(58)【調査した分野】(Int.Cl.,DB名)
監視される注意の対象の前記第1のグリッドポジション及び前記第2のグリッドポジションを反映する事象データ記録を生成するステップであって、前記監視される注意の対象は、前記第1の注意の対象及び前記第2の注意の対象に対応するステップをさらに含む請求項1に記載の方法。
【発明を実施するための形態】
【0010】
図1に示す通り、カメラ112a〜112d等の1台以上の撮像装置により領域120を監視することができる。領域120は、その中で1つ以上の対象の動きを監視することが所望されるあらゆる物理的空間でよい。例えば、領域120は、ビル、小売店、美術館、官庁等の中の床領域でよい。領域120は、公共公園、道路、街角、戦場等の屋外会場に対応することもできる。
【0011】
領域120内で1つ以上の注意の対象を監視することができる。いくつかの実施形態では、注意の対象は、その対象の領域120内の動きについて検索される情報に関する、人間又は車両等の対象でよい。例えば、
図1に示す通り、注意の対象は、領域120を通り抜ける、又は領域120内を歩く人間130でよく、この領域120は美術館内の展示会に対応することができる。他の実施形態では、領域120は道路の一部でよく、注意の対象には、道路上又はその近くを走行する車両が含むことができる。
【0012】
領域120は、グリッド122に関連し得、このグリッド122により、領域120をセル124等の複数の隣接セルに分割される。
図1には、グリッド122が領域120の一部だけをカバーしているように示されているが、領域120内の各X−Y座標が、特定のグリッドセル内に入って分類されるように、グリッド122を拡張して、領域120全体をカバーすることができる。
【0013】
カメラ112は、大型コンピュータシステム110の構成要素でよく、この大型コンピュータシステム110は、1台以上のデータ記憶装置114、1台以上の処理サーバ116、及び1台以上のクライアント側装置118も含む。データ記憶装置114は、1台以上のカメラ112から受信した未加工のビデオデータ、及び/又はビデオデータの分析を反映するデータ記録を記憶するために用いることができる。処理サーバ116を用いて、データ記憶装置114に記憶されたビデオデータ及び/又はデータ記録を検索し分析することができる。クライアント側装置118でシステム110を設定し、ビデオ分析の基準を規定し、人間の操作者が、ビデオ分析の結果を観察する等の目的でシステム110とやり取りすることができる。当業者には明らかであろうが、開示されている実施形態を実行するために全ての好適な装置のシステムを用いることができる。
【0014】
図2に示す通り、ビデオエピソードの監視及び検索の作業を3つの基本的なステップ即ち段階に分割することができる。ステップ210で、システム110が領域120内で対象のビデオデータを撮影することができる。例えば、
図1に示す通り、1台以上のカメラ112a〜112dを用いて、対象130のビデオデータを様々な視点から撮影することができる。グリッド122内のどのポジションに各カメラ112が配置されているかが分かり、そしていつでも撮影するように、各カメラ112を設定することができる。例えば、領域120内又は、領域120に対する異なる位置に、各カメラ112を配置することができる。異なる鉛直高さに異なるカメラを配置することができ、それらのカメラが、回転の異なる鉛直角、及び異なる水平角を有し得る。したがって、各カメラがグリッドセル124等の特定のグリッドセルに焦点を合わせるために、垂直回転、水平回転、及びデジタル及び/又は光学ズームのパラメータ(以後本明細書では「カメラの設定」)を組合せて用いることが各カメラには必要である。
【0015】
したがって、現在のカメラ設定とグリッド122との間の既知の相関関係即ち数学的関係を調べることにより、各カメラ112を前もって設定して、どのグリッドセル即ちセルを撮影するかの決定しておくことができる。あるいは、サーバ116等の、システム110内の1台以上の別の装置により、このような関係を維持することができる。サーバ116は、各カメラ112から未加工のビデオデータを受信し、受信したビデオデータをカメラに対する現状の設定(この設定もカメラからリアルタイムで受信することができる)に関連付けることができる。さらに、特定のグリッドセルに焦点を合わせる命令を受けて、その命令に応じて、その特別なセルに焦点を合わせるために必要な特定の設定を各カメラが適用できるよう、各カメラ112を設定することができる。
