(58)【調査した分野】(Int.Cl.,DB名)
熱交換によって水を加熱するための冷媒が流通せしめられる冷媒流路と、かかる冷媒により加熱される水が流通せしめられる水流路とを有し、それら冷媒流路及び水流路の何れもが、管体によって形成されていると共に、該水流路を形成する水流路管の外周に、該冷媒流路を形成する冷媒流路管を螺旋状に巻き付けて、それらを熱的に接合し、更にその熱的接合体を平面上において渦巻き状に巻くことによって構成される熱交換ユニットを、上下方向に複数段配置して、それら各段の熱交換ユニットを構成する水流路管及び冷媒流路管を相互に連通せしめることにより、最上段と最下段の熱交換ユニットに、該水流路管の水出入口や該冷媒流路管の冷媒出入口が位置せしめられるように構成されてなる給湯用熱交換器を製造する方法であって、
それら熱交換ユニットにおける水流路管は、水入口から水出口まで、また冷媒流路管は、冷媒入口から冷媒出口までが、それぞれ継手を介して接合されることなく、連続した1本の管体にて、一体に構成すると共に、一つ又は複数の押刃の当接によって、溝ピッチ:4〜10mm、溝深さ:0.2〜1.4mmのスパイラル溝を、管外周面に螺旋状に形成する一方、該スパイラル溝に対応した螺旋状の凸条が、管内周面に形成され、且つ該スパイラル溝間に位置する筒壁部が、管径方向外方に凸なる湾曲形状とされたスパイラル管を製造して、このスパイラル管を、前記水流路管として用いることを特徴とする給湯用熱交換器の製造方法。
熱交換によって水を加熱するための冷媒が流通せしめられる冷媒流路と、かかる冷媒により加熱される水が流通せしめられる水流路とを有し、それら冷媒流路及び水流路の何れもが、管体によって形成されていると共に、該水流路を形成する水流路管の外周に、該冷媒流路を形成する冷媒流路管を螺旋状に巻き付けて、それらを熱的に接合し、更にその熱的接合体を平面上において渦巻き状に巻くことによって構成される熱交換ユニットを、上下方向に複数段配置して、それら各段の熱交換ユニットを構成する水流路管及び冷媒流路管を相互に連通せしめることにより、最上段と最下段の熱交換ユニットに、該水流路管の水出入口や該冷媒流路管の冷媒出入口が位置せしめられるように構成されてなる給湯用熱交換器を製造する方法であって、
それら熱交換ユニットにおける水流路管は、水入口から水出口まで、また冷媒流路管は、冷媒入口から冷媒出口までが、それぞれ継手を介して接合されることなく、連続した1本の管体にて、一体に構成すると共に、一つ又は複数の押刃の当接によって、溝ピッチ:4〜10mm、溝深さ:0.2〜1.4mmのスパイラル溝を、管外周面に螺旋状に形成する一方、該スパイラル溝に対応した螺旋状の凸条が、管内周面に形成され、且つ該スパイラル溝間に位置する筒壁部が、管径方向外方に凸なる湾曲形状とされたスパイラル管を、かかるスパイラル溝の溝深さをHc、外径をODとしたとき、0.055≦Hc/OD≦0.086の関係を満たすように製造して、このスパイラル管を、前記水流路管として用いることを特徴とする給湯用熱交換器の製造方法。
前記スパイラル管は、その外径をOD、ピッチをPcとしたとき、0.315≦Pc/OD≦0.472の関係を満たすように構成されている請求項1乃至請求項3の何れか一つに記載の給湯用熱交換器の製造方法。
【背景技術】
【0002】
従来から、熱交換媒体である冷媒と水等の流体との間で熱交換する熱交換器として、冷媒を流通させる流路(冷媒流路)と熱交換により加熱される水等の流体の流路(水流路)とを、2種の伝熱管を組み合わせて構成し、冷媒と水等の流体との間で、熱交換が行われるようにした熱交換器が、各種用いられている。
【0003】
その中で、冷媒と水との間で熱交換を行う方式の熱交換器としては、特許文献1〜4等にも明らかにされている如く、内部に冷媒を流通させる伝熱管(以下、冷媒管又は冷媒流路管とも称する)と、内部に水を流通させる伝熱管(以下、水管又は水流路管とも称する)とを組み合わせて、一つの熱交換器を構成したものが、提案されている。
【0004】
具体的には、特開2002−228370号公報(特許文献1)においては、熱が伝達される水が流通せしめられる芯管の外周に対して、熱を伝達する冷媒が流通せしめられる冷媒管が、螺旋状に巻き付けられて、それらを熱的に接合することによって、構成された熱交換器が、明らかにされているのである。
【0005】
また、特開2005−164166号公報(特許文献2)においては、外周に管内方へ凹む少なくとも1条のガイド溝が螺旋状に形成されたスクリュー部分を有している、流体が内部を流動する芯管の外周に、冷媒が内部を流動する少なくとも1本の冷媒管が、前記スクリュー部分においては、前記ガイド溝内に収容されるようにして、前記芯管に螺旋状に巻き付けられている構造の熱交換器が、明らかにされている。
【0006】
