生じる。本実施形態では、後述するように、回折光DLが撮像光学系(図示せず)の表面で反射することを防止し、回折光DLによる画質の低下を防止する。
【0024】
本実施形態の撮像素子10における画素の配置パターンは、図4に示されるようにベイヤー配列である。すなわち、多数の画素が二次元配列されており、カラーフィルタ14(図3参照)の緑フィルタの分光透過特性によって緑色波長域が受光面に分光透過される画素(以下、G画素という)が縦方向、および横方向のいずれについても1画素おきに配置されている。そして2つのG画素間で、カラーフィルタ14の赤フィルタの分光透過特性によって赤色波長域が受光面に分光透過される画素(以下、R画素という)と、カラーフィルタ14の青フィルタの分光透過特性によって青色波長域が受光面に分光透過される画素(以下、B画素という)とのいずれかが、同数ずつ均等に配置されている。
【0025】
最も近くに配置されたR画素同士、あるいはB画素同士の中心点間の距離RD、BD、すなわち画素間距離(画素ピッチ)は、例えば約10μmである。この場合、G画素同士の距離GDは約7μmである。そして距離RD、BD、GDによって示される画素ピッチは、R、G、B画素のそれぞれで一定である。回折光DL(図3参照)の回折角は、回折角=各カラーフィルタの分光透過波長域内の代表波長/画素ピッチの関係式(1)でおおよそ算出される。なお、本明細書では、0次回折光と1次回折光の方向差、1次回折光と2次回折光の方向差、のように隣の次数の回折光との方向差、1次回折光と2次回折光の進行角度差、のように隣の次数の回折光との進行角度差を「回折角」と呼ぶ。
【0026】
ここで、例えば、カラーフィルタ14の赤フィルタを通過する波長域の代表波長は630nmであり、緑フィルタを通過する波長域の代表波長は530nm、青フィルタを通過する波長域の代表波長は420nmである。従って、R画素により生じる回折光DLの回折角は、630nm/10μm=63radであり(図5(A)参照)、G画素により生じる回折光DLの回折角が、530nm/7μm=76radで最も大きく(図5(B)参照)、B画素により生じる回折光DLの回折角が、420nm/10μm=42radで最も小さい(図5(C)参照)。このように、R、G、Bの画素ごとに生じる回折光DLの回折角が異なる。
【0027】
そして一般に、回折角が大きい回折光DLにより生じる反射回折ゴーストほど、画質に悪影響を及ぼし易い。複数の水玉同士の距離が離れ、画像において水玉模様が目立ってしまうためである。そこで本実施形態では、そこで本実施形態では、カラーフィルタ14の各分光透過波長特性の種類ごとの画素ピッチRD、BD、GDの各値に応じて、後述する反射防止構造を有する面の反射率が調整されている。
【0028】
なお、カラーフィルタ14の種類ごとの代表波長としては、カラーフィルタ14の各分光透過特性による透過率のピークに対応する波長や、カラーフィルタ14の各色領域を透過する波長域の中心値などが採用され得るものの、これらは概ね上述の値である。また、本明細書中における画素とは、図3における第1、第2画素101、102に例示されているように、フォトダイオード12のみならず、アレイレンズ16と、両部材間のカラーフィルタ14の一部、また必要であれば撮像素子10を覆うカバーガラスをそれぞれ含む概念で用いられている。
【0029】
次に、本実施形態の撮像光学装置について説明する。図6は、本実施形態の撮像光学装置を概略的に示す図である。
【0030】
撮像光学装置20は、撮像光学系36と開口絞り42を含む。撮像光学系36には、被写体Obからの入射光Lが透過する複数の撮影レンズが配置されている。開口絞り42により、撮像素子10に入射する入射光Lの光量が調整される。なお、撮像素子10は、内部に光電変換素子を有している。
【0031】
撮像光学装置20においては、上述の回折光DLが撮像光学系36中の撮影レンズの表面で反射することを抑制、防止するための反射防止構造として、反射防止膜50が設けられている。撮影レンズの表面で再反射した回折光DLが再び撮像素子10に入射すると、反射回折ゴーストが生じ得るためである。この反射防止膜50は、撮像光学系36に含まれるいずれかの撮影レンズの少なくとも1つの表面に形成されている。
【0032】
ここでは、反射防止膜50は、開口絞り42よりも撮像素子10側、すなわち開口絞り42と撮像素子10との間に設けられている。より具体的には、撮像光学系36に含まれる撮影レンズ361の撮像素子10側の表面に反射防止膜50が形成されている。