【0016】
あるいは、各カメラに対する適切な設定を決定し、セルに焦点を合わせるための各々の設定を各カメラに送信することにより、サーバ116は、特定なグリッドセルに焦点を合わせるよう1台以上のカメラ112に命令することができる。時には、各カメラ112が、同じグリッドセルに焦点を合わせることができるが、別の時には、異なるカメラ112が、異なるグリッドセル又はグリッド122の領域に焦点を合わせることができる。
【0017】
各カメラ112は、122内の1つ以上のグリッドセルを継続的に監視し(ビデオデータを撮影すること等により)、そのビデオデータを1台以上のデータ記憶装置114に送信することができる。
図1には、単一のデータ記憶装置として示されているが、データ記憶装置114は、これには制限されずに、むしろ、複数の独立した、余剰な、又は半余剰なデータ記憶装置を含むことができ、これらのデータ記憶装置を、1つ以上の建物又は管轄区域さえにも渡り、配置又は分散させることができる。
【0018】
いくつかの実施形態では、システム110を用いて、離れて位置する複数の領域120を監視することができ、各カメラからのビデオデータをクラウド型メモリインターフェースに供給し、そこで複数の異なるメモリ装置にビデオデータを記憶し、カメラ112から履歴を削除することができる。
【0019】
いくつかの実施形態では、カメラ112により撮影されたそのような全てのビデオデータを、撮影されたデータに関するグリッド位置及び/又はカメラの設定と、撮影されたデータに関する時間情報と共に、データ記憶装置114に記憶させることができる。例えば、撮影されたビデオデータを一連の連続静止画像のフレームとして表し、記憶することができる。そのフレームが撮影された時刻を示すタイムスタンプ、及びそのフレームの撮影に用いられたカメラの設定と共に、そのような各フレームをデータ記憶装置114に記憶することができる。撮影するカメラ112、又はシステム110内の1台以上の他の装置により、そのようなフレームのメタデータを決定する、又は送信することができる。
【0020】
ステップ220で、システム110は、撮影されたビデオデータを分析して、1つ以上の頻出するエピソードを判定することができる。1台以上のカメラ112によりビデオデータが撮影されると、撮影されたビデオデータをリアルタイムで分析することができる。他の実施形態では、撮影されたビデオデータを最初に1台以上のデータ記憶装置114に記憶し、後の時間(例えば、十分なビデオデータが蓄積された後)で分析することができる。例えば、美術館の監視に関連すると、美術館が公開されているとき等の日中の特定な時間帯に、ビデオデータを撮影することができ、夜ごとに一括処理を行って前日に’撮影されたビデオデータを分析することができる。
【0021】
図2で列挙した通り、撮影されたビデオデータを分析して、1つ以上の頻出するエピソードを識別することができる。いくつかの実施形態では、領域120内での特定の注意の対象の動き、又は挙動に関連した連続する事象とエピソードをみなすことができ、各事象は、特定の注意の対象による、構成された身振り即ち動き又は挙動の増分を表すことができる。頻出するエピソードは挙動パターンを表し、この動作のパターンは、領域120内での異なる対象の、経時的な頻度の閾レベルで示すことができる。
【0022】
いくつかの実施形態では、頻出するエピソード(及び個々のエピソードで構成される連続する事象)に基づいて推測される経路即ち軌道に、頻出するエピソードをマッピングすることができる。したがって、頻出するエピソードの実際の例が、共通経路又は所与の空間内での、人間又は対象による行動パターンでよい。1つ以上の頻出するエピソードを決定した後、下記により詳しく説明するが、このようなエピソードを、グリッド領域122の実際の画像又は合成画像上の1枚以上の画像の重ね合わせとして、ユーザに見える形で提示することができる。
【0023】
次に
図3に注目すると、1つ以上の頻出するエピソードを識別するために行われる、ある例示的な操作が示される。ステップ310で、システム110は、撮影されたビデオデータ内の特異な事象を識別することができる。上記で説明した通り、事象は、領域120内の特定の注意の対象の状態又はポジションの特異な変化を表すことができる。
図4は、いくらかの例示的な操作を示し、この操作により特異な事象を識別しメモリ内に表示することができる。