さらに、特開2006−90697号公報(特許文献3)においては、外周に、複数条の山谷底部が、各条毎に連続して螺旋状に設けられた第1流体配管の山谷底部に、第2流体配管を嵌め込んで、かかる第1流体配管外周の山谷底部の形状に沿って、第2流体配管を螺旋状に巻き付けて、それらを伝熱的に接合可能に構成した捩り管形熱交換器が、明らかにされている。
【0007】
そして、そのような熱交換器は、特開2003−28583号公報(特許文献4)に開示されているような形態の熱交換ユニットを構成して、用いられているのである。即ち、特許文献4の
図1に示されるようなU字管によって接続された形態や、特許文献4の
図7に示されるようなヘアピン管によって一体化された形態、更には特許文献4の
図14に示されるような水流路管を渦巻き状に巻いた形態等において、用いられているのである。また、そこでは、特許文献4の
図18に示される従来の長円形状に屈曲形成した巻き方の如く、空間部が大きくなることがなく、湾曲部の曲率半径を比較的大きくして、水流路の流通抵抗を小さくし、スケールの付着を抑制することができることから、渦巻き状に巻いた形態の熱交換ユニットが、一般に、有利に採用されることとなる。
【0008】
しかしながら、それら従来から提案されている熱交換ユニットを用いた給湯用熱交換器にあっては、何れも、以下に指摘せる如き問題を内在するものであった。
【0009】
例えば、特許文献1に開示の熱交換器にあっては、伝熱管として、給湯器に適したコルゲート管を用いることで、その高性能化を図ることはできるものの、熱交換効率を更に向上させると共に、熱交換器の水側の伝熱性能を更に向上させ、且つ圧力損失を低減させる点については、未だ改善の余地があるものであった。
【0010】
また、特許文献4の
図15や
図16に示されるような、渦巻き状に巻いた形態の熱交換ユニットを多段に配置し、それらの水流路管及び冷媒流路管をそれぞれ接続して、所定の長さを確保した形態の給湯用熱交換器を構成する場合において、各段間の熱交換ユニットの水流路管及び冷媒流路管の接続方法は、通常、継手を用いて、上下に隣接する熱交換ユニットの水流路管同士及び冷媒流路管同士を連結するものであった。
【0011】
具体的には、渦巻き状に巻いた形態の熱交換ユニットを二段配置した場合において、従来構造の給湯用熱交換器100は、
図14及び
図15に示される如き構造とされているのである。そこで、一段目の熱交換ユニット102を構成する水流路管104の水入口106から流入した水は、図示しない冷媒流路管を流れる冷媒によって加熱されながら、連結部108を経て、二段目の熱交換ユニット110に入り、更に加熱されて、水出口112に至ることとなるが、連結部108は、
図14(b)に示されるように、U字管状の継手114が水流路管104、104にろう付けされた形態となっているのであり、また図示しない冷媒流路管においても、それぞれの段の熱交換ユニットを構成するものが、相互に、継手を介して、同様に連結されているのである。
【0012】
このため、従来の給湯用熱交換器においては、継手と水流路管及び継手と冷媒流路管を接続するためのろう付け作業が必要であること、また継手と水流路管及び継手と冷媒流路管を接続するためのカップリング部品が必要であること、更には、接続部の漏洩検査が必要であること等から、生産性の低下やコストの高騰が惹起されるという問題を抱えているのである。
【0013】
加えて、熱交換器に接続部を設けて長くすることは、各流路が必要以上に長くなってしまうところから、材料費面や生産性の面において、コストアップが惹起されることとなると共に、各流路の圧力損失も増大するという問題を内在するものでもあったのである。
【発明の概要】
【発明が解決しようとする課題】
【0015】
ここにおいて、本発明は、かかる事情を背景にして為されたものであって、その解決課題とするところは、冷媒と水との間で熱交換を行う給湯用熱交換器において、上下各段の熱交換ユニットを構成する水流路管及び冷媒流路管を、それぞれ、継手を介さずに、1本の管体にて構成し、一体的に構成せしめることで、面倒な接続作業の省略等による生産性の向上及びコスト削減を実現し、加えて、熱交換効率の向上や短尺化を可能と為し得ると共に、圧力損失も可及的に低くされ得るように、改良された給湯用熱交換器を提供することにある。
【0016】
また、他の課題とするところは、近年、熱交換器のコスト削減が強く求められている状況下において、そのような要求に応えることを目的として、給湯用熱交換器を構成する熱交換ユニットにおいて、熱交換効率を向上させたスパイラル管(コルゲート管とも言う)を使用することで、熱交換器としての所要長さ(総延長)を短くすることができるようにして、生産性及びコスト削減効果に優れる給湯用熱交換器を提供することにもある。
【課題を解決するための手段】
【0017】