【0033】
このように、反射防止膜50を開口絞り42と撮像素子10との間に配置することにより、回折光DLの撮影レンズ表面における反射を効果的に抑制、防止できる。これは、開口絞り42よりも撮像素子10側の撮影レンズ361には、回折光DLのほぼ全てが入射するのに対して、開口絞り42より被写体側のレンズ面については、開口絞り42を小径に絞ることによって回折光DLが絞り羽根により遮蔽される(強いゴースト光が発生するのは被写体側が明るい場合が一般的であり、絞りは小径化されている可能性が高い)上に、仮に被写体側のレンズ面にまで入射して再度撮像素子方向に反射したとしても、再び絞り羽根に遮蔽されることが期待できるためである。したがって、反射防止膜50を開口絞り42と撮像素子10との間に優先的に配置して反射率を低減させることにより、効率良く不快なゴーストの影響を低減できる。
【0034】
次に、反射防止膜50の構造と特性について説明する。図7は、反射防止膜50の断面図であり、図8は、反射防止膜50の分光反射特性を示す図である。
【0035】
反射防止膜50は、複数の層が積層された多層構造を有する。すなわち、反射防止膜50においては、撮影レンズ361側の第1層51から表面側の第7層57までが積層されている。第1層はアルミナAlで形成されており、第2層52、第4層54、および第6層56は、五酸化タンタルTa、酸化イットリウムY、酸化プラセオジムPr11などにより形成されている。また、第3層53および第5層55はフッ化マグネシウムMgFにより形成されており、第7層57は、シリカエアロゲル多孔質層である。また、第1〜第7層51〜57の厚さは、いずれも数十nm程度に調整されている。
【0036】
第1〜第7層51〜57の材質、厚さ、構造をこのように調整することにより、反射防止膜50に対して0°の入射角で入射した光(図6等参照)の分光反射率は、図8に示された通りとなる。すなわち、波長域が600nm以上700nm以下の赤色の回折光DLに対する反射率は0.2%以下、例えば0.19%である。また、波長域が500nm以上600nm以下の緑色の光に対する反射率は0.1%以下、例えば0.06%である。そして、波長域が400nm以上500nm以下の青色光に対する反射率の最大値(波長が400nmのとき)は約0.29%であって、赤色、緑色光の反射率よりも高い。反射防止膜50の反射率は、R,G,Bに応じた波長帯域の光が撮像素子側へ再反射するのを防ぐように定められている
【0037】
ここで上述のように、G画素で生じた回折光DLの回折角が最も大きく、次いでR画素で生じた回折光DLの回折角が大きく、B画素で生じた回折光DLの回折角は、最も小さい(段落[0026]、図5参照)。以上のことから明らかであるように、本実施形態では、反射防止膜50の反射率が最も低くなる波長は、回折角の最も大きい波長の近傍となるように調整されている。
【0038】
これは、回折角が大きい回折光DLにより生じる反射回折ゴーストほど優先的に抑制、防止すべきだからである(段落[0027]参照)。そしてこのことは、本実施形態の反射防止膜50を設けて回折角の大きい回折光DLほど確実に撮影素子10への再入射を防ぐことにより、実現される。なお、上述の関係式(1)で示されるように、回折光DLの回折角=各カラーフィルタの分光透過波長域内の代表波長/画素ピッチである(段落[0025]参照)ことから、反射防止膜50の反射率は、カラーフィルタが透過させる各波長域に応じた反射光の波長を画素ピッチで除した値が大きい回折光DLほど低くなるように調整されているともいえる。
【0039】
なお図8においては、反射防止膜50に対する入射角が0°の場合の反射率が示されているが、回折光DLの反射防止膜50に対する入射角が10°以下であり、かつ波長域が400nm以上700nm以下であるとき、反射防止膜50の反射率は、常に0.3%以下になるように調整されている。このため、回折角の大きい緑色の光の反射を特に優先的に防止しつつ、他の色の回折光DLの反射も確実に防止できる。なおここでの入射角は巨視的な入射角であって、微細な段差等を考慮した入射角とは異なる。
【0040】
次に、反射防止膜50を設ける位置と、反射回折ゴーストの大きさとの関係について説明する。図9は、第1変形例の撮像光学装置において、回折光DLが撮像素子10に再入射する状態を示す図である。図10は、撮像素子10に再入射した回折光DLの撮像素子表面における入射領域の大きさを例示する図である。図11は、第2変形例の撮像光学装置において、回折光DLが撮像素子10に再入射する状態を示す図である。