【0024】
ステップ410で、システム110は、(例えば、サーバ116を用いて)第1のフレームを分析して第1の注意の対象を識別することができる。例えば、システム110は、データ記憶装置114に記憶された全ての所与のフレームを選択することができる。様々なビデオ及び/又は画像分析ツール、即ちアルゴリズムを用いて、サーバ116は、注意の対象を識別することができる。例えば、所与のフレーム内の画像データを、環境データと主体データとに概念的に分割することができる。環境データにより、領域120内の特定な標識対象を表すことができ、この標識対象は、領域120の床又は1つ以上の窓、ドア、照明器具等の、常時又は通常存在すると見込まれる対象である。美術館の監視に関連すると、いくらかのグリッドセルをとらえたビデオフレームには、通常壁にかかったいくらかの絵画や、別の展示会への入り口の画像が含まれると見込むことができる。
【0025】
したがって、いくつかの実施形態では、見込まれる全ての環境データ即ち標識対象をフィルタリングで取り除き、フレーム内の非標識対象に関連する画像データが存在することを判定することにより、所与のフレーム内で注意の対象を識別することができる。このようなフィルタリング操作により、フレーム内の画像データを分析する際、コンピュータにかかる負担の低減にも役立つこともできる。
【0026】
他の実施形態では、対象が移動中であることを判定することにより、注意の対象を識別することができる。例えば、フレーム内の画素データを分析することにより、動作と一致する対象のいくらかのぶれ特性を明らかにすることができる。又は、1つ以上の別の(例えば、隣接する)フレームを分析して、フレーム間の対象のポジション違いを検知することができる。例えば、鉢植え、ドア、窓、信号等の、環境データ内のいくつかの標識対象を、同じグリッドセル内の連続するフレームにおいて基本的に動かないままであると見込むことができる。したがって、特定のグリッドセル、又はグリッド領域内の他の対象に対する基準点として、このような標識対象を用いることができる。フレーム間のそのポジションを1つ以上の標識対象に対して変化する、いくらかの非環境画像データが検知された場合、次いで、そのデータを、移動中の対象、つまり注意の対象として識別することができる。
【0027】
さらに別の実施形態では、既知である注意の対象に関連する1つ以上の特徴を伴うそれらの画像データの整合性に基づいて、注意の対象を識別することができる。例えば、システム110を、いくらかの対象の分類に関連するいくつかの分類符号とともに、プログラムすることができる。その分類に属している全ての対象に共通すると見込まれるいくらかの特徴を分類符号により規定することができる。
【0028】
例えば、システム110は、フレーム内の人間を識別するために使用可能な分類符号にアクセスすることができる。そのような分類符号により、サーバ116に命令して、サーバ116が1つ以上の肌の色合いと一致する対象内の色を識別可能な場合に限り、フレーム内の対象を人間として識別することができる。この分類符号は、その対象が何らかの方法で形付けられる、又は設定される(例えば、一番上の顔と一致する領域)、あるいは何らかの方法で移動することを必要とし得る。
【0029】
システム110が、分類符号を用いて、注意の対象を識別することができた場合、次いで、システム110は、特徴の抽出信頼度を演算することができる。この特徴の抽出信頼度により、信頼度の測定基準、数値を表示することができる、あるいは、システム110は、注意の対象の画像データが分類符号により規定される特徴と一致する度合いに基づいて、何らかの分類に属している注意の対象を識別している。
【0030】
システム110が注意の対象を識別した後、ステップ420で、システム110は、対象に関連する対象符号を生成することができる。いくつかの実施形態では、対象符号を用いて特定な注意の対象の特徴を表して、複数のフレームに渡って、同じ対象を追跡できるようにする。例えば、注意の対象が人間の場合、次いで、対象符号によりその人間に関連する特定な顔の特徴、肌の色合い、体格、又は洋服の色を表示することができる。
【0031】
したがって、分類符号が、ある分類内の複数の異なる対象に渡って共通であると見込まれる特徴を表すことができる一方で、対象の符号を用いて、特定の注意の対象に特有な特徴、即ち、普通ならその対象を、同じフレーム又は別のフレーム内の別の対象と区別するために用いられる特徴を識別することができる。とはいえ、複数のフレーム間で注意の対象を追跡するために、フレーム間で基本的には変化しないと見込まれる対象のいくらかの特徴を、対象符号は反映することができる。
