(58)【調査した分野】(Int.Cl.,DB名)
流体の入口側となる入口端面から流体の出口側となる出口端面まで延びる複数のセルを区画形成する多孔質の隔壁を有するハニカム構造体と、所定のセルの前記入口端面側の開口端部及び残余のセルの前記出口端面側の開口端部を目封止する目封止部とを備え、
前記セルの延びる方向に垂直な断面における前記セルの形状が九角形であり、
前記九角形が、正六角形の6つの頂点の内、当該正六角形の周方向において1つ置きに存在する3つの頂点と、当該3つの頂点を結ぶそれぞれの対角線と平行で、両端が残りの3つの頂点をそれぞれ形成する辺上に在る線分によって、前記残りの3つの頂点を含む角部が切断されることにより形成された6つの新たな頂点とを有する形状であり、
隣接するセル間において、前記新たな頂点と前記新たな頂点以外の頂点とを結ぶ辺同士が平行な状態で対向するように、前記複数のセルが配置されている目封止ハニカム構造体。
【発明を実施するための形態】
【0018】
以下、本発明の実施の形態について具体的に説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。
【0019】
(1)目封止ハニカム構造体:
図1は、本発明の目封止ハニカム構造体の一の実施形態において使用されているハニカム構造体の、セルの延びる方向に垂直な断面の一部を示す部分断面図である。
図2は、本発明の目封止ハニカム構造体の一の実施形態の、セルの延びる方向に平行な断面を示す断面図である。
図3は、本発明の目封止ハニカム構造体の一の実施形態の、端面の一部を示す部分平面図である。
図4は、本発明の目封止ハニカム構造体のセル形状を説明するための模式図である。
【0020】
本発明の目封止ハニカム構造体20は、
図2に示すように、流体(排ガス)の入口側となる入口端面11から流体の出口側となる出口端面12まで延びる複数のセル13を区画形成する多孔質の隔壁14を有するハニカム構造体10を備える。また、このハニカム構造体10の所定のセルの入口端面11側の開口端部及び残余のセルの出口端面12側の開口端部を目封止する目封止部21を備える。セル13は、入口端面11側の開口端部と出口端面12側の開口端部との内の何れか一方の開口端部のみが目封止されている。即ち、前記所定のセルは、入口端面11側の開口端部のみが、目封止部21によって目封止されており、出口端面12側の開口端部は目封止されていない。一方、前記残余のセルは、出口端面12側の開口端部のみが、目封止部21によって目封止されており、入口端面11側の開口端部は目封止されていない。
【0021】
このような目封止ハニカム構造体20の入口端面11から前記残余のセルにPMを含む排ガスを流入させると、排ガスは多孔質の隔壁14を通過して隣接する前記所定のセルに流入し、その後、出口端面から排出される。そして、排ガスが多孔質の隔壁14を通過する際にPMが隔壁14上に捕集される。
【0022】
尚、目封止部21の配置の仕方は、特に限定されないが、
図3に示すよう、ハニカム構造体の各端面(入口端面及び出口端面)上の一定方向(
図3の矢印方向)において、セル13の開口端部が、目封止部21によって1つ置きに目封止されていることが好ましい。
【0023】
本発明の目封止ハニカム構造体20に使用されるハニカム構造体10は、セル形状が特定の九角形であることを、その主要な特徴とする。この九角形の具体的な形状は、次のようにして特定される。まず、
図4に示すように、正六角形の6つの頂点の内、その正六角形の周方向において1つ置きに存在する3つの頂点1(1A,1B,1C)を結ぶ対角線4(4A,4B,4C)を引く。そして、それぞれの対角線4と平行で、その両端が残りの3つの頂点2(2A,2B,2C)をそれぞれ形成する辺上に在る線分5(5A,5B,5C)によって、残りの3つの頂点2をそれぞれ含む角部6(6A,6B,6C)を切断する。ここで、「角部」とは、残りの3つの頂点2及び残りの3つの頂点2をそれぞれ形成する辺の一部(
図4の点線部分)である。
【0024】