【0041】
第1変形例の撮像光学装置201に入射した入射光Lは、撮像光学系36を透過し、撮像素子10の表面(厳密にはフォトダイオード12の受光面12S)において集光される。集光された入射光Lの一部が受光面12Sにおいて反射され、回折光DLが生じる。第1変形例の撮像光学装置201では、反射防止膜50が設けられておらず、回折光DLは、例えば図示された撮影レンズ362の表面362Sで反射され、撮像素子10に再入射する。
【0042】
撮像素子10に再入射した回折光DLは、図示されたように、撮像素子10上で集光されている。このため、再入射した回折光DLの撮像素子10における入射領域は、図10(A)に例示されたように、スポット状であり小さい。このように入射領域が小さい場合(撮像素子10に再結像している場合)、画像上に生じる反射回折ゴーストの水玉模様の出現範囲が狭く、また、水玉の点一つ一つの大きさも小さくなり、比較的目立ち難い。
【0043】
これに対し、図11に示される第2変形例の撮像光学装置202においては、回折光DLが撮影レンズ363の表面363Sで反射されて受光面12Sに再入射すると、撮像素子10の表面上の入射領域は、図10(B)に例示されるようにより大きくなる。この場合、画像上に生じる反射回折ゴーストの水玉模様は、図10(A)の場合よりも各粒が大きくなり、さらに全体の範囲が広がるので、目立ち易い可能性がある。
【0044】
一方、撮像素子10に再入射した回折光DLの入射領域が、図10(C)に例示されたようにさらに大きく広がる場合、反射回折ゴーストによる画像への悪影響は却って抑制され得る。水玉の一つ一つが大きくなることで強度が低下して目立たなくなるためであり、また、水玉の多くが撮像素子の有効領域から外れたり、通常のゴーストのように全体として単円ないし多角形状になるためである。
【0045】
以上のことから明らかであるように、撮影レンズ上のある表面で再反射され、撮像素子10に再入射した回折光DLにより形成される撮像素子10上の入射領域の大きさ(像の寸法)、例えば直径が、所定の下限値と上限値との間にある場合、その表面に反射防止膜50を設けることが特に望ましいといえる。特に抑制すべき反射回折ゴーストを効果的に防止するためであり、入射領域が下限値よりも小さい場合(図10(A)参照)、あるいは上限値よりも大きい場合(図10(C)参照)、画像に与える悪影響がさほど大きくはないためである。上述の第1変形例(図9参照)においては、表面362Sにはさほど優先的に反射防止膜50を設ける必要はないのに対し、第2変形例(図11参照)においては、表面363Sに反射防止膜50を設けることが重要となり得る。なお上述の下限値と上限値の例としては、例えば15.8mm×23.7mmの撮像素子10において、下限値は2.5mm、上限値は21mmである。
【0046】
次に、反射防止膜50を設ける位置と、回折光DLの共役位置との関係について説明する。図12は、回折光DLの共役位置を示す図である。
【0047】
反射防止膜50を設ける位置は、以下のように、回折光DLの共役位置から撮像素子10までの距離に基づいて定めることもできる。この場合、上述の入射領域の大きさに基づいて定める場合に比べ、より正確な演算が可能である。ここでは、図示されたように、入射光Lの撮像素子10における入射位置Aで生じた回折光DLが、撮影レンズ364の表面364Sで反射した場合を例に説明する。
【0048】
撮影レンズ364に入射した回折光DLは、例えば、表面364S上の点Cにおいて反射される。このように、撮影レンズ364の屈折率n等で定められる所定の反射角で反射された回折光DLは、再び撮像素子10上の入射位置Aの近傍に向かって進む。この回折光DLが集光する位置であって、入射位置Aを通り撮像素子10に垂直な光軸Xと回折光DLとが交差する位置を共役位置Bとする。
【0049】
そして入射位置Aと共役位置Bとの距離、すなわち、撮像素子10から共役位置Bまでの距離を共役距離CJとする。ここで説明の便宜上、共役位置Bが撮像素子10よりも撮影レンズ364側にあるときに、実線で示される共役距離CJは負の値をとり、共役位置B’がその反対側にあるとき、破線で示される共役距離CJは正の値をとるものとする。
【0050】