【0032】
対象符号を生成してフレームデータ内の注意の対象を識別することに加え、システム110は、注意の対象及び/又はその符号に一意の識別子(「対象ID」)を割あてることができる。対象IDは数値でよく、所与のフレームに関して、そのフレーム内で特定の注意の対象が検知されたかどうかを記録するために、この対象IDを用いることができる。
【0033】
ステップ430で、システム110は、第1のフレームの最中に、グリッド上の対象のポジション(「第1のポジション」)を識別することができる。例えば、上記に説明した通り、カメラ112を調整して、いつでも、グリッドセル(複数可)を識別できるようすることができ、そのために、画像データ、それらの所与の現状の傾斜角度、回転、パンニング、ズーミング等をカメラ112は記録している、又は、カメラ112からビデオデータを受信するシステム110内の装置により、そのような位置情報を判定することができる。
【0034】
ステップ440で、システム110は、第2の、別のフレームを分析して、第2の注意の対象を識別することができる。例えば、第1のフレームに対して行われた操作と同じように、第2のフレームを分析して、任意の注意の対象が存在するかどうかを、参照対象、分類符号等を用いて判定することができる。
【0035】
ステップ450で、システム110は、第2の対象の画像の特徴を第1の対象に関連する符号と比較することにより、第2の注意の対象が、第1の注意の対象と同一かどうかを判定することができる。第2の対象が第1の対象と一致したら、次いで、第1の対象が第1のフレームと第2のフレームの両方の中で検知されたかどうかを判定することができる。ステップ460で、グリッド上の第2の対象のポジション(即ち、「第2のポジション」)を判定することができる。最終的にステップ470で、システム110はデータベースに事象記録を記憶し、そして対象の第1のポジションと第2のポジション、及び、その他のデータを反映することができる。
図5は、開示されたいくらかの実施形態と一致する、例示的な事象記録を示す説明図である。
【0036】
図5に示す通り、データ記憶装置114は、表500を記憶することができ、この表500は、特定の注意の対象に対して検知された様々な事象を反映する一連の記録R
0〜R
nを含むことができる。例示的な事象記録領域が事象記録R
0に関して示されており、次にそれらをさらに詳しく説明する。
【0037】
事象記録は、「obj_ID」領域501を含むことができ、この「obj_ID」領域501は、特定の注意の対象に割り当てられる対象IDを示す。事象記録は、「time_A」領域504で識別される第1の時間での、注意の対象のグリッドポジションを示す「pos_A」領域502と、「time_B」領域505で識別される第2の時間での、注意の対象のグリッドポジションを示す「pos_B」領域503と、を含むことができる。「pos_A」領域と「pos_B」領域とが異なる場合、又は閾値だけ異なる場合、次いで事象記録が、グリッド内の注意の対象による経時的な動きを反映することができ、システム110により検知される。領域502及び領域503により識別されるポジションは、それぞれ「出発」点及び「到着」点とも称することができ、領域504及び領域505で識別されるタイムスタンプは、それぞれ「出発」タイムスタンプ及び「到着」タイムスタンプとも称する。
【0038】
上述の領域に加えて、事象記録は様々なメタデータ領域を含むことができる。例えば、事象記録は、第1の時間(「cam_settings_A」領域506)及び第2の時間(「cam_settings_B」領域507)に撮影された対象の1台以上のカメラ112の設定を示す情報を含むことができる。上記で説明した通り、そのようなカメラの設定には、回転角度又は傾斜の角度、ズーム値及び焦点値等が含まれ得る。このようなカメラの設定を用いて、注意の対象に対する位置データを確認又は改善することができる。
【0039】
いくつかの実施形態では、事象記録は、「feature_metadata」領域508を含むことができ、この「feature_metadata」領域508は、異なる2つのフレーム間で同じ対象が発生したことを判定するために用いることができる特徴又は画像の特性を反映する。例えば、「feature_metadata」領域508は、ステップ450で、第2の注意の対象を第1の注意の対象と照合するために用いられる、対象符号の全て又は一部を含むことができる。