そして、本発明にあっては、かくの如き課題を解決するために、熱交換によって水を加熱するための冷媒が流通せしめられる冷媒流路と、かかる冷媒により加熱される水が流通せしめられる水流路とを有し、それら冷媒流路及び水流路の何れもが、管体によって形成されていると共に、該水流路を形成する水流路管の外周に、該冷媒流路を形成する冷媒流路管を螺旋状に巻き付けて、それらを熱的に接合し、更にその熱的接合体を平面上において渦巻き状に巻くことによって構成される熱交換ユニットを、上下方向に複数段配置して、それら各段の熱交換ユニットを構成する水流路管及び冷媒流路管を相互に連通せしめることにより、最上段と最下段の熱交換ユニットに、該水流路管の水出入口や該冷媒流路管の冷媒出入口が位置せしめられるように構成されてなる給湯用熱交換器
を製造する方法であって、それら熱交換ユニットにおける水流路管は、水入口から水出口まで、また冷媒流路管は、冷媒入口から冷媒出口までが、それぞれ継手を介して接合されることなく、連続した1本の管体にて、一体に構成
すると共に
、一つ又は複数の押刃の当接によって、溝ピッチ:4〜10mm、溝深さ:0.2〜1.4mmのスパイラル溝
を、管外周面に螺旋状に形成
する一方、該スパイラル溝に対応した螺旋状の凸条が、管内周面に形成さ
れ、且つ該スパイラル溝間に位置する筒壁部が、管径方向外方に凸なる湾曲形状とされたスパイラル管
を製造して、このスパイラル管を、前記水流路管として用いることを特徴とする給湯用熱交換器
の製造方法を、その基本的構成とするものである。
【0019】
また、本発明にあっては、そのような溝が設けられた、高熱交換率を有するスパイラル管の形態を、より好適なものとすることで、更に高性能な給湯用熱交換器を提供することが出来るのである。
【0020】
ここで、本発明にあっては、前記スパイラル管は、12.7mm又は10.5mmの外径を有していることが、好ましい。
【0021】
また、本発明にあっては、有利には、前記スパイラル管は、溝深さをHc、外径をODとしたときに、0.055≦Hc/OD≦0.086の関係を満たすように構成することが好ましい。ここで、スパイラル管の溝深さ:Hcは、スパイラル管の外周面から溝の底部までの距離である。
【0022】
さらに、本発明にあっては、前記スパイラル管の外径をOD、溝ピッチをPcとしたときに、好ましくは、0.315≦Pc/OD≦0.472なる関係を満たすように構成されることとなる。なお、かかるスパイラル管の溝ピッチ:Pcは、4.00mm≦Pc≦10.00mmの範囲内で設定することが望ましく、4.00mm≦Pc≦6.00mmの範囲内で設定することが、更に望ましい。
【0023】
そして、本発明においては、水流路管及び冷媒流路管は、それぞれ、その使用目的に応じて、所定の熱伝導率及び所定の機械的強度を有する金属材料から形成することができるが、例えば、かかる金属材料としては、銅、銅合金、アルミニウム、アルミニウム合金等を有利に用いることができる。
【発明の効果】
【0024】
このように、本発明に従う給湯用熱交換器にあっては、水流路を形成する水流路管の外周に、冷媒流路を形成する冷媒流路管を螺旋状に巻き付けて、それらを熱的に接合することによって構成された接合体を用い、それを平面上において渦巻き状に巻くことによって構成された複数の熱交換ユニットを、上下方向に複数段配置して、構成しているところから、熱交換器の総延長を、最短にすることが出来ることとなり、そのために、給湯用熱交換器において、接続作業を省略することによる生産性向上及びコスト低減と、接続部品を削減することによるコスト低減の効果を得ることが出来ると共に、圧力損失も可及的に低くされ得ることとなったのである。
【図面の簡単な説明】
【0025】
【
図1】本発明
の適用される給湯用熱交換器を構成する熱交換ユニットにおける水流路と冷媒流路との熱的接合体の一例を示す部分断面説明図である。
【
図2】本発明に従う給湯用熱交換器を構成する熱交換ユニットの一例を平面形態において示す説明図である。
【
図3】本発明に従う給湯用熱交換器の形態の一例を示す説明図であって、(a)は、正面形態における説明図(
図4における IIIa矢視説明図)、(b)は、渡し部の形態を示す部分拡大説明図(
図4における IIIb矢視説明図)である。
【
図4】本発明に従う給湯用熱交換器の一例を平面形態において示す説明図[
図3(a)におけるIV矢視説明図]である。
【
図5】本発明に従う給湯用熱交換器を構成する水流路管として用いられるスパイラル管の形態の一例を示す説明図であって、(a)は、その部分縦断面説明図、(b)は、その縦断面拡大説明図である。
【
図6】各種のスパイラル管の伝熱性能を評価するために用いられる試験装置の概略を示す縦断面説明図である。
【