こうして角部6を切断することにより、6つの新たな頂点3(3A,3B,3C,3D,3E,3F)が形成される。その結果、前記3つの頂点1(1A,1B,1C)と、前記6つの新たな頂点3(3A,3B,3C,3D,3E,3F)とを有する形状の九角形である、ハニカム構造体10のセル形状が得られる。尚、新たな頂点3は、角部6の切断後における、残りの3つの頂点2をそれぞれ形成していた辺の一部(角部6の切断後に残った部分)と、線分5によって形成される。即ち、前記のようにして得られる九角形の9本の辺の内、3本の辺は、線分5である。
【0025】
ハニカム構造体10においては、
図1に示すように、隣接するセル13,13間において、前記のような九角形の新たな頂点3と新たな頂点以外の頂点1とを結ぶ辺同士が平行な状態で対向するように、複数のセル13が配置されている。尚、この対向する辺と辺との間の部分が、ハニカム構造体10の隔壁14となる。前記のような九角形のセル形状を有する複数のセル13が、このように配置されることより、
図1の矢印方向において、2種類の大きさの異なる隔壁の交点部16,17が交互に形成された状態となる。即ち、本発明のハニカム構造体は、小さな隔壁の交点部16と、大きな隔壁の交点部17とを併せ持つ。
【0026】
一方、
図6に示すような、従来の目封止ハニカム構造体に用いられているセル形状が四角形のハニカム構造体30は、大きさが一定である小さな隔壁の交点部36しか持たない。また、同様に、
図7に示すような、従来の目封止ハニカム構造体に用いられているセル形状が六角形のハニカム構造体40も、大きさが一定である小さな隔壁の交点部46しか持たない。
【0027】
このため、材質、体積(セル部分も含む全体積)、セル密度、隔壁の厚さ等が同等である場合、大きな隔壁の交点部を持つハニカム構造体10は、小さな隔壁の交点部しか持たないハニカム構造体30やハニカム構造体40よりも、熱容量が大きくなる。また、ハニカム構造体10は、ハニカム構造体30やハニカム構造体40には存在しないような厚肉の部分(大きな隔壁の交点部17)を有する。よって、ハニカム構造体10は、ハニカム構造体30やハニカム構造体40よりも、高い保温性及び強度を発現する。
【0028】
尚、ハニカム構造体10において、大きな隔壁の交点部17の数は、ハニカム構造体10の全ての隔壁の交点部の数の約半数であり、残りの約半数は、小さな隔壁の交点部16である。また、ハニカム構造体10において、厚肉の部分は、大きな隔壁の交点部17のみであり、隔壁14自体は厚肉ではない。このため、ハニカム構造体10は、熱容量が過剰に大きくなることはない。よって、ハニカム構造体10は、セル形状が四角形のハニカム構造体30やセル形状が六角形のハニカム構造体40に対し、高い保温性及び強度を発現する一方で、昇温性が大きく劣るということはない。即ち、材質、体積(セル部分も含む全体積)、セル密度、隔壁の厚さ等が同等である場合、ハニカム構造体10の昇温性は、セル形状が四角形のハニカム構造体30やセル形状が六角形のハニカム構造体40の昇温性と同等か若干劣る程度である。
【0029】
以上のことから、ハニカム構造体10は、高い昇温性と高い保温性及び強度とを両立することができる。したがって、本発明の目封止ハニカム構造体20を、PMを捕集するためのフィルタとして用いた場合、その主要部をなすハニカム構造体10の高い昇温性により、再生処理時に、フィルタを迅速にPMの燃焼温度まで昇温させることができる。また、ハニカム構造体10の高い保温性により、フィルタをPMの燃焼温度まで昇温させた後、その燃焼温度を維持することが容易である。更に、ハニカム構造体10の高い強度により、キャニング時の損傷が生じ難い。
【0030】
本発明の目封止ハニカム構造体20に使用するハニカム構造体10においては、前述のセル形状の特定の際の線分5が、所定の条件を満たすものであることが好ましい。この所定の条件とは、
図4に示すように、残りの3つの頂点2から線分5までの距離をaとし、残りの3つの頂点2から対角線4までの距離をpとしたときに、下式(1)の関係を満たすような条件である。
0.2p≦a≦0.7p ・・・(1)
【0031】
このような条件を満たす線分5で、角部6が切断されることにより得られる九角形を、ハニカム構造体10のセル形状とすると、ハニカム構造体10の昇温性と保温性及び強度とを、バランス良く、高いレベルで両立することができる。尚、aが0.2pより小さいと、セル形状が四角形や六角形のハニカム構造体に対する、保温性及び強度の優位性が十分に発揮されない場合がある。また、aが0.7pより大きいと、昇温性が不十分となる場合がある。