【0040】
さらに、2つの注意の対象が、2つの異なるフレーム間で完全に一致することがほとんどない可能性があるため、事象記録は、事象記録内の一致の度合いに関するメタデータを含むこともできる。例えば、事象記録は、「feature_ext_conf」領域509を含むことができ、この「feature_ext_conf」領域509は、対象を識別する特徴が正しく又は正確にフレームの画像データから抽出されたかの信頼度のレベルを反映する。事象記録は、「match_conf」領域510をさらに含むことができ、この「match_conf」領域510は、第2のフレーム内で識別された対象が、第1のフレーム内で識別された対象と本当に一致しているかの信頼度のレベル全体と、したがって同じ対象がグリッド内の第1のポジションから第2のポジションに移動したかの信頼度のレベルとを反映する。
【0041】
さらに、数多くのフレームが毎秒撮影される場合、同じ対象が検知される、すぐ隣同志のフレームの組ごとに事象記録を記憶するよりむしろ、撮影された複数のフレームをサンプリングするほうが効率的である。したがって、いくつかの実施形態では、時間領域504及び505が、いくつかのフレーム又は時間範囲に渡って平均時間を表示することができる。
【0042】
さらに、各カメラ112は、それぞれ異なるビデオフレームを所与の時間で撮影することができるが、複数のカメラ112が、同じ又は重複するグリッドポジションに焦点をあてた場合、次いで、カメラごとのフレームの組ごとに、分離した事象記録を作成するより、かえって、同じ時間に同じ位置を撮影した各カメラからのデータを用いて事象記録を作成することができる。したがって、例えば、「feature_ext_conf」領域509は、いくらかの特徴が複数のカメラに渡って抽出された平均信頼度レベルを反映することができる。その上さらに、所与のフレーム内で複数の注意の対象が検知される場合、異なるタイムスタンプを有する注意の対象を、第2のフレーム内で識別することができれば、そのような各注意の対象が、作成され、記憶される特異な事象記録につながる可能性がある。
【0043】
いくつかの実施形態では、ポジション領域502及び503の値が必用な閾値だけ異ならなければ、システム110が事象記録を記憶することを避けることもできる。このように値が近いことにより、注意の対象の動きが小さいことを反映することができる。したがって、第1の時間と第2の時間との間の対象の動きの小ささを反映する事象記録をデータベース114から省いて記憶され、続けて分析される必要のあるデータ量を減らすことができる。同様に、信頼度領域509及び/又は 510が必用な閾値より低い場合、対象分類が正確に識別されたかどうか、又は異なるフレーム内の2つの注意の対象は実際に同じ対象かどうかに関して、低い信頼度レベルが不確実性を反映する可能性があるため、システム110は、事象記録を記録することを避けることができる。
【0044】
いくつかの実施形態では、カメラ112(又はそれらの組合せ)により撮影された各フレームには、
図4に対して説明された1ステップ以上の操作を行うことができる。つまり、カメラ112のうちの1台以上により撮影された各フレームに関して、隣接する又は近接するフレームが、1つ以上の注意の対象による動きを反映するかどうかを判定することができる。あるいは、上記に説明した通り、カメラ112により撮影されたフレームをサンプリングして、粒度のより高いレベルで動きを検知することができる。
【0045】
しかし、いずれの場合でも、
図3に戻って、カメラ112から受信したフレームの組を分析することにより、システム110は複数の事象記録を作成し、データベース114に記憶させることができる(ステップ320)。そのような記録は、グリッド122内の異なる複数の注意の対象の撮影された動きを反映することができる。
【0046】