図7】各種のスパイラル管の伝熱性能を評価した結果を示すグラフであって、その溝ピッチ:Pcと管内熱伝達率:α
i の関係を示すものである。
【
図8】各種のスパイラル管の伝熱性能を評価した結果を示すグラフであって、その溝深さ:Hcと管内熱伝達率:α
i の関係を示すものである。
【
図9】各種のスパイラル管を用いた熱交換器の実測された熱交換量について比較した結果を示すグラフであって、その溝ピッチ:Pcと熱交換量比(%)との関係を示すものである。
【
図10】本発明に従う、実験例において用いた給湯用熱交換器の、各熱交換ユニットの平面形態を示す説明図であって、(a)は、最下段となる一段目の熱交換ユニットを示す説明図であり、(b)は、下から二段目の熱交換ユニットを示す説明図である。
【
図11】本発明に従う、実験例において用いた給湯用熱交換器の、各熱交換ユニットの平面形態を示す説明図であって、(a)は、下から三段目の熱交換ユニットを示す説明図であり、(b)は、最上段となる四段目の熱交換ユニットを示す説明図[
図12におけるXIb矢視説明図]である。
【
図12】本発明に従う、実験例において用いた給湯用熱交換器の、正面形態を示す説明図[
図11(b)における XII矢視説明図]である。
【
図13】本発明に従う給湯用熱交換器を構成する水流路管として用いられるスパイラル管の形態の他の一例を示す正面説明図である。
【
図14】従来の給湯用熱交換器の形態の一例を示す説明図であって、(a)は、正面形態における説明図[
図15(b)における XIVa矢視説明図で、
図3(a)に対応]であり、(b)は、連結部の形態を示す部分拡大説明図[
図15(b)における XIVb矢視説明図で、
図3(b)に対応]である。
【
図15】従来の構造を有する給湯用熱交換器を構成する熱交換ユニットの一例を平面形態において示す説明図であって、(a)は、
図14(a)におけるXVa−XVa断面説明図であり、(b)は、
図14(a)におけるXVb矢視説明図である。
【発明を実施するための形態】
【0026】
以下、本発明を更に具体的に明らかにするために、本発明の実施の形態について、図面を参照しつつ、詳細に説明することとする。
【0027】
先ず、
図1には、本発明
が適用される給湯用熱交換器において、熱交換ユニットを構成する水流路管と冷媒流路管との熱的接合体の一
つの形態が示されている。そこにおいて、熱的接合体10は、水流路12及び冷媒流路14を有しており、水流路12を形成する管体(水流路管16)及び冷媒流路14を形成する管体(冷媒流路管18)によって、構成されている。具体的には、熱的接合体10は、太径の水流路管16の外周面に、3本の細径の冷媒流路管18a、18b、18cが、均等な巻きピッチ:P1(各冷媒流路管18のそれぞれの巻きピッチはP2)にて螺旋状に巻き付けられた構成とされており、それらが、必要に応じて、はんだやろうにて接合される等して、密接固定されて、熱的に接合されていると共に、水流路管16の内側が水流路12とされ、冷媒流路管18の内側が冷媒流路14とされている。従って、冷媒流路14を流れる冷媒と、水流路12を流れる水との間において、熱交換が行われることとなり、それによって、水流路12を流れる水が加熱されるようになっているのである。
【0028】
なお、水流路管16は、銅、銅合金、アルミニウム、アルミニウム合金等の所定の熱伝導率及び所定の機械的強度を有する金属材料を用いて形成され、一般に、外径:D1が9.5〜20mm程度、肉厚:t1が0.6〜1.5mm程度とされた、太径で、断面が円形の管体にて構成されている。また、冷媒流路管18も、かかる水流路管16と同様に、銅、銅合金、アルミニウム、アルミニウム合金等の所定の熱伝導率及び所定の機械的強度を有する金属材料を用いて形成されており、一般に、外径:D2が3.0〜7.0mm程度、肉厚:t2が0.3〜0.9mm程度とされた、細径で、断面が円形の管体にて構成されている。中でも、水流路管16は、好ましくは、外径:D1が10.5〜12.7mm程度、肉厚:t1が0.6〜1.0mm程度、冷媒流路管18は、好ましくは、外径:D2が3.4〜4.5mm程度、肉厚:t2が0.3〜0.7mm程度とされる。
【0029】
そして、
図2に示されるように、熱的接合体10(ここでは図示されていない冷媒流路管の1本又は複数本が、螺旋状に巻き付けられて熱的に接合された水流路管16)を、平面上において、各角部(曲げ部20)を曲率半径:Rにて曲げて、略矩形状の渦巻き状に巻くことによって、熱交換ユニット30が形成されている。ここで、曲率半径:Rは、管内を流れる各流体の圧力損失が高くなり過ぎないような値とされるが、一般に2×D1〜20×D1[mm]程度とされることとなる。本発明に従う給湯用熱交換器は、複数の熱交換ユニット30から構成されており、具体的には、
図2〜
図4に示されるように、これらの熱交換ユニット30が、上下方向(