【0032】
本発明において、ハニカム構造体10の隔壁14の厚さは、203〜508μmであることが好ましく、254〜432μmであることが更に好ましい。隔壁14の厚さをこのような範囲にすることにより、昇温性と保温性及び強度とを、バランスが良く両立することが容易となる。また、本発明の目封止ハニカム構造体20を、PMを捕集するためのフィルタとして用いた際の圧力損失の過剰な上昇を抑制できる。隔壁14の厚さが203μmより薄いと、ハニカム構造体10の保温性及び強度が不十分となることがある。また、隔壁14の厚さが508μmより厚いと、ハニカム構造体10の昇温性が不十分となったり、本発明の目封止ハニカム構造体20を、PMを捕集するためのフィルタとして用いた際に、圧力損失が大きくなり過ぎたりすることがある。
【0033】
ハニカム構造体10のセル密度は、140〜543セル/cm
2であることが好ましく、155〜465セル/cm
2であることが更に好ましい。セル密度をこのような範囲にすることにより、本発明の目封止ハニカム構造体20を、PMを捕集するためのフィルタとして用いた際の圧力損失の過剰な上昇を抑えつつ、高いフィルタ性能を発揮させることができる。セル密度が140セル/cm
2より低いと、PMを捕集する隔壁の面積が小さくなり過ぎることがある。また、セル密度が543セル/cm
2より高いと、本発明の目封止ハニカム構造体20を、PMを捕集するためのフィルタとして用いた際に、圧力損失が大きくなり過ぎることがある。
【0034】
ハニカム構造体10の開口率は、20〜55%であることが好ましく、25〜50%であることが更に好ましい。開口率が20%より低いと、本発明の目封止ハニカム構造体20を、PMを捕集するためのフィルタとして用いた際の圧力損失が大きくなり過ぎることがある。また、開口率が55%より高いと、ハニカム構造体10の保温性及び強度が不十分となることがある。尚、ここで言う「開口率」とは、ハニカム構造体の長さ方向に垂直な断面の全面積(セルの断面積も含めた面積)に対するセルの断面積の割合を意味する。
【0035】
ハニカム構造体10の形状は特に限定されず、例えば、底面が円形の筒状(円筒形状)、底面がオーバル形状の筒状、底面が多角形(四角形、五角形、六角形、七角形、八角形等)の筒状等の形状とすることができる。また、ハニカム構造体10の大きさも特に限定されず、排ガス浄化用触媒の触媒担体として用いた場合において、必要とされる浄化性能を満たし得る大きさを適宜選択することができる。
【0036】
ハニカム構造体10を構成する材料としては、セラミックスを主成分とする材料、又は焼結金属等を好適例として挙げることができる。また、ハニカム構造体が、セラミックスを主成分とする材料からなるものである場合、そのセラミックスとしては、炭化珪素、コージェライト、アルミナタイタネート、サイアロン、ムライト、窒化珪素、リン酸ジルコニウム、ジルコニア、チタニア、アルミナ、シリカ若しくはゼオライト等又はこれらを組み合わせたものを好適例として挙げることができる。
【0037】
目封止部21を構成する材料には、ハニカム構造体10を構成する材料と同じ材料を用いることが好ましい。そうすることにより、ハニカム構造体10と目封止部21との熱膨張差を小さくすることができ、ハニカム構造体10と目封止部21との間に生じる熱応力を緩和することができる。
【0038】
本発明の目封止ハニカム構造体は、ディーゼルエンジン等の内燃機関や各種の燃焼装置等から排出される排ガスに含まれるスス(スート)等のPMを捕集するためのフィルタ等として、使用することができる。特に、ディーゼルエンジンから排出される排ガスに含まれるPMを捕集するためのディーゼルパティキュレートフィルタ(DPF)として、好適に使用することができる。
【0039】
(2)目封止ハニカム構造体の製造方法:
本発明の目封止ハニカム構造体は、最初にハニカム構造体(目封止部の無いハニカム構造体)を作製し、そのハニカム構造体の各セルの一方の開口端部(入口端面側又は出口端面側の開口端部)に目封止部を形成することにより製造することができる。
【0040】