図示されたように、共役距離CJが比較的大きい負の値である場合、表面364Sに反射防止膜(ここでは図示せず)を設けることはさほど重要ではない。受光面12Sに再入射した回折光DLの入射領域が、例えば図10(C)に示されたように十分に大きくなるためである。また、共役位置Bが入射位置Aに近くて共役距離CJの値が0に近い場合も同様に、表面364Sに反射防止膜を優先的に設けることは不要である。上述の入射領域が、図10(A)に例示されたように十分に小さくなるためである。
【0051】
これに対し、共役距離CJ(mm)がRで示される範囲内、例えば−20mm<CJ<−10mmの範囲内にある場合、反射防止膜を表面364S上に優先的に設けられるべきである。回折光DLの入射領域が図10(B)に例示された大きさになり、画質に大きな影響を与える反射回折ゴーストが生じ得るからである。
【0052】
共役距離CJの値が正である場合も同様であり、共役距離CJの値が、例えば15mm<CJ<30mmといったRの範囲内にある場合、他のレンズ表面よりも優先的に、表面364S上に反射防止膜を設けるべきである。以上のことから、反射防止膜が設けられていない状態で、共役距離CJが所定の下限値と上限値との間にあるとき、その撮影レンズ表面には反射防止膜が設けられる。
【0053】
以上のように本実施形態によれば、回折角の大きい回折光DLほど、撮影レンズの表面における反射を優先的に抑制、防止する反射防止膜50を設けることにより、反射回折ゴーストによる画像の劣化を効果的に抑制することができる。特に、限られた数の反射防止膜50、例えば撮影レンズ上のわずか一表面に反射防止膜50を設ける場合においても、効率的な配置によって大きな効果が得られる。
【0054】
撮像光学装置20に含まれる各部材の構造等は、いずれの実施形態にも限定されない。例えば、RGBの全画素が同じ位置に配置されている撮像素子に上述の実施形態を適用してもよい。この場合、RGBの全画素が同じ位置に配置されていることから画素ピッチは各色の画素で共通であるとみなすことができる。従って、回折光DLの回折角は波長にほぼ比例することから、波長の長い光ほど回折角が大きくなる。このため、カラーフィルタ14(波長選択素子)の受光波長域の長波長側、例えば、全ての色フィルタ(複数の波長選択素子)における分光透過波長域の最短透過波長と最長透過波長との間の中央波長よりも長波長側に、反射率が最低となる波長を設定し、このような波長特性に対応させた反射防止膜50を用いることが好ましい。
【0055】
また、ベイヤー配列以外の配列の撮像素子を含む撮像光学装置において、反射防止膜50を設けても良い。この場合、例えば図13に示された特殊な配列では、R画素、B画素の扱いが問題となり得る。R画素同士、およびB画素同士の画素ピッチが一定でないからである。
【0056】
このような場合には、撮像素子における単位面積あたりのR画素、B画素、およびG画素のそれぞれの個数である画素密度(あるいは全画素に含まれる各色の画素数の割合)の平方根を算出し、この値と、各色フィルタの代表波長とに基づいて、反射防止膜50の反射率が調整される。画素密度の平方根は、各色の画素同士の距離の平均値、すなわち画素ピッチの平均値に比例するからである。この場合、上述の関係式(1)、すなわち回折角=各カラーフィルタの分光透過波長域内の代表波長/画素ピッチの関係式の代わりに、回折角∝各カラーフィルタの分光透過波長域内の代表波長/(画素密度)1/2の関係式(2)に基づいて、回折角の大きい回折光DLほど優先的に低下させるように反射率が調整される。
【0057】
また、上述の手法によって、撮像光学系36中の撮影レンズ表面のうちいずれか1つ、あるいは少数に反射防止膜50を効率的に設けることが好ましいものの、全ての撮影レンズ表面に設けても良い。また、撮像光学系36に含まれるレンズ表面間で、上述の共役距離CJの値に大きな差がない場合、撮像素子10側のレンズのうち、最も開口絞り42に近いレンズ表面に反射防止膜50を設けることが好ましい。例えば太陽のようにゴーストの原因となり得る光源に対して、画像の中心を挟んで常に対称な位置にゴーストがでると、構図的に目立つ可能性が高いからである。
【符号の説明】
【0058】
10 撮像素子
12 フォトダイオード(光電変換素子)
12S 受光面
14 カラーフィルタ(波長選択素子)
20 撮像光学装置
36 撮像光学系
361 撮影レンズ
42 開口絞り
50 反射防止膜
101、102 画素
L 入射光
DL 回折光
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13