図2において紙面に垂直な方向で、
図3(a)における上下方向)に複数段配置されて、構成されている。なお、
図3(a)においては、熱交換ユニット30が上下方向に二段配置されており、給湯用熱交換器32は、一段目(下段)の熱交換ユニット30aと二段目(上段)の熱交換ユニット30bとから構成され、それら熱交換ユニット30a、30bの段間は渡し部(図中、網掛部分)38によって連結されている。そして、下段の熱交換ユニット30aには、水入口40が、また上段の熱交換ユニット30bには、水出口42が、それぞれ設けられている。また、図示しない冷媒流路管(18)内を流通せしめられる冷媒は、水流路管16内を流通せしめられる水に対して、一般に、対向流となるように構成されるものであるところから、かかる冷媒流路管(18)の冷媒入口は、上段の熱交換ユニット30bに配置される一方、冷媒出口は、下段の熱交換ユニット30aに配置されることとなる。
【0030】
ここで、上記の給湯用熱交換器32においては、渡し部38が、
図3より明らかな如く、下段から上段に向かって緩やかな傾斜角度、一般に15〜50°程度の角度で上傾する形態において、その前後の水流路管16、16と連続した形態で滑らかに接続されていることを特徴としており、熱交換ユニット30a、30bの段間が、従来のように継手を介して接合されてはいない。換言すれば、給湯用熱交換器32全体において、水流路管16は、水入口40から水出口42までが、連続した一本の継目のない管体から構成されており、
図3(b)に示されるように、渡し部38が、連続した一本の管体の一部とされているのである。また、そのような渡し部38に位置する水流路管16上には、冷媒流路管が巻き付けられて、熱的に接合されており、そして上段及び下段の熱交換ユニット30a、30bの冷媒流路管に接続されて、一体の管体にて構成されている。
【0031】
このように、本発明に従う給湯用熱交換器32にあっては、水流路管16が、水入口から水出口まで一体で継目の無い管体にて構成されると共に、冷媒流路管(18)も、同様に、冷媒入口から冷媒出口まで一体で継目の無い管体で構成されていることを特徴としているのであり、そのために、従来の給湯用熱交換器において必要とされていた、ろう付け作業やカップリング部品及び接続部の漏洩検査等が、一切不要となるため、生産性やコストにおいて優れたものとなるのである。
【0032】
また、上記の給湯用熱交換器32においては、一段目の熱交換ユニット30aの水入口40から流入された水が、渦巻き状に配置された水流路管16の水流路(12)内を、渦巻きの内周側方向へ向かって流れ、熱交換ユニット30aの中心部近傍に位置する水流路管16の終点部44に至るまでの間に、水流路管16の外周に螺旋状に巻き付けられた冷媒流路管(18;図示せず)の冷媒流路(14)内を流れる高温の冷媒によって加熱されていく。その後、水は、渡し部38を通り、
図4に示されるような、熱交換ユニット30aの上段に配置された二段目の熱交換ユニット30bへ、熱交換ユニット30bの中心部近傍に位置する水流路管16の始点部46より流入せしめられることとなる。かかる水は渦巻き状に配置された水流路管16の水流路(12)内を、渦巻きの外周側方向へ向かって流れ、熱交換ユニット30bの最外周部に位置する水出口42に至るまでの間に、水流路管16の外周に螺旋状に巻き付けられた、図示しない冷媒流路管(18)の冷媒流路内を流れる高温の冷媒によって更に加熱され、所望の温度に達するようになっているのである。
【0033】
さらに、ここでは、水流路管16として、
図5(a)及び(b)に示される如き形態を呈する、高熱交換率を有するスパイラル管48が、用いられている。かかるスパイラル管48は、公知の如く、外周面にスパイラル(螺旋)状の溝(スパイラル溝)50を有する一方、かかる溝50に対応した凸条54が内周面に形成されてなる形態を呈するものである。そのようなスパイラル管48におけるスパイラル溝50は、一般に、溝深さ:Hcが0.2〜1.4mm程度とされている。また、スパイラル溝50の溝深さ:Hcは、スパイラル管48の最大の外径(OD)を与える外周面からスパイラル溝50の底部までの距離である。また、そのようなスパイラル管48の外径:ODが分かっている場合、かかるスパイラル溝50の形状は、溝ピッチ:Pc、溝深さ:Hcによって、一意に表わすことが出来る。つまり、溝ピッチ:Pcが決まれば、溝角度θは、θ=tan
-1(OD・π/Pc)[rad]で決まる。
【0034】
このようなスパイラル管48の内部を水流路52とする場合においては、管内表面の凸条54が水流を乱す効果により、伝熱がより一層促進されるのである。また、かかるスパイラル管48は、12.7mm又は10.5mmの外径:ODを有していることが、好ましい。外径:ODが、そのような値とされることで、溝間の管外表面の平坦度合いが適正に(歪みが問題ない程度に)保て、はんだ付け等熱的接合を安定ならしめるという特徴を発揮することとなるのである。
