(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0011】
以下、本発明の実施形態を、図面を参照しつつ詳細に説明する。
【0012】
実施の形態1.
図1には、本実施の形態に係る配信システム100の構成が示されている。配信システム100は、毎日、ビルディングB1、B2内の空間43、46各々の翌日における熱負荷を予測して配信するシステムである。以下では、ビルディングB1、B2を単にビルB1、B2という。
【0013】
配信システム100は、熱負荷予測装置10、気象情報サーバ20、ビル情報サーバ30、ビルB1に設置されたBEMS(Building Energy Management System)41及び空調システム42、並びにビルB2に設置されたBEMS44及び空調システム45を有している。BEMS41、44はいずれも、ネットワークNWを介して熱負荷予測装置10に接続されている。
【0014】
熱負荷予測装置10は、ビルB1、B2の設備を集中管理する設備管理会社のセンターサーバに搭載される。熱負荷予測装置10は、プロセッサ11、主記憶部12、補助記憶部13、入力部14、出力部15、及びインタフェース部16を有している。主記憶部12、補助記憶部13、入力部14、出力部15、及びインタフェース部16はいずれも、内部バス17を介してプロセッサ11に接続されている。
【0015】
プロセッサ11は、例えばCPU(Central Processing Unit)等から構成される。プロセッサ11は、補助記憶部13に記憶されるプログラム18を実行することにより、後述の処理を実行する。なお、プロセッサ11によって実行される処理には、熱負荷の予測が含まれる。
【0016】
主記憶部12は、例えばRAM(Random Access Memory)等から構成される。主記憶部12は、補助記憶部13からプログラム18をロードする。そして、主記憶部12は、プロセッサ11の作業領域として用いられる。
【0017】
補助記憶部13は、例えばフラッシュメモリ等の不揮発性メモリを含んで構成される。補助記憶部13は、プログラム18の他に、プロセッサ11の処理に用いられる種々のデータを記憶している。そして、補助記憶部13は、プロセッサ11の指示に従って、プロセッサ11が利用するデータをプロセッサ11へ供給し、プロセッサ11から供給されたデータを記憶する。
【0018】
入力部14は、熱負荷予測装置10のユーザが情報を入力するためのキーボード及びポインティングデバイス等から構成される。入力部14は、ユーザによって入力された情報を取得して、プロセッサ11に通知する。また、出力部15は、ユーザに対して情報を提示するためのLCD(Liquid Crystal Display)及びスピーカ等から構成される。出力部15は、プロセッサ11の指示に従って、所定の文字や図形をユーザに対して表示する。
【0019】
インタフェース部16は、例えばパケット通信を行うための通信インタフェース等から構成される。インタフェース部16は、気象情報サーバ20、ビル情報サーバ30、及びネットワークNWに接続されている。
【0020】
インタフェース部16は、熱負荷の予測に必要な情報を気象情報サーバ20及びビル情報サーバ30から取得して、プロセッサ11へ通知する。そして、インタフェース部16は、プロセッサ11によって予測された熱負荷の値を、ネットワークNWを介してBEMS41、44へ配信する。
【0021】
以下では、BEMS41、44各々へ配信される熱負荷の値を、熱負荷予測値D1という。なお、BEMS41へ配信される熱負荷予測値D1は、BEMS44へ配信される熱負荷予測値D1と異なる値となる。
【0022】
また、インタフェース部16は、毎晩、その日における空調システム42、45の運転の状況に関する記録を、BEMS41、44から取得して、プロセッサ11へ通知する。以下では、インタフェース部16がBEMS41、44から取得する記録を、運転実績データD2という。
【0023】
気象情報サーバ20は、例えば、気象情報を提供するサービスを事業とする会社によって運営されるサーバである。気象情報サーバ20は、気象実測データD21及び気象予測データD22を記憶する。
【0024】
気象実測データD21は、所定の観測点において実測された気象条件の実測値の推移を示す。また、気象予測データD22は、所定の観測点における気象条件について、翌日の予測値(予報値)の推移を示す。所定の観測点は、例えば、ビルB1、B2双方の所在地を含む地域を代表する地点である。また、気象条件は、例えば、外気温、日射量、風向及び風速、並びに天候(晴天、曇天又は雨天等)を含む条件である。
【0025】
ビル情報サーバ30は、例えば、設備管理会社が熱負荷予測装置10とともに運営するサーバである。ビル情報サーバ30は、構造データD31及び運用データD32を記憶する。
【0026】