十分な数の事象記録が生成されデータベース114に記憶された後、ステップ330で、システム110は、事象記録分析して、特異なエピソード識別することができる。いくつかの実施形態では、「エピソード」とは、単純に特定の注意の対象の経時的な動きを反映する一連の2つ以上の事象のことを指す。その他の実施形態では、「エピソード」を下記のように、2つ以上の連続する事象記録として、より具体的に定義することができる。(i)隣接する記録内で、第1の記録の到着点が、それに続く第2の記録の出発点である、(ii)隣接する記録内で、第2の記録のタイムスタンプが、その前の第1の記録のタイムスタンプを超えている、(iii)記録内で、到着のタイムスタンプが、出発のタイムスタンプより後である、(iv)エピソードの各事象記録により、同じ対象IDが規定される、(v)エピソード内の各隣接する記録の組の間の整合の信頼度が、規定された許容範囲内である。すぐ隣同志のフレームとは反対の、サンプリングされたフレームから生成された事象記録に関して、上述のエピソードの定義は必要に応じて変更可能である。
【0047】
いくつかの実施形態では、全ての特異な多重事象のエピソードをデータベース114内の別表等の別のデータ記憶装置内に分類することができる。他の実施形態では、エピソードをデータベース114内の所定の場所で分析して、頻出するパターンを判定することができる。
【0048】
ステップ340で、システム110は、データベース114内で反映された事象を分析して、頻出するエピソードを識別することができる。いくつかの実施形態では、特異なエピソード(頻出及び非頻出の両方)が識別され集められた後にだけ、ステップ330で、頻出するエピソードを識別することができる。他の実施形態では、ステップ330及びステップ340を基本的に連携して行うことができる。
【0049】
頻出するエピソードとは、データベース114内のその他のエピソード、又はいくらかの特定な基準に従ったその他のエピソードのいずれかに対する頻度の閾値を用いて、見出されるエピソードの種類のことを指す。例えば、ビデオ分析が行われる領域120が美術館内の場合、エピソードとは、数人の来場者が領域120を通過して又は領域120内を移動するときに辿る特定の経路である。したがって、データベース114内の事象記録の分析により、同じ経路又は同様の経路を辿る、異なる来場者の数の閾値が明らかになった場合、その情報を頻出するエピソードとして表示することができる(この場合、美術館の来場者が辿る頻出する経路である)。同様に、交通監視の用途に関連する頻出するエピソードでは、頻出する交通パターン又は車両が進む経路を表すことができる。
【0050】
単一の対象IDだけに限定され得る特別なエピソードとは異なり、頻出するエピソードは、複数の対象の全てに一般性がある。つまり、複数の特異な注意の対象に関連する複数のエピソードに存在する、頻出する事象パターンという定義により、頻出するエピソードを識別することができる。というものの、対象の種類又は分類によっても、頻出するエピソードの範囲を定義することができる。例えば、交通監視の用途に関連すると、頻出するエピソードは、自動車が特に進む特定の経路を反映することができる、又はトラック及び/又はバスが、一般に正しいレーンを通行しているかどうか反映することができる。同様に、美術館を監視する用途では、頻出するエピソードは、領域120内で子供たちが辿る共通経路を反映することができる。これらのいずれの例でも、頻出するエピソードをエピソード内の注意の対象の分類(ここでは、自動車、トラック、子供たち等)により、定義することができる。
【0051】
上記で説明した通り、システム110は、1つ以上のカメラにより撮影されたビデオデータを収集・分析することができ、そのような分析結果を削減して、複数の事象記録の形態をとる簡単な文字データにすることができる。その後、事象記録を簡単な文字データベースの記録として分析することができるため、全ての好適なアルゴリズムを用いて頻出するエピソードパターンを識別することができる。
【0052】
データベース114に記憶された全ての事象記録を分析して、頻出するエピソード識別することの代わりに又はそれに加えて、データベース114に記憶されたデータを、その他のより集中的な方法で分析することができる。いくつかの実施形態では、システム110により、(例えば、クライアント側装置118を通してやり取りをする)ユーザが、データベース114を検索して、特定な対象及び/又はエピソードの場所を見つけることができる。例えば、ユーザは、システム110に命令して、データベース114を検索して、黄色のシャツの男が撮影されたかどうかを識別することができる。次いで、システム110は、事象記録内のそのような対象の特徴を表示するメタデータを調べることにより(例えば、「feature_metadata」領域508及び/又は「feature_ext_conf」領域509を調べることにより)、事象記録を検索し、そのような注意の対象が撮影されたかどうか判定することができる。