【0035】
ここで、
図6のような二重管構造を有する試験装置を用いて、一定長さの種々のスパイラル管について伝熱性能を評価し、本発明において好適に用いられるスパイラル管について明らかにする。
【0036】
先ず、外側の管(外管)に、高温(30℃)の水を、流量:1.5L/minの一定流量で流すと共に、内側の管(内管)に、低温(20℃)の水を、流量:Gwi=1.5〜3L/minで、それぞれ対向する方向に流す。そして、外管内を流れる水と、内管内を流れる水との間で熱交換させて、内管の入口及び出口における、それぞれの水の温度:Twci、Twcoを測定し、かかる温度の変化から、下記式(1)に示されるように、単位時間当たりの伝熱量:Qw[kW]を計算して求めた。一方、外管の入口及び出口における、それぞれの水の温度:Twhi、Twhoも測定し、下記式(2)に示されるように、対数平均温度差:ΔTを求めた。ここで、ρは、水の密度[kg/m
3 ]、Cpは、
水の比熱[kJ/(kg・K)]である。
Qw=Gwi/60×ρ×Cp×(Twci−Twco) ・・・(1)
ΔT=〔(Twhi−Twco)−(Twho−Twci)〕
/ln〔(Twhi−Twco)/(Twho−Twci)〕 ・・・(2)
【0037】
ここにおいて、内管の外表面積をA
0 [m
2 ]とすると、熱通過率:K[kW/(m
2 ・K)]は、次式(3)において求めることが出来る。
K=Qw/(A
0 ×ΔT) ・・・(3)
【0038】
次に、外管の内径をD
oi、内管の外径をD
ioとすると、外側水路の相当直径:Deは、De=D
oi−D
ioで表わせる。ここで、外管内を流れる水について、かかる水の熱伝達率をλw[kW/(m
2 ・K)]、レイノズル数をRe、プラントル数をPrとすると、外管内を流れる水の熱伝達率:α
0 [kW/(m
2 ・K)]は、Dittus-Boelterの式より、下記式(4)の如く求められ、内側の水側の熱伝達率(管内熱伝達率):α
i [kW/(m
2 ・K)]は、下記式(5)で求められる。
α
0 =0.023×(λw/De)×(D
oi/D
io)
0.53×Re
0.8 ×Pr
1/3
・・・(4)
α
i =1/(1/K−1/α
0 ) ・・・(5)
【0039】
ここで、外径:12.7mm、肉厚:0.8mmのスパイラル管において、その溝深さ:Hcを0.8mmで一定とし、そして溝ピッチ:Pcを、それぞれ、4mm、6mm、8mm、10mm、11mm、12mmとした各種スパイラル管を準備して、それぞれ、その管内熱伝達率:α
i を求めた。そして、その結果を、溝ピッチ:Pc[mm]を横軸に、管内熱伝達率:α
i [kW/(m
2 ・K)]を縦軸にとり、グラフに示したものが、
図7である。この
図7から明らかなように、溝ピッチ:Pcが狭い程、水側の熱伝達性能が向上するが、その傾向は、溝ピッチ:Pcが、4mm〜10mmの範囲で、より顕著である。
【0040】
また、外径:12.7mm、肉厚:0.8mmのスパイラル管において、その溝ピッチ:Pcを4mmで一定とし、溝深さ:Hcを、それぞれ、0.4mm、0.6mm(2つ)、0.8mm(2つ)、1.1mm、1.5mmとしたスパイラル管を準備して、各々管内熱伝達率:α
i を求めた。その結果を、溝深さ:Hc[mm]を横軸にとり、
図7と同様に示したグラフが、
図8である。このように、溝深さ:Hcが深い程、水側の熱伝達性能が向上する。
【0041】
しかし、溝ピッチ:Pcが狭い程、加工速度が低下することや、管外表面の円柱面の歪みが増長する問題が惹起されることとなる。また、溝深さ:Hcが深い場合も、加工の影響範囲が増加し、管外表面の円柱面の歪みが増長する。このようにして、管外表面の歪みが増加すると、冷媒の流路となる冷媒流路管を、その外側に巻きつけた際に、その接地面積が低下し、伝熱量が低下する恐れがある。
【0042】
以上の知見に鑑み、本発明においては、スパイラル管の溝深さ:Hc、外径:ODについて、0.055≦Hc/OD≦0.086の関係を満たすように構成されていることが好ましい。Hc/ODの値が、0.055未満の場合、溝深さ:Hcが浅過ぎるため、熱伝達性能の向上効果を充分に得られず、0.086を超える場合、溝深さ:Hcが深過ぎるため、管外表面の円柱面の歪みが増長し、冷媒流路管との接地面積が低下することで、伝熱量が低下する恐れがあるからである。
【0043】
また、本発明では、スパイラル管の溝ピッチ:Pcと外径:ODとは、好ましくは、0.315≦Pc/OD≦0.472の関係を満たすように、構成されている。かかるPc/ODの値が、0.315未満の場合には、外径:ODに対して溝ピッチ:Pcが狭過ぎるため、加工速度の低下及び伝熱量の低下が惹起されるのであり、また0.472を超える場合には、外径:ODに対して溝ピッチ:Pcが拡過ぎるため、熱伝達性能の向上効果を充分に得られないのである。