構造データD31は、ビルB1、B2の構造に関する条件を示す。ビルB1、B2の構造に関する条件には、例えば、空間43、46の周囲の断熱構造を示す情報(例えば空間43、46の天井、壁及び床を形成する部材の熱伝達率)、及び空間43、46に設置された窓の面積が含まれる。
【0027】
運用データD32は、空間43、46の運用に関する条件を示す時系列データである。運用データD32には、例えば、空間43、46に在室する人の数(以下、在室人数という)の推移、目標値として設定される空間43、46の室温(以下、設定温度という)の推移、空間43、46に設置されている照明機器の点灯/消灯の推移、及び空間43、46に設置されているその他の機器の運転モードの推移が含まれる。運用データD32は、設備管理会社によって適宜変更される。例えば、設備管理会社は、年に一度、運用データD32を見直して、実態に即した内容に変更する。
【0028】
BEMS41、44各々は、熱負荷予測値D1に基づいて、空調システム42、45各々を制御して、効率的に動作させるコンピュータである。BEMS41、44は、毎日、所定の運用時間帯において空調システム42、45を制御する。運用時間帯は、空間43、46が運用される時間帯であって、例えば、8時から18時までである。また、BEMS41、44は、運転実績データD2を生成して、熱負荷予測装置10へ出力する。
【0029】
空調システム42、45各々は、ビルB1、B2に設置された室外機及び室内機等の空調設備を含んで構成される。空調システム42、45各々は、BEMS41、44の指示に従って、空間43、46各々における空気の状態を調節する。この空気の状態には、温度及び湿度が含まれる。
【0030】
図2には、熱負荷予測装置10の機能の構成が示されている。
図2に示されるように、熱負荷予測装置10は、気象実測データ処理部110、入力情報処理部120、熱負荷算出部130、運転実績データ処理部140、及びモデル補正モジュール150を有している。なお、
図2ではBEMS44等が省略され、空間43の熱負荷の予測に関する熱負荷予測装置10の機能が示されている。
【0031】
気象実測データ処理部110、入力情報処理部120、熱負荷算出部130、及び運転実績データ処理部140各々は、主としてプロセッサ11及びインタフェース部16によって実現される。
【0032】
気象実測データ処理部110は、気象情報サーバ20から気象実測データD21を取得する。また、気象実測データ処理部110は、取得した気象実測データD21の形式を、入力情報処理部120による処理に適した形式に変換する。そして、気象実測データ処理部110は、形式が変換された気象実測データD21を、入力情報処理部120へ出力する。
【0033】
入力情報処理部120は、気象実測データ処理部110から気象実測データD21を取得する。また、入力情報処理部120は、気象情報サーバ20から気象予測データD22を取得し、ビル情報サーバ30から構造データD31及び運用データD32を取得する。また、入力情報処理部120は、運転実績データ処理部140から運転実績データD5を取得する。
【0034】
入力情報処理部120は、取得したデータの形式を、熱負荷算出部130による熱負荷の算出に適した形式に変換する。そして、入力情報処理部120は、気象実測データD21及び気象予測データD22のいずれか一方と、構造データD31と、運用データD32と、運転実績データD5とを、熱負荷算出部130へ出力する。
【0035】
また、入力情報処理部120は、取得したデータの形式を、モデル補正モジュール150のモデル評価部153による処理に適した形式に変換する。そして、入力情報処理部120は、取得したデータをモデル補正モジュール150の誤差データ蓄積部152へ出力する。
【0036】
熱負荷算出部130は、熱負荷モデル131を有している。熱負荷モデル131は、空間43の環境条件と空間43の熱負荷との関係を、パラメータを用いて規定するモデルである。空間43の環境条件には、気象条件、ビルB1の構造に関する条件、及び空間43の運用に関する条件が含まれる。
【0037】
環境条件の値は、入力情報処理部120から出力されるデータに含まれている。本実施の形態に係る熱負荷モデル131は、このデータから、単位時間あたりの熱負荷の平均値を算出するための数理モデルである。単位時間は、例えば30分間であって、熱負荷モデル131は次式(1)で示される。
【0038】
Q(t)=Qex(t)+Qin(t)+C ・・・(1)
【0039】
ただし、Q(t)は、空間43の熱負荷を示し、Qex(t)は、外気温及び設定温度により定まる熱負荷の成分を示し、Qin(t)は、空間43内の状況により定まる熱負荷の成分を示す。また、式(1)中のtは単位時間の開始時刻を表し、Q(t)、Qex(t)及びQin(t)各々は、単位時間における熱負荷等の平均値を表す。
【0040】