【0053】
データベース114内で見つかると、次いでユーザさらにシステム110に命令して、(例えば、「obj_ID」領域501により識別される)特定の注意の対象に関連する全ての事象記録の場所を見つけ、その対象に関する全てのエピソードを識別する。例えば、システム110は、黄色いシャツの男が行き来した経路を識別することができる。領域502及び503内に反映される位置データを用いることで、システム110は識別された経路を、グリッド領域122の実際の画像又は合成画像上に重ね合わせた画像として、さらに示すことができる。
【0054】
いくつかの実施形態では事象記録は、フレームの識別子、又はその他のデータをさらに含むことができ、これらは、記憶された事象を特別なビデオフレームに関連付けることができる。このような関連性を用いて、システム110は命令を受けて、様々なカメラ角度から撮影された場所を特定されたれた対象の映像及び/又はその経路を含む、場所を特定された対象のビデオ映像を検索し提示することができる。これらの用途は、例えば、既知の身体的特徴を有する特定の犯罪容疑者を追跡することが所望される警察の用途で有益である。上記で説明した技術を用いてビデオデータをシステム110に送信したビデオカメラのどれかに、容疑者が撮影されているかどうかを素早く識別することができる。具体的には、合計で何十時間又は何百時間もかけて人間がそのような映像を手作業で検閲する必要なしに、単一の作業を用いて、様々なカメラの映像をそのように分析することができる。
【0055】
システム110により、ユーザはさらに基準を規定して、全ての頻出するエピソードの特定、又は対象の検索を実行することができる。例えば、クライアント側装置118を用いて、特徴を抽出する又は対象を照合するための、特定の信頼度の閾値の範囲をユーザは規定することができ、必要に応じて、この閾値の範囲を調整して、結果を広げたり、又は絞り込んだりすることができる。分析範囲を対象の特定の分類(例えば人間、バス等)又はグリッド122内の特定の領域に制限するなど、識別される特定の頻出するエピソード、又は対象に関する制約をユーザが規定することもできる。
【0056】
次に
図2に戻ると、頻出するエピソードが識別された後、次いで、その分析から得られた情報を様々な方法で適用することができる。例えば、いくつかの実施形態では、頻出するエピソードが、交通状況内の車両のエピソード又はビルの中や公共の場の人々のエピソード等の人気のルート、経路、又は特定な背景による対象の特定の種類による活動を示すことができる。これらの情報は、下記にさらに詳しく説明する通り、肯定的及び否定的の両方で適用することができる。
【0057】
頻出するエピソードから得られる、肯定的に適用される情報は、行動の共通パターンに適合する設計の作成又は政策決定に関与することができる。例えば、美術館に関連すると、識別された頻出するエピソードの分析により、来場者が特定の展示物を特定の順番で見る傾向が強いことが分かると、その情報を用いて、その特定の順番に適合する展示物の配置を設計する又は再設計することができる。同様に、交通に関連すると、頻出するエピソードの分析により、交差点での共通の交通パターン又はルートが判明できる、又は、特定の交通状態が発生したときに事故が頻発することが判明できる。結果として、交通局は将来共通パターンによりよく対応するよう、又はよりよく事故を防止するよう交差点を設計する(又は監視される交差点を再設計する)ことができる。
【0058】
頻出するエピソードから得られる、否定的に適用される情報は、頻出しないエピソード検知しフラグを立てることに関与することができる。例えば、識別された、頻出するエピソードの分析により、領域120内の特定の対象に関する標準偏差、即ち「基準」を判明することができる。頻出するエピソードからそのような基準が決定された後、事象データを再分析して、特定の対象に関するエピソードのいずれかがが閾値による基準を超えているかどうかを判定することができる。いくつかの実施形態では、頻出するパターンと一致しない行動を不審な行動とみなし、フラグを立てて、潜在的な手作業の分析を含めて、さらに詳しく分析を行って、この不一致が、間違った行為又は違法行為の一部かどうか判定することができる。