【0044】
なお、スパイラル管の溝ピッチ:Pcは、4.00mm≦Pc≦10.00mmの範囲内で設定することが望ましく、4.00mm≦Pc≦6.00mmの範囲内で設定することが更に望ましい。かかる溝ピッチ:Pcが、4.00mm未満の場合に、上記の如く、表面歪みの影響により、熱交換性能のばらつきが起き易くなるのであり、また10.00mmを超えるようになると、溝を設けることによる熱交換性能の向上効果が充分に得られなくなるからである。
【0045】
次いで、上記のようなスパイラル状の溝を形成した管(スパイラル管)を水流路管として用い、その周りに冷媒の流路となる冷媒流路管が巻き付けられた形態の熱的接合体を形成した。水流路管は、外径:φ12.7mm、肉厚:0.8mm、溝深さ:0.8mm、長さ:10mとし、スパイラル溝ピッチを、4mm、6mm、8mm、11mmとしたものを、それぞれ、2つずつ用意した。冷媒流路管は、外径:3.4mm、肉厚:0.4mm、として、かかる冷媒流路管を水流路管にはんだで接合することで、それら流路管間の熱的な流れが向上されるようにした。
【0046】
そして、そのような熱的接合体からなる熱交換器を用いて、R744(CO
2 冷媒)を用いたヒートポンプ回路を形成し、下記の中間期の条件の下、熱交換量を測定した。水及び冷媒の流れは対向流とした。
・冷媒入口温度:80℃
・冷媒出口温度:20℃
・冷媒入口圧力:10MPa
・水入口温度 :17℃
・水流量 :1.7kg/min
・周囲温度 :16℃
【0047】
ここでは、冷媒出口温度が20℃になるように冷媒流量を制御することで、熱バランスをとり、その状態での水出口温度や冷媒流量を、それぞれ測定した。水側の熱交換量、即ち入熱量は、式:水側熱交換量[kW]=水流量[kg/s]×比熱[kJ/(kg・K)]×水出入口温度差[K]、で求められ、冷媒側の熱交換量は、式:冷媒側熱交換量[kW]=冷媒流量[kg/s]×冷媒出入口エンタルピー差[kJ/kg]、で求められる。
【0048】
そして、冷媒出入口エンタルピーは、各位置の冷媒温度、冷媒圧力から計算できる。ここでは、観測された温度、圧力から計算する。なお、比較は、水側熱交換量で行った。
【0049】
以上のように実測された熱交換量について、スパイラル溝ピッチが11mmとされた水流路管を用いた熱交換器の平均値を、基準(=100%、
図9中に破線で示す)として、比較した結果を、
図9に示す。
【0050】
このように、より高い熱交換率を有する伝熱管(スパイラル管)を用いることで、より高性能な熱交換器を提供することが出来、以て本発明において解決すべき課題を、より有利に解決することが出来るのである。
【0051】
さらに、給湯用熱交換器が、水流路管として外表面に溝を有するスパイラル管を用いた熱交換ユニットから構成される場合、従来のように継手を介して各熱交換ユニットを連結するとするならば、ろう付け作業が非常に困難であると共に、連結部からの漏洩が惹起される可能性も高くなってしまう。そこで、前述せる如き、水流路管が、水入口から水出口まで一体で継目の無い管体にて構成される、本発明に従う構造とすることにより、その効果を、より一層有利に享受することが出来ることとなるのである。
【0052】
なお、
図5に示されるような、スパイラル管48は、製造工程において、走行及び回転せしめられている管体の径方向外側から押刃を均等に当てることで、管外表面に螺旋状の凹み(溝)50を形成すると共に、管内表面に、かかる凹み(溝)50に対応した凸条54を形成することによって、製造されることとなる。
【0053】
以上、本発明の代表的な実施形態について説明してきたが、それは、あくまでも例示に過ぎないものであって、本発明は、そのような実施形態に係る具体的な記述によって、何等限定的に解釈されるものではないことが、理解されるべきである。
【0054】
例えば、
図1に示される形態においては、冷媒流路管18として、三本の冷媒流路管18a、18b、18cが、所定の巻きピッチ:P1及びP2にて水流路管16に巻き付けられているが、冷媒流路管18の本数は三本に限定されるものではない。
【0055】
また、
図2及び
図4に示される形態においては、熱交換ユニット30における熱的接合体10(水流路管16)の曲げ部20の曲率半径:Rが、全ての曲げ部20で同じとされているが、これに限るものではない。
【0056】
そして、各熱交換ユニットの形状にあっては、矩形状の渦巻き状に限られず、円形状、その他の多角形状の渦巻き状とすることも可能であり、渦巻きの巻き回数についても図示の形態に限られるものではない。