例えば、13時00分から13時30分までの30分間における熱負荷の平均値は、Q(13:00)=Qex(13:00)+Qin(13:00)+Cと表される。また、Q(9:00)=10[kW]という等式は、9時00分から9時30分までの30分間における空間43の熱負荷の平均値が10kWであることを意味する。
【0041】
また、式(1)中のCは、空調設備の設置条件及びビルB1の所在地に応じて設定される補正パラメータ(オフセット値)である。Qex(t)+Qin(t)の値は、空調設備の設置条件及びビルB1の所在地に応じて、空間43の熱負荷の値から正・負いずれかの方向へずれてしまう場合がある。このずれは、例えば、ビルB1の所在地が、気象実測データD21及び気象予測データD22を得るための観測点から離れるほど大きくなると考えられる。補正パラメータCは、このようなずれを調整するために用いられる。
【0042】
また、式(1)中のQex(t)は、例えば、次式(2)で示される。
【0043】
Qex(t)=Ka・Kb・Kc・R1・(To−Tr) ・・・(2)
【0044】
式(2)中のKa、Kb、Kc及びR1は、熱負荷モデル131のパラメータに相当する。Kaは、例えば、空間43に対応する調整係数であって、運転実績データD5に基づいて設定される。また、Kb、Kc各々は、例えば、天候及び風向・風速等の気象条件各々に応じて適用される係数であって、気象実測データD21及び気象予測データD22に基づいて設定される。また、R1は、例えば、ビルB1の断熱構造や窓面積等の構造条件に応じて設定される熱負荷の基準値(To−Tr=1[℃]あたりの熱負荷相当値)であって、構造データD31を用いた演算に基づいて設定される。
【0045】
また、式(2)中のToは、時刻tにおける外気温(℃)を意味する。Toの値は、気象実測データD21及び気象予測データD22に含まれる。また、Trは、空間43の設定温度(℃)を意味する。Trの値は、運用データD32及び運転実績データD5に含まれる。
【0046】
また、式(1)中のQin(t)は、例えば次式(3)で示される。
【0047】
Qin(t)=QP(t)+QL(t)+QK(t) ・・・(3)
【0048】
ここで、QP(t)は、人体の発熱による熱負荷を意味する。また、QL(t)は、照明機器の発熱による熱負荷を意味し、QK(t)は、他の機器の発熱による熱負荷を意味する。QP(t)、QL(t)及びQK(t)各々は、所定のパラメータを用いて、運用データD32に基づいて算出される。なお、QP(t)、QL(t)及びQK(t)はいずれも、Q(t)と同様に、開始時刻をtとする単位時間における平均値を表す。
【0049】
熱負荷算出部130は、気象予測データD22を含むデータを入力情報処理部120から取得した場合に、熱負荷予測値D1を算出してBEMS41へ出力する。また、熱負荷算出部130は、気象実測データD21を含むデータを取得した場合には、熱負荷モデル131を用いて空間43の熱負荷の値を改めて算出することとなる。熱負荷算出部130は、改めて算出したこの値を、熱負荷再計算値D3としてモデル補正モジュール150へ出力する。
【0050】
運転実績データ処理部140は、運転実績データD2をBEMS41から取得する。運転実績データD2には、例えば、空調システム42の消費電力、空調システム42の運転能力(kW)、空調システム42の運転モード(冷房・暖房等)、目標値として設定された空間43の設定温度、室内機が吸い込んだ空気の温度、室外機を構成する圧縮機の回転周波数、及び室外機が吹き出した空気の温度が含まれる。
【0051】
運転実績データ処理部140は、運転実績データD2に基づく演算により、空間43の熱負荷の実績値を測定して、熱負荷実績値D4としてモデル補正モジュール150へ出力する。また、運転実績データ処理部140は、設定温度を含むデータを、運転実績データD5として入力情報処理部120へ出力する。
【0052】
モデル補正モジュール150は、熱負荷モデル131を補正するためのモジュールである。モデル補正モジュール150は、誤差算出部151、誤差データ蓄積部152、及びモデル評価部153を有している。
【0053】
誤差算出部151は、主としてプロセッサ11によって実現される。誤差算出部151は、熱負荷再計算値D3と熱負荷実績値D4とを比較して、これらの値の差を、熱負荷モデル131のモデル誤差として算出する。そして、誤差算出部151は、このモデル誤差を示す誤差データD6を、誤差データ蓄積部152へ出力する。なお、モデル誤差は、熱負荷モデル131を用いて算出される熱負荷の値に含まれる誤差であって、熱負荷モデル131のパラメータの値に起因する誤差を意味する。
【0054】
誤差データ蓄積部152は、主として補助記憶部13によって実現される。誤差データ蓄積部152は、誤差算出部151から誤差データD6を取得して蓄積する。また、誤差データ蓄積部152は、入力情報処理部120から、環境条件の値を示すデータを取得して蓄積する。