ハニカム構造体は、基本的に、従来公知のハニカム構造体の作製方法と同様の作製方法により作製することができる。即ち、前記のような九角形のセル形状に対応した形状の成形用口金を使用する以外は、従来公知のハニカム構造体の作製方法と同様に、押出成形法等により、ハニカム状の成形体(ハニカム成形体)を得、これを乾燥、焼成することにより作製することができる。
【0041】
ハニカム成形体の成形原料は、主成分となるセラミックス等の粉末に、バインダ、界面活性剤、造孔材、水等を添加して作製する。
【0042】
バインダとしては、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロポキシルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール等を挙げることができる。バインダの含有量は、主成分となるセラミックス等の粉末の質量を100質量部としたときに、2.0〜10.0質量部であることが好ましい。
【0043】
水の含有量は、主成分となるセラミックス等の粉末の質量を100質量部としたときに、20〜60質量部であることが好ましい。
【0044】
界面活性剤としては、エチレングリコール、デキストリン、脂肪酸石鹸、ポリアルコール等を用いることができる。界面活性剤の含有量は、主成分となるセラミックス等の粉末の質量を100質量部としたときに、0.1〜2.0質量部であることが好ましい。
【0045】
造孔材としては、グラファイト、澱粉、発泡樹脂、吸水性樹脂、シリカゲル等を用いることができる。造孔材の含有量は、主成分となるセラミックス等の質量を100質量部としたときに、0.5〜10.0質量部であることが好ましい。
【0046】
成形原料は、ニーダー、真空土練機等で混練することにより坏土となり、この坏土を用いて、押出成形法等により、ハニカム成形体を成形する。
【0047】
ハニカム成形体の乾燥方法は特に限定されず、例えば、マイクロ波加熱乾燥、高周波誘電加熱乾燥等の電磁波加熱方式の乾燥方法や、熱風乾燥、過熱水蒸気乾燥等の外部加熱方式の乾燥方法を用いることができる。電磁波加熱方式の乾燥方法で一定量の水分を乾燥させた後、残りの水分を外部加熱方式の乾燥方法により乾燥させるようにしてもよい。
【0048】
乾燥後のハニカム成形体(ハニカム乾燥体)の焼成は、電気炉、ガス炉等を用いて行う。焼成雰囲気、焼成温度、焼成時間等の焼成条件は、ハニカム乾燥体の構成材料等に応じて適宜決定することができる。尚、焼成は、セルの開口端部に目封止部を形成した後で、目封止部の焼成と一緒に行うようにしてもよい。
【0049】
セルの開口端部に目封止部を形成する方法にも、従来公知の方法を用いることができる。具体的な方法の一例としては、まず、前記のような方法で作製したハニカム構造体の端面にシートを貼り付ける。次いで、このシートの、目封止部を形成しようとするセルに対応した位置に穴を開ける。次に、このシートを貼り付けたままの状態で、目封止部の構成材料をスラリー化した目封止用スラリーに、ハニカム構造体の端面を浸漬し、シートに開けた孔を通じて、目封止しようとするセルの開口端部内に目封止用スラリーを充填する。こうして充填した目封止用スラリーを乾燥した後、焼成して硬化させるより、目封止部が形成される。
【実施例】
【0050】
以下、本発明を実施例により更に具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。
【0051】
(実施例1〜9)
コージェライト化原料100質量部に対し、造孔剤として発泡樹脂を5.0質量部、バインダとしてメチルセルロースを5.0質量部、界面活性剤としてエチレングリコールを1.0質量部、分散媒として水を40質量部加えて混練することにより杯土を調製した。ここで、「コージェライト化原料」とは、焼成によりコージェライトとなる原料を意味する。本実施例では、コージェライト化原料として、タルク41質量%、カオリン19質量%、アルミニウム酸化物25質量%、及びシリカ15質量%を混合したものを使用した。こうして調製した坏土を、真空脱気した後、
図1に示すような九角形のセル形状が得られる成形用口金を用いて押出成形することによりハニカム成形体を得た。次に、得られたハニカム成形体をマイクロ波乾燥機で乾燥し、更に熱風乾燥機で完全に乾燥させて、ハニカム乾燥体とした。