【0057】
さらに、給湯用熱交換器を構成する熱交換ユニットは上下方向に二段配置するものに限定されるものではなく、三段以上配置することも可能であり、加えて、水入口及び水出口の位置や渡し部の位置も、
図2〜
図4に示される位置に特定されるものではない。
【0058】
例えば、
図10〜
図12に示されるように、一段目(最下段)の熱交換ユニット56、二段目の熱交換ユニット58、三段目の熱交換ユニット60及び四段目(最上段)の熱交換ユニット62を上下方向に配置することで、給湯用熱交換器64が構成され、一段目の熱交換ユニット56の終点部66と二段目の熱交換ユニット58の始点部68とが渡し部70にて、二段目の熱交換ユニット58の終点部72と三段目の熱交換ユニット60の始点部74とが渡し部76にて、三段目の熱交換ユニット60の終点部78と四段目の熱交換ユニット62の始点部80とが渡し部82にて、それぞれ接続せしめられている場合において、渡し部76を最外周部において設けてもよいのである。
【0059】
また、水流路管を流れる水の流れも、最下段に位置する熱交換ユニット(30a、56)から最上段に位置する熱交換ユニット(30b、62)への流れに特定されるものではない。これらの構成は、要求される性能、与えられたスペース、周辺部品とのレイアウト等により、適宜設定されるべきものである。
【0060】
なお、本発明において有利に用いられることとなるスパイラル管について、前述の実施形態においては、一条の螺旋状の溝が設けられているのみであるが、
図13に示される如く、複数条(
図13では、三条)の螺旋状の溝50a、50b、50cを設けたスパイラル管84とすることも出来る。この場合、製造工程において、複数の押刃によって溝50を形成するようにすることで、溝形成工程に掛かる時間を短縮することが可能となる。
【0061】
その他、一々列挙はしないが、本発明は、当業者の知識に基づいて、種々なる変更、修正、改良等を加えた態様において実施され得るものであり、そして、そのような実施の態様が、本発明の趣旨を逸脱しない限りにおいて、何れも、本発明の範疇に属するものであることは、言うまでもないところである。
【実施例】
【0062】
以下に、本発明に従う幾つかの実験例を示し、熱交換性能の評価及び給湯用熱交換器の寸法諸元の測定を行なって、本発明の特徴を更に具体的に明らかにすることとするが、本発明が、そのような実験例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。また、本発明には、以下の実施例の他にも、更には、上記した具体的記述以外にも、本発明の趣旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々なる変更、修正、改良等を加え得るものであることが、理解されるべきである。
【0063】
先ず、下記表1に示される如き諸元を有する水流路管及び冷媒流路管を用いて、
図1に示されるような熱的接合体を四種類作製した。
【0064】
【表1】
【0065】
次に、上記のようにして作製した熱的接合体を、それぞれ、
図10〜
図12に示されるような形態で巻回して熱交換ユニットを形成し、そしてかかる熱交換ユニットを上下方向に四段配置することによって、実験例1〜5に係る給湯用熱交換器を製作した。また、そこでは、各熱交換ユニットの各段間の渡し部において、継手は使用されておらず、給湯用熱交換器全体において、水入口から水出口まで、水流路管は一体の継目の無い管体で構成され、冷媒流路管も同様である。
【0066】
そして、実験例3に係る給湯用熱交換器を基準とし、それと同等の熱交換性能となるように、実験例1、2、4、5の給湯用熱交換器を製造した場合の寸法諸元及び熱交換器の総延長を求めた。その結果を、下記表2に示す。なお、ここでは、
図10及び
図12に示される如く、L:給湯用熱交換器の長さ、W:給湯用熱交換器の幅、H:給湯用熱交換器の高さを示し、Rは、各熱交換ユニットにおける熱的接合体(水流路管)の曲げ部の曲率半径を示す。
【0067】
【表2】
【0068】
かかる実験例1〜5に係る給湯用熱交換器においては、各熱交換ユニットの各段間の連結部で継手が使用されておらず、それらの製造に際して、ろう付け作業やカップリング部品及び接続部の漏洩検査等が、一切不要であったため、生産性に優れ、低コストにて製造可能なものであった。
【0069】
さらに、実験例の結果から、水流路管としてスパイラル状の溝が設けられたスパイラル管を用いて熱交換器を構成した場合、水流路管として溝が設けられていない平滑管を用いて構成された熱交換器と同等の熱交換性能を有する熱交換器の総延長が、更に有利に短くされることが分かる。これにより、より一層、生産性向上効果及びコスト低減効果に優れる給湯用熱交換器を製造することが可能となることが理解される。