【0055】
モデル評価部153は、主としてプロセッサ11によって実現される。モデル評価部153は、所定のタイミングで、誤差データ蓄積部152に蓄積された誤差データD6を分析することにより、熱負荷モデル131を評価する。そして、モデル評価部153は、モデル誤差を生じさせる要因となった環境条件を特定して、熱負荷モデル131のパラメータを更新する。
【0056】
続いて、熱負荷予測装置10によって実行される一連の処理について、
図3〜9を用いて説明する。
図3に示される一連の処理は、熱負荷予測装置10の電源が投入されることで開始する。
【0057】
図3に示されるように、プロセッサ11は、まず、熱負荷予測値D1の算出処理を実行する(ステップS1)。この熱負荷予測値D1の算出処理について、
図4を用いて詳細に説明する。
【0058】
図4に示されるように、熱負荷予測値D1の算出処理において、まず、入力情報処理部120は、環境条件の予測値を示すデータを取得する(ステップS11)。具体的には、入力情報処理部120は、気象予測データD22、構造データD31、運用データD32及び運転実績データD5を、環境条件の予測値を示すデータとして取得する。
【0059】
次に、入力情報処理部120は、取得したデータを処理する(ステップS12)。これにより、データの形式が、熱負荷の算出に適したものに変換される。例えば、翌日の0時から24時までの予測値を示す気象予測データD22から、運用時間帯における予測値の推移が切り出される。
【0060】
次に、熱負荷算出部130は、熱負荷モデル131を用いて熱負荷予測値D1を算出する(ステップS13)。これにより、運用時間帯における熱負荷予測値D1が単位時間毎に算出される。
【0061】
図5には、気象予測データD22及び運用データD32の時系列データと、これらの時系列データから算出される熱負荷予測値D1の推移の例が示されている。なお、各時刻に対応する値は、この時刻を開始時刻とする単位時間における平均値を示す。例えば、8時30分から9時00分までの30分間における外気温の予測値は、「30℃」である。また、曇り又は晴れ等の天候を示すデータは、例えばゼロ又は1等の値に変換されている。
【0062】
次に、熱負荷算出部130は、算出した熱負荷予測値D1の推移を、BEMS41へ出力する(ステップS14)。その後、プロセッサ11は、熱負荷予測値D1の算出処理を終了する。
【0063】
図3に戻り、プロセッサ11は、熱負荷予測値D1の算出処理(ステップS1)に続いて、日付が変更されたか否かを判定する(ステップS2)。日付が変更されていないと判定された場合(ステップS2;NO)、プロセッサ11は、ステップS2の判定を繰り返す。
【0064】
一方、日付が変更されたと判定された場合(ステップS2;YES)、プロセッサ11は、空間43の運用の終了時刻を経過したか否かを判定する(ステップS3)。具体的には、プロセッサ11は、18時を経過したか否かを判定する。終了時刻を経過していないと判定された場合(ステップS3;NO)、プロセッサ11は、ステップS3の判定を繰り返すことにより、終了時刻まで待機することとなる。
【0065】
プロセッサ11が待機している間に、BEMS41、44は、熱負荷予測値D1に基づいて空調システム42、45を制御する。これにより、空調システム42、45が、運用時間帯に空間43、46内の空気の状態を適切に調節することとなる。
【0066】
一方、終了時刻を経過したと判定された場合(ステップS3;YES)、プロセッサ11は、熱負荷実績値D4の測定処理を実行する(ステップS4)。この熱負荷実績値D4の測定処理について、
図6を用いて詳細に説明する。
【0067】
図6に示されるように、熱負荷実績値D4の測定処理において、まず、運転実績データ処理部140は、運転実績データD2を取得する(ステップS41)。
【0068】
次に、運転実績データ処理部140は、運転実績データD2に含まれる情報から、熱負荷実績値D4を算出する(ステップS42)。具体的には、運転実績データ処理部140は、空調システム42、45の消費電力、空調システム42、45の運転モード、及び設定温度等に基づいて、運用時間帯における空間43の熱負荷の値を単位時間毎に推定する。これにより、空調システム42、45によって実際に処理された熱負荷が測定されることとなる。
【0069】
次に、運転実績データ処理部140は、測定した熱負荷実績値D4を誤差算出部151へ出力する(ステップS43)。その後、運転実績データ処理部140は、熱負荷実績値D4の算出処理を終了する。
【0070】
図3に戻り、プロセッサ11は、熱負荷実績値D4の算出処理(ステップS4)に続いて、熱負荷再計算値D3の算出処理を実行する(ステップS5)。この熱負荷再計算値D3の算出処理について、
図7を用いて詳細に説明する。