【0052】
次いで、ハニカム乾燥体の各セルの一方の開口端部に、目封止部を形成した。目封止部の形成は、
図3に示すように、ハニカム構造体の各端面(入口端面及び出口端面)上の一定方向(
図3の矢印方向)において、セル13の開口端部が、目封止部21によって1つ置きに目封止されるように行った。目封止部の形成方法としては、まず、ハニカム乾燥体の端面にシートを貼り付け、このシートの、目封止部を形成しようとするセルに対応した位置に穴を開けた。続いて、このシートを貼り付けたままの状態で、目封止部の構成材料をスラリー化した目封止用スラリーに、ハニカム乾燥体の端面を浸漬し、シートに開けた孔を通じて、目封止しようとするセルの開口端部内に目封止用スラリーを充填した。尚、目封止部の構成材料には、コージェライト化原料を用いた。
【0053】
こうして、セルの開口端部内に充填した目封止用スラリーを乾燥した後、このハニカム乾燥体を、最高温度1400〜1430℃の温度範囲で焼成することにより、セル形状が九角形で、
図4に示す距離aの値がそれぞれ表1に示す値となるような、実施例1〜9の目封止ハニカム構造体を得た。尚、表1に示すように、体積(セル部分も含む全体積)、隔壁の厚さ及びセル密度は、実施例1〜9のハニカム構造体の何れにおいても同一である。
【0054】
(比較例1)
図6に示すような四角形のセル形状が得られる成形用口金を用いた以外は、実施例1〜9と同様にして、セル形状が四角形で、体積、隔壁の厚さ及びセル密度が、実施例1〜9の目封止ハニカム構造体と同一である比較例1の目封止ハニカム構造体を得た。尚、目封止部の形成は、
図8に示すように、開口端部に目封止部21が形成されたセル13と、開口端部に目封止部21が形成されていないセル13とによって、ハニカム構造体の各端面(入口端面及び出口端面)が、市松模様を呈するように行った。
【0055】
(比較例2)
図7に示すような六角形のセル形状が得られる成形用口金を用いた以外は、実施例1〜9と同様にして、セル形状が六角形で、体積、隔壁の厚さ及びセル密度が、実施例1〜9の目封止ハニカム構造体と同一である比較例2の目封止ハニカム構造体を得た。尚、目封止部の形成は、
図9に示すように、ハニカム構造体の各端面(入口端面及び出口端面)上の一定方向(
図9の矢印方向)において、セル13の開口端部が、目封止部21によって1つ置きに目封止されるように行った。
【0056】
(評価)
実施例1〜9並びに比較例1及び2の目封止ハニカム構造体について、下記の方法で、昇温性、保温性及び強度の評価を行い、その結果を表1に示した。
【0057】
[昇温性及び保温性の評価方法]
昇温性及び保温性の評価方法を、
図5を参照して説明する。まず、ディーゼル燃料の燃焼により発生させたススを含む排ガスを、目封止ハニカム構造体の入口端面より流入させ、出口端面より流出させることにより、目封止ハニカム構造体内に10g/L(目封止ハニカム構造体の体積1リットル当り10g)のススを堆積させた。次いで、一旦、室温(25℃)まで冷却した目封止ハニカム構造体に、加熱空気を一定流量で流して、目封止ハニカム構造体を昇温させた。こうして、目封止ハニカム構造体を昇温させ、目封止ハニカム構造体の温度が550℃に達した時点から30分間その温度をキープした後、今度は、室温(25℃)の空気を一定流量で流して、ハニカム構造体の温度を室温まで降温させた。そして、目封止ハニカム構造体が、昇温時に550℃に達した時間Tを測定するとともに、目封止ハニカム構造体の降温後のススの再生効率を求めた。尚、Tは、目封止ハニカム構造体に、加熱空気を流し始めた時点から測定した時間である。このTが短い程、昇温性が高いと言える。また、再生効率は、目封止ハニカム構造体の昇温前に、目封止ハニカム構造体内に堆積させたススの量(A)と、目封止ハニカム構造体の降温後に目封止ハニカム構造体内に残存していたススの量(B)とから、下式(2)により求められる値である。この再生効率は、目封止ハニカム構造体の降温時の降温速度が遅く、ススの燃焼温度(530℃)以上の温度がより長く保たれる程、高くなる。よって、再生効率が高い程、保温性が高いと言える。
再生効率(%)={(A−B)/A}×100 ・・・(2)
【0058】
[強度の評価方法]