【0059】
したがって、警察に関連すると、例えば、犯罪が発生した後に、これらの技術を用いて大量のビデオデータを分析して、潜在的な不審な行動を識別して、犯罪調査に対する手掛かりを提供することができる。いくつかの実施形態では、注意の対象が見えない位置(グリッド122の外側の位置等)に存在したと判定された場合、その行動自体が奇妙又は疑わしいとみなされ、それに応じてフラグを立てることができる。
【0060】
撮影されたビデオデータ及び事象記録の分析から得られた情報を、ユーザに関する拡張現実を目的とした特定の用途のために用いることもできる。例えば、システム110を用いて、人間、車両、又はその他の対象をリアルタイムで監視することができる。人間がいくらかの一連の行動を行っている、又は特定の場所に存在するという判定に応じて、システム110は、頻出するエピソードの分析から得た情報を用いて、リアルタイムでユーザにアドバイスを提供することができる。例えば、美術館に関連すると、来場者が特定の位置にいることをシステム110が判定した場合、先の来場者に対して観察された共通パターンに基づいて、システム110は推奨経路、又はその位置に関連する展示物を提案することができる。
【0061】
同様に、交通に関連すると、特定の交通パターンを検知したことに応じて、過去に同じ又は類似の交通パターンから頻出した事故に関する情報を検討して、システム110は、信号又はその他の交通装置に、特定な方法で、交通を誘導させて事故を抑えることができる。このように、いくつかの実施形態では、システム110は、頻出するエピソードの情報に基づいて、リアルタイムで反応の早い行動を起こすことができる。
【0062】
いくつかの実施形態では、記憶されたビデオデータ及び事象データを、「過去への窓」として用いることもできる。例えば、データベース114から特定のエピソードを選択して、検索することができ、携帯スマートフォン又はタブレット等の手持ち型視覚装置を、通信可能にシステム110に接続させ、これにより、向上した方法で、ユーザがエピソードを見ることができる。視覚装置を用いてエピソードが発生したグリッド122の部分内を、ユーザは歩き回ることができる。視覚装置のポジション、方向性、及び方向を監視することができ、視覚装置のディスプレイは、視覚装置の現状のポジション、方向性、及び方向に従って、エピソードのビデオ映像を表示することができる。
【0063】
つまり、エピソード内の1台以上のカメラ112により監視されるグリッドセルの方向を視覚装置が向いていると、次いで、現状の視覚装置のポジション、方向性及びその方向ともっとも類似した光学的視点を有するカメラから、エピソードの映像がユーザへ提示される。このように、ユーザはエピソード内に記憶された注意の対象の周りを「歩き回」って、単純に視覚装置を移動させ新しい方向を与えることにより、異なる角度及び視点から対象を見ることができる。
【0064】
図6は、システム110に関する例示的なハードウェア構成600及び/又はシステム110内の全ての個々の装置を示す説明図である。ハードウェア構成600は、1つ以上のマイクロプロセッサ601と、1つ以上のマイクロプロセッサ601により実行されるためのデータを記憶する1つ以上のメモリ装置即ちコンピュータ可読媒体602と、配線媒体上や無線媒体上を通信するための1つ以上のネットワークインターフェース604と、人間がシステム110とやり取りし、操作できるようにするための1つ以上の周辺インターフェース603と、を含むことができる。周辺インターフェース603は、1台以上のカメラ112に接続することができ、これらのカメラ112もまたハードウェア構成600の一部でよい。いくつかの実施形態では、ハードウェア構成600の構成要素は、単一の筺体内に含まれている必要はなく、互いにごく接近して配置されている必要すらない。
【0065】
メモリ装置602は、1台以上のデータ記憶装置606及び1つ以上のソフトウェアプログラム605を設ける、又は格納するよう、さらに物理的又は論理的に構成され、又は設定されて、開示された実施形態のうちの1つ以上を実行するための、解釈可能な又は実行可能な命令を含むことができる。システム110は、開示された実施形態を実施するために必用な付随の全てのファームウェア又はソフトウェアを含むハードウェアの構成要素の全ての種類を含むことができる。システム110を、電子回路の構成要素又はプロセッサにより、部分的に又は全体的に実行することもできる。