【0071】
図7に示されるように、熱負荷再計算値D3の算出処理において、まず、入力情報処理部120は、環境条件の実測値を示すデータを取得する(ステップS51)。具体的には、入力情報処理部120は、気象実測データD21、構造データD31、運用データD32、及び運転実績データD5を、環境条件の実測値を示すデータとして取得する。
【0072】
次に、入力情報処理部120は、取得したデータを処理する(ステップS52)。これにより、データの形式が、熱負荷の算出に適したものに変換される。例えば、当日の0時以降に実測された値を示す気象実測データD21から、運用時間帯における実測値の推移が切り出される。
【0073】
ただし、入力情報処理部120は、熱負荷の算出に必要なデータが不足しているときに、取得可能なデータを適宜組み合わせる。例えば、熱負荷再計算値D3を算出するための設定温度の実測値として、運転実績データD5に含まれる設定温度の値が用いられる。しかしながら、通信エラー等により、設定温度の推移の一部が、運転実績データD5に含まれていない場合がある。この場合に、入力情報処理部120は、運用データD32に含まれる設定温度の推移を運転実績データD5にマージする。これにより、熱負荷の算出に必要な環境条件の実測値が補完される。
【0074】
次に、熱負荷算出部130は、熱負荷モデル131を用いて熱負荷再計算値D3を算出する(ステップS53)。これにより、運用時間帯における熱負荷再計算値D3が単位時間毎に算出される。
【0075】
図8には、気象実測データD21、運転実績データD5の「設定温度」及び運用データD32の「在室人数」の時系列データと、これらの時系列データから算出される熱負荷再計算値D3の推移が例示されている。なお、
図5に示された値と異なる値には、下線が付されている。
【0076】
次に、熱負荷算出部130は、算出した熱負荷再計算値D3の推移を、誤差算出部151へ出力する(ステップS54)。その後、プロセッサ11は、熱負荷再計算値D3の算出処理を終了する。
【0077】
図3に戻り、熱負荷再計算値D3の算出処理(ステップS5)に続いて、誤差算出部151は、熱負荷実績値D4と熱負荷再計算値D3とを比較して、モデル誤差を算出する(ステップS6)。具体的には、プロセッサ11は、
図8に示される熱負荷再計算値D3から、熱負荷実績値D4を単位時間毎に減算することにより、モデル誤差の推移を算出する。
【0078】
次に、誤差データ蓄積部152は、誤差算出部151から単位時間毎に算出された誤差データD6を順次蓄積する(ステップS7)。誤差データ蓄積部152に蓄積された誤差データD6は、熱負荷モデル131のモデル誤差を時系列で表すデータ群となる。
【0079】
次に、プロセッサ11は、現在の日付がモデル補正日に該当するか否かを判定する(ステップS8)。モデル補正日は、例えば週に一度の所定の曜日(例えば日曜日)である。モデル補正日は、熱負荷モデル131を補正する日としてあらかじめ設定される。モデル補正日に該当しないと判定された場合(ステップS8;NO)、プロセッサ11は、ステップS1以降の処理を繰り返す。
【0080】
一方、モデル補正日に該当すると判定された場合(ステップS8;YES)、モデル評価部153は、蓄積された誤差データD6を分析する(ステップS9)。具体的には、モデル評価部153は、所定の期間に渡って蓄積されたモデル誤差の時系列データと環境条件の時系列データとの相関分析を含む統計解析を行う。この所定の期間は、例えば1日間である。
【0081】
なお、環境条件の実測値及び予測値の双方が利用可能であるときには、モデル評価部153は、実測値を優先的に用いて統計解析を行う。例えば、誤差データ蓄積部152は、外気温の実測値及び予測値の双方を記憶している。そこで、モデル評価部153は、外気温の予測値を用いることなく、実測値を用いて統計解析を行う。
【0082】
図9には、ある日の運用時間帯におけるモデル誤差の時系列データ、及び各環境条件の時系列データが示されている。
図9中の線L1は、モデル誤差の推移を示す。また、線L2は外気温の実測値の推移を示し、線L3は在室人数の推移を示し、線L4は風速の実測値の推移を示し、線L5は当日に設定された設定温度の推移を示す。
【0083】
また、線L6は日射量の推移を示す。日射量が少ない時間帯は雨天時に対応し、日射量が多い時間帯は晴天時に対応し、日射量が中程度の時間帯は曇天時に対応する。また、
図9の縦軸は、以下の説明において線L1〜L6を容易に比較可能となるように、スケーリングされている。
【0084】
図9に示されるように、モデル誤差の値(線L1)と、外気温の実測値(線L2)との間には、強い相関関係がある。このため、モデル評価部153がモデル誤差と各環境条件との相関値を算出すると、外気温の実測値についての相関値が最大となる。そこで、モデル評価部153は、外気温を、モデル誤差が生じる要因となった環境条件として特定する。