フレキシブルチューブ内に目封止ハニカム構造体を挿入して、水圧による均等圧を掛け、部分破壊を生じた圧力を測定し、これを目封止ハニカム構造体のアイソスタティック強度とした。尚、測定結果は、比較例2の目封止ハニカム構造体についての測定値を1.0として、相対表示した。
【0059】
【表1】
【0060】
(考察)
表1に示すとおり、セル形状が特定の九角形である実施例1〜9の内、実施例2〜9は、セル形状が四角形である比較例1やセル形状が六角形である比較例2よりも高い再生効率(保温性)が得られた。実施例1は、セル形状が六角形である比較例2よりも再生効率が高く、また、セル形状が四角形である比較例1と比べて、昇温性が高く、再生効率は若干低いものの、ほぼ同等であった。また、表1に示す結果から、実施例1〜9の内、特に距離aの値が下式(1)を満たしている実施例2〜7の昇温性は、セル形状が四角形である比較例1やセル形状が六角形である比較例2の昇温性と比べても大きな差がない(Tの差が10秒以内)ことがわかる。また、これら実施例2〜7の保温性は、セル形状が四角形である比較例1やセル形状が六角形である比較例2の保温性よりも高いことがわかる。更に、これら実施例2〜7の強度は、セル形状が六角形である比較例2の強度と比べて、同等以上であることがわかる。
【0061】
(実施例10)
実施例1〜9と同様にして、セル形状が九角形で、
図4に示す距離aの値が0.5pであり、体積、隔壁の厚さ及びセル密度が、表2に示す値である実施例10の目封止ハニカム構造体を得た。尚、目封止部の形成は、
図3に示すように、ハニカム構造体の各端面(入口端面及び出口端面)上の一定方向(
図3の矢印方向)において、セル13の開口端部が、目封止部21によって1つ置きに目封止されるように行った。
【0062】
(比較例3)
図6に示すような四角形のセル形状が得られる成形用口金を用いた以外は、実施例1〜9と同様にして、セル形状が四角形で、体積、隔壁の厚さ及びセル密度が、実施例10の目封止ハニカム構造体と同一である比較例3の目封止ハニカム構造体を得た。尚、目封止部の形成は、
図8に示すように、開口端部に目封止部21が形成されたセル13と、開口端部に目封止部21が形成されていないセル13とによって、ハニカム構造体の各端面(入口端面及び出口端面)が、市松模様を呈するように行った。
【0063】
(比較例4)
図7に示すような六角形のセル形状が得られる成形用口金を用いた以外は、実施例1〜9と同様にして、セル形状が六角形で、体積、隔壁の厚さ及びセル密度が、実施例10の目封止ハニカム構造体と同一である比較例2の目封止ハニカム構造体を得た。尚、目封止部の形成は、
図9に示すように、ハニカム構造体の各端面(入口端面及び出口端面)上の一定方向(
図9の矢印方向)において、セル13の開口端部が、目封止部21によって1つ置きに目封止されるように行った。
【0064】
(評価)
実施例10並びに比較例3及び4の目封止ハニカム構造体について、前記の方法で、昇温性、保温性及び強度の評価を行い、その結果を表2に示した。但し、アイソスタティック強度の測定結果は、比較例4の目封止ハニカム構造体についての測定値を1.0として、相対表示した。
【0065】
【表2】
【0066】
(考察)
表2に示す結果から、実施例10の昇温性は、セル形状が四角形である比較例3やセル形状が六角形である比較例4の昇温性と比べても大きな差がない(Tの差が10秒以内)ことがわかる。また、実施例10の保温性は、セル形状が四角形である比較例3及びセル形状が六角形である比較例4の保温性よりも高いことがわかる。更に、実施例10の強度は、セル形状が四角形である比較例3及びセル形状が六角形である比較例4の強度よりも高いことがわかる。
【0067】
(実施例11)
実施例1〜9と同様にして、セル形状が九角形で、
図4に示す距離aの値が0.5pであり、体積、隔壁の厚さ及びセル密度が、表3に示す値である実施例11の目封止ハニカム構造体を得た。尚、目封止部の形成は、
図3に示すように、ハニカム構造体の各端面(入口端面及び出口端面)上の一定方向(
図3の矢印方向)において、セル13の開口端部が、目封止部21によって1つ置きに目封止されるように行った。
【0068】
(比較例5)