【0085】
また、
図9に示される例において、外気温の実測値以外の環境条件(線L3〜L6)はいずれも、モデル誤差との相関値が低いため、モデル誤差を生じさせた要因として特定されることはない。
【0086】
次に、モデル評価部153は、モデル誤差が小さくなるように、熱負荷モデル131のパラメータを、あらかじめ定められたステップ幅で更新する(ステップS10)。
図9に示される例では、モデル評価部153は、外気温と熱負荷との関係を規定するためのパラメータKa、Kb、Kc、R1、Cを更新する。パラメータの値は、例えばニュートン法を含む反復法等の数値解析手法によって、逐次的に更新されることとなる。
【0087】
その後、プロセッサ11は、ステップS1以降の処理を繰り返す。これにより、モデル補正モジュール150によって補正された熱負荷モデル131を用いて、熱負荷予測値D1の算出処理(ステップS1)が実行されることとなる。
【0088】
以上説明したように、本実施形態に係る熱負荷予測装置10は、熱負荷再計算値D3と熱負荷実績値D4からモデル誤差を算出し、このモデル誤差に基づいて熱負荷モデル131を補正する。これにより、環境条件の予測値に含まれる予測誤差を排除して熱負荷モデル131のパラメータを更新することができる。ひいては、熱負荷を正確に予測することができる。
【0089】
また、熱負荷モデル131を補正することで、熱負荷モデル131のパラメータの値を空間43に適したものとすることができる。同様に、空間46に適したモデルを生成することもできる。これにより、種々雑多な環境にある空間の熱負荷を、高い予測精度で予測可能なモデルを得ることができる。さらに、予測精度が高くなるため、例えばオフィスビルに設置された空調設備の運転能力を、熱負荷予測値D1に応じて制限することで、空調設備を省電力で効率的に運転することが可能となる。
【0090】
また、モデル評価部153は、モデル誤差と各環境条件との相関値を算出し、相関値が大きい環境条件を、モデル誤差が生じる要因として特定した。そして、モデル評価部153は、特定した環境条件と熱負荷との関係を規定するパラメータを更新した。これにより、モデル誤差が生じる要因となった環境条件を明確にして、熱負荷モデル131を効率よく補正することができる。
【0091】
実施の形態2.
続いて、実施の形態2について、上述の実施の形態1との相違点を中心に説明する。なお、上記実施の形態1と同一又は同等の構成については、同等の符号を用いるとともに、その説明を省略又は簡略する。
【0092】
本実施の形態に係る配信システム100は、
図10に示されるように、センサ61、62を備える点で、実施の形態1に係るものと異なっている。
【0093】
センサ61、62各々は、例えば、温度センサ、湿度センサ、照度センサ、雨量センサ、風向センサ及び風速センサを含んで構成される。センサ61、62各々は、ビルB1、B2各々の所在地における気象条件の値を計測して、計測の結果をBEMS41、44各々へ出力する。
【0094】
図11には、熱負荷予測装置10の機能の構成が示されている。熱負荷予測装置10は、
図11に示されるように、気象計測データ収集部160、気象データ蓄積部170、及び気象データ評価部180を有している。
【0095】
気象計測データ収集部160は、主として補助記憶部13及びインタフェース部16によって実現される。気象計測データ収集部160は、センサ61、62による計測の結果を、BEMS41、44を介して収集し、気象計測データD23として管理する。そして、気象計測データ収集部160は、気象計測データD23を気象データ蓄積部170へ出力する。
【0096】
気象データ蓄積部170は、主として補助記憶部13及びインタフェース部16によって実現される。気象データ蓄積部170は、気象情報サーバ20から気象実測データD21及び気象予測データD22を取得して蓄積する。また、気象データ蓄積部170は、気象計測データ収集部160から気象計測データD23を取得して蓄積する。
【0097】
気象データ評価部180は、主としてプロセッサ11によって実現される。気象データ評価部180は、気象実測データD21、気象予測データD22、及び気象計測データD23を互いに比較して分析することにより、これらのデータを評価する。そして、気象データ評価部180は、分析の結果に基づいて、気象予測データD22を補正して、入力情報処理部120へ出力する。また、気象データ評価部180は、分析の結果に基づいて、熱負荷モデル131を補正する。
【0098】
本実施の形態に係る気象実測データ処理部110は、気象データ蓄積部170から気象実測データD21を取得する。また、本実施の形態に係る入力情報処理部120は、気象データ評価部180から気象予測データD22を取得する。
【0099】
続いて、熱負荷予測装置10によって実行される一連の処理について、
図12、13を用いて説明する。
【0100】
図12に示されるように、プロセッサ11は、まず、気象データ処理を実行する(ステップS20)。この気象データ処理について、
図13を用いて詳細に説明する。
【0101】
図13に示されるように、気象データ処理において、まず、気象データ評価部180は、気象実測データD21、気象予測データD22及び気象計測データD23を取得する(ステップS201)。
【0102】
次に、気象データ評価部180は、気象実測データD21と気象計測データD23とを比較して分析する(ステップS202)。具体的には、気象データ評価部180は、観測点において実測された気象条件の値を示す気象実測データD21と、センサ61の計測結果を示す気象計測データD23とを、単位時間毎に比較する。
【0103】
これにより、気象データ評価部180は、例えば、観測点における気温より、ビルB1の所在地における気温の方が、相対的に高くなる頻度を求めることができる。同様に、気象データ評価部180は、観測点における日射量より、ビルB1の所在地における日射量が少ない頻度等を求めることができる。
【0104】
次に、気象データ評価部180は、気象実測データD21と気象予測データD22とを比較して分析する(ステップS203)。具体的には、気象データ評価部180は、所定の期間に渡って、気象予測データD22の天候及び外気温の的中率及び予測誤差の大きさ(誤差分散)等を求める。この所定の期間は、例えば1ヶ月間である。
【0105】
次に、気象データ評価部180は、ステップS202、S203の結果から、気象予測データD22を補正する(ステップS204)。
【0106】
例えば、気象計測データD23に含まれる外気温の計測値が、気象実測データD21に含まれる実測値より1℃だけ高くなる傾向が強い場合には、気象実測データD21の観測点よりもビルB1の所在地の方が、外気温が高くなる傾向があると考えられる。この場合に、気象データ評価部180は、気象予測データD22に含まれる外気温の予測値を、1℃だけ低い値に補正する。
【0107】
また、気象予測データD22に含まれる外気温の予測値が、気象実測データD21に含まれる値より1℃だけ高くなる傾向が強い場合に、気象データ評価部180は、気象予測データD22に含まれる外気温の予測値を、1℃だけ低い値に補正する。
【0108】
次に、気象データ評価部180は、ステップS203の結果から、熱負荷モデル131を補正する(ステップS205)。具体的には、気象データ評価部180は、ステップS203の結果から、熱負荷予測値D1の出力に対するマージン(許容量)を設定する。例えば、気象データ評価部180は、気象予測データD22に含まれる予測誤差が大きい場合に、熱負荷モデル131のオフセット値Cを大きくする。これにより、空調設備の省電力化を担保することができる。
【0109】
次に、気象データ評価部180は、値が補正された気象予測データD22を、入力情報処理部120へ出力する(ステップS206)。その後、気象データ評価部180は、気象データ処理を終了する。
【0110】
図12に戻り、プロセッサ11は、気象データ処理(ステップS20)に続いて、実施の形態1に係るステップS1以降の処理と同様の処理を実行する。
【0111】
以上説明したように、本実施の形態に係る熱負荷予測装置10は、気象実測データD21と気象計測データD23とを比較して分析した。そして、熱負荷予測装置10は、分析の結果に基づいて、気象予測データD22を補正した。これにより、観測点における気象条件とビルB1の所在地における気象条件との差異を明らかにして、ビルB1の所在地における気象条件の正確な予測値を得ることができる。
【0112】
また、熱負荷予測装置10は、気象実測データD21と気象予測データD22とを比較して分析した。そして、熱負荷予測装置10は、分析の結果に基づいて、気象予測データD22を補正した。これにより、ビルB1の所在地における気象条件の正確な予測値を得ることができる。また、熱負荷予測装置10は、分析の結果に基づいて熱負荷モデル131を補正した。これにより、気象条件の予測の的中率に応じて、空調設備を省電力で運転するための熱負荷モデル131を得ることができる。
【0113】
以上、本発明の実施形態について説明したが、本発明は上記実施形態によって限定されるものではない。
【0114】
例えば、上記実施の形態において実行される一連の処理は、
図3、12に示されるように、1日を周期として繰り返された。しかしながら、この周期は任意である。例えば、空調システム42、45の運転プログラムの更新周期、又は、BEMS41、44が管理される周期を、一連の処理を繰り返すための周期としてもよい。
【0115】
また、ステップS9(
図3、12参照)において、時系列データの各サンプル値を等価なものとして扱ったが、これには限定されない。例えば、1日のうちの時間帯を区切って、時間帯毎に統計分析を行ってもよい。また、天候(雨天、曇天、晴天)毎に、その天候のときのデータを抽出した上で統計解析を行ってもよい。