図6に示すような四角形のセル形状が得られる成形用口金を用いた以外は、実施例1〜9と同様にして、セル形状が四角形で、体積、隔壁の厚さ及びセル密度が、実施例11の目封止ハニカム構造体と同一である比較例5の目封止ハニカム構造体を得た。尚、目封止部の形成は、
図8に示すように、開口端部に目封止部21が形成されたセル13と、開口端部に目封止部21が形成されていないセル13とによって、ハニカム構造体の各端面(入口端面及び出口端面)が、市松模様を呈するように行った。
【0069】
(比較例6)
図7に示すような六角形のセル形状が得られる成形用口金を用いた以外は、実施例1〜9と同様にして、セル形状が六角形で、体積、隔壁の厚さ及びセル密度が、実施例11の目封止ハニカム構造体と同一である比較例6の目封止ハニカム構造体を得た。尚、目封止部の形成は、
図9に示すように、ハニカム構造体の各端面(入口端面及び出口端面)上の一定方向(
図9の矢印方向)において、セル13の開口端部が、目封止部21によって1つ置きに目封止されるように行った。
【0070】
(評価)
実施例11並びに比較例5及び6の目封止ハニカム構造体について、前記の方法で、昇温性、保温性及び強度の評価を行い、その結果を表3に示した。但し、アイソスタティック強度の測定結果は、比較例6の目封止ハニカム構造体についての測定値を1.0として、相対表示した。
【0071】
【表3】
【0072】
(考察)
表3に示す結果から、実施例11の昇温性は、セル形状が四角形である比較例5やセル形状が六角形である比較例6の昇温性と比べても大きな差がない(Tの差が10秒以内)ことがわかる。また、実施例11の保温性は、セル形状が四角形である比較例5及びセル形状が六角形である比較例6の保温性よりも高いことがわかる。更に、実施例11の強度は、セル形状が四角形である比較例5及びセル形状が六角形である比較例6の強度よりも高いことがわかる。
【0073】
(実施例12)
実施例1〜9と同様にして、セル形状が九角形で、
図4に示す距離aの値が0.5pであり、体積、隔壁の厚さ及びセル密度が、表4に示す値である実施例12の目封止ハニカム構造体を得た。尚、目封止部の形成は、
図3に示すように、ハニカム構造体の各端面(入口端面及び出口端面)上の一定方向(
図3の矢印方向)において、セル13の開口端部が、目封止部21によって1つ置きに目封止されるように行った。
【0074】
(比較例7)
図6に示すような四角形のセル形状が得られる成形用口金を用いた以外は、実施例1〜9と同様にして、セル形状が四角形で、体積、隔壁の厚さ及びセル密度が、実施例12の目封止ハニカム構造体と同一である比較例7の目封止ハニカム構造体を得た。尚、目封止部の形成は、
図8に示すように、開口端部に目封止部21が形成されたセル13と、開口端部に目封止部21が形成されていないセル13とによって、ハニカム構造体の各端面(入口端面及び出口端面)が、市松模様を呈するように行った。
【0075】
(比較例8)
図7に示すような六角形のセル形状が得られる成形用口金を用いた以外は、実施例1〜9と同様にして、セル形状が六角形で、体積、隔壁の厚さ及びセル密度が、実施例12の目封止ハニカム構造体と同一である比較例8の目封止ハニカム構造体を得た。尚、目封止部の形成は、
図9に示すように、ハニカム構造体の各端面(入口端面及び出口端面)上の一定方向(
図9の矢印方向)において、セル13の開口端部が、目封止部21によって1つ置きに目封止されるように行った。
【0076】
(評価)
実施例12並びに比較例7及び8の目封止ハニカム構造体について、前記の方法で、昇温性、保温性及び強度の評価を行い、その結果を表4に示した。但し、アイソスタティック強度の測定結果は、比較例8の目封止ハニカム構造体についての測定値を1.0として、相対表示した。
【0077】
【表4】
【0078】
(考察)
表4に示す結果から、実施例12の昇温性は、セル形状が四角形である比較例7やセル形状が六角形である比較例8の昇温性と比べても大きな差がない(Tの差が10秒以内)ことがわかる。また、実施例12の保温性は、セル形状が四角形である比較例7及びセル形状が六角形である比較例8の保温性よりも高いことがわかる。更に、実施例12の強度は、セル形状が四角形である比較例7及びセル形状が六角形である比較例8の強度よりも高いことがわかる。