【0116】
また、ステップS9では、所定のステップ幅でパラメータの値が更新されたが、これには限定されない。例えば、モデル誤差の値が最小となるようにパラメータの値を更新してもよい。具体的には、モデル誤差の期待値が最小となるように、パラメータの値を最尤推定等の統計的手法により推定してもよい。
【0117】
また、上記実施の形態に係る熱負荷予測装置10は、BEMS41、44に接続されたが、これには限定されない。例えば、熱負荷予測装置10は、空調システム42、45を制御するEMS(Energy Management System)と接続されてもよい。また、熱負荷予測装置D1は、
図14に示されるように、空調システム42と直接接続されてもよい。
図14に示される例では、熱負荷予測装置10によって予測された熱負荷予測値D1は、空調システム42に含まれ、室内機及び室外機等を制御する空調制御装置へ配信されることとなる。
【0118】
また、上記実施の形態に係る熱負荷予測装置10は、配信システム100を構成したが、これには限定されない。例えば、
図15に示されるように、ビルB1に設置されていてもよい。ビルB1に設置された熱負荷予測装置10は、ビルB1内の空間43の熱負荷を予測することとなる。
【0119】
また、上記実施の形態1に係る熱負荷予測装置10は、週に一度の頻度で熱負荷モデル131を補正したが、これには限定されない。例えば、運用時間帯におけるモデル誤差の平均値が閾値より大きくなった場合に、熱負荷モデル131を補正してもよい。
【0120】
また、上記実施の形態に係る誤差データ蓄積部152は、誤差データD6及び入力情報処理部120から出力されたデータを蓄積したが、これには限定されない。例えば、誤差データ蓄積部152は、さらに熱負荷予測値D1、熱負荷再計算値D3、及び熱負荷実績値D4を蓄積してもよい。熱負荷再計算値D3及び熱負荷実績値D4を蓄積する場合には、モデル誤差の大きさを正規化した上で分析することが可能になる。
【0121】
また、上記実施の形態に係る式(2)中のR1は、構造データD31を用いた演算に基づいて設定されたが、運転実績データD5に基づいて設定されてもよい。
【0122】
また、上記実施の形態に係る運用データD32は、設定温度の予測値に相当するデータを含み、運転実績データD5は、設定温度の実測値に相当するデータを含んでいた。そして、設定温度以外のデータについては、運用データD32及び運転実績データD5は、同種のデータを含んでいなかった。しかしながら、これには限定されない。
【0123】
例えば、運用データD32は、気象条件以外の複数の環境条件の予測値を含み、運転実績データD5は、気象条件以外の複数の環境条件の実測値を含んでもよい。この場合には、熱負荷モデル131を、より正確に補正することが可能となる。
【0124】
上述の実施形態に係る熱負荷予測装置10の機能は、専用のハードウェアによっても、また、通常のコンピュータシステムによっても実現することができる。
【0125】
例えば、補助記憶部13に記憶されているプログラム18を、フレキシブルディスク、CD−ROM(Compact Disk Read-Only Memory)、DVD(Digital Versatile Disk)、MO(Magneto-Optical disk)等のコンピュータ読み取り可能な記録媒体に格納して配布し、そのプログラム18をコンピュータにインストールすることにより、上述の処理を実行する装置を構成することができる。
【0126】
また、プログラム18をインターネット等の通信ネットワーク上の所定のサーバ装置が有するディスク装置等に格納しておき、例えば、搬送波に重畳させて、コンピュータにダウンロード等するようにしてもよい。
【0127】
また、インターネット等のネットワークを介してプログラム18を転送しながら起動実行することによっても、上述の処理を達成することができる。
【0128】
更に、プログラム18の全部又は一部をサーバ装置上で実行させ、その処理に関する情報をコンピュータが通信ネットワークを介して送受信しながらプログラム18を実行することによっても、上述の処理を達成することができる。
【0129】
なお、上述の機能を、OS(Operating System)が分担して実現する場合又はOSとアプリケーションとの協働により実現する場合等には、OS以外の部分のみを媒体に格納して配布してもよく、また、コンピュータにダウンロード等してもよい。
【0130】
また、熱負荷予測装置10の機能を実現する手段は、ソフトウェアに限られず、その一部又は全部を専用のハードウェア(回路等)によって実現してもよい。
【0131】
本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。