【実施例】
【0083】
実施例1:マウス赤血球を用いた赤血球結合ペプチドのスクリーニング
選択には、New England Biolabs(NEB)から市販されているPhDナイーブ12アミノ酸ペプチドファージライブラリーを使用した。スクリーニングの各ラウンドに、50mg/mLのBSA(PBSA−50)を含むPBS中、10
11のインプットファージをマウス赤血球とインキュベートした。37Cで1時間後、非結合ファージを、パーコール(GE Life Sciences)を用いて1500gで15分間遠心分離により除去した。引き続き、低親和結合ファージを除去するためPBSA−50中で解離ステップを行った。選択プロセスの厳密性を高めるため、後のラウンドのスクリーニングでは解離の持続時間を長くし、温度を上昇させた。ラウンド1では、ファージの結合後に、洗浄および溶出の前に2分の解離ステップを室温で行った。ラウンド2では、ファージの結合後に、10分の解離を37℃で行った。ラウンド3および4では、2種の連続した解離ステップを37℃で行った。すなわち、ラウンド3では10分に続き15分、ラウンド4では10分に続き30分行った。赤血球結合ファージを0.2Mのグリシン、pH2.2で10分間溶出し、この溶液を0.15量の1Mのトリス、pH9.1で中和させた。全赤血球に対して4ラウンドの選択を行い、フローサイトメトリーで示されるように、ライブラリーを高親和性ファージクローンに実質的に濃縮した。感染またはプラーク形成単位を標準的な力価測定法により算出した。ファージサンプルを新鮮なLB培地に段階希釈し、10μLのファージ希釈液を200μLの対数期初期ER2738大腸菌(E.coli)(NEB)に加えた。室温で3分のインキュベーション後、この溶液を3mLの上層寒天に加え、混合し、IPTGおよびXGalを含むLBプレートに注いだ。37℃で一晩インキュベーション後、青色のコロニーをプラーク形成単位(pfu)と見なした。
【0084】
実施例2:マウス赤血球に対する結合の特徴付け
結果:顕微鏡観察から、ERY1ファージが細胞形態を変化させず、かつ細胞質移行をせずに、赤血球細胞表面に結合することが確認された。蛍光および位相差画像により、非選択ライブラリーと比較してERY1ファージの赤血球結合能が再確認された。高解像度共焦点イメージングからは、ERY1ファージが細胞表面全体に分布し(単一部位でクラスター化するのではなく)、細胞表面の赤道周辺に優先的に結合すること、および結合が赤血球間で均一であることが明らかになった(
図1)。
【0085】
方法:すべてのサンプルについて、PBS−50中で10
11のインプッ
トファージをマウス赤血球とインキュベートした。37Cで1時間後、200gで3分間の遠心分離により非結合ファージを除去した。標準的な蛍光顕微鏡サンプルの場合は、PBSA−5を用いて1:20で希釈した抗M13コートタンパク質−PE抗体(Santa Cruz Biotechnology))と細胞を室温で1時間インキュベートした。細胞を200gで3分間回転させ、10μLのhard−set mounting medium(VECTASHIELD)に再懸濁し、顕微鏡用スライドに載せ、カバースリップでカバーし、可視化した。共焦点顕微鏡サンプルの場合は、細胞をウサギ抗fdバクテリオファージ(Sigma)および抗ウサギALEXAFLUORコンジュゲート(Invitrogen)とインキュベートした。
【0086】
実施例3:マウス赤血球に結合する分子標的の特徴付け
結果:ERY1ペプチドの分子標的の探索には、ビオチン化した可溶性ペプチドを用いた親和性プルダウン法を利用した。この方法により、赤血球膜上のERY1リガンドとしてグリコホリンA(GYPA)が明らかになった。ビオチン官能基を有するERY1ペプチドおよび光活性化型クロスリンカーと全赤血球をインキュベートして、ストレプトアビジンウエスタンブロットで検出したところ、単一の28kDaのタンパク質がペプチド−ビオチン複合体とコンジュゲートした(
図2A)。この反応ライセートを十分に洗浄し、赤血球ライセートに非標識タンパク質が確実に残存しないようにストレプトアビジン磁性ビーズを用いて精製した。予想通り、ミスマッチペプチドは、どの赤血球タンパク質ともコンジュゲートしなかった。ミスマッチペプチドPLLTVGMDLWPW(配列番号2)は、ERY1と同じアミノ酸残基を含み、その疎水性分布(hydropathy topography)と一致するように設計した。この相互作用タンパク質の見かけの大きさの証明から、考えられるリガンドとしていくつかのより小さい1回膜貫通タンパク質、すなわち、グリコホリンが示唆された。架橋反応から精製された同じサンプルの抗GYPAウエスタンブロッティングにより、この候補ビオチン化タンパク質が実際にGYPAであることが確認された(
図2B)。
【0087】
ERY1ファージとGYPAとの共局在を高解像度の共焦点顕微鏡により解析した。GYPAは自然に発現し、いくつかの膜および細胞骨格タンパク質を含む複合体の一部分として存在する(Mohandas and Gallagher,2008)。これは、GYPAの染色で視覚的に明らかになり、そのため細胞の赤道周辺では不均一性の標識が認められる。ERY1ファージによる標識も、非常に類似した染色分布が得られた。共局在解析におけるオーバーラップ係数が0.97と高いことから、ERY1ファージおよび抗GYPAが同じタンパク質に結合するという結論が裏付けられる。また、ライブラリーファージで標識しても、ファージの結合がなかった赤血球ではGYPAクラスター形成も認められたため、共局在がないことが明らかであった。
【0088】
方法:TGR樹脂上の標準的な固相f−moc化学を用いて、ERY1(H
2N−WMVLPWLPGTLDGGSGCRG−CONH
2)(配列番号19)ペプチドおよびミスマッチ(H
2N−PLLTVGMDLWPWGGSGCRG−CONH
2)(配列番号20)ペプチドを合成した。ペプチドは、95%トリフルオロ酢酸、2.5%エタンジチオール、2.5%水中で樹脂から切り離し、氷冷ジエチルエーテルで沈殿させた。精製は、C18逆相カラムを用いてWaters分取HPLC−MSで行った。
【0089】
ERY1およびミスマッチペプチドをMts−Atf−ビオチン(Thermo Scientific)に、製造者が推奨にようにコンジュゲートした。簡単に言えば、ペプチドをPBS/DMFに可溶化し、1.05当量のMts−atf−ビオチンと一晩4Cで反応させた。反応物を遠心分離により清澄化した後、PBSA−50中、1時間37Cでビオチン化ペプチドを赤血球とインキュベートし、細胞を新しいPBSで2回洗浄し、365nmにて室温で8分間UV照射した。細胞を音波処理により溶解させ、ライセートを、ストレプトアビジンコート磁性ビーズ(Invitrogen)を用いて精製した。溶出液をSDS−PAGEにかけ、PVDF膜に転写し、ストレプトアビジン−HRP(R&D Systems)または抗マウスGYPAでイムノブロットした。
【0090】
実施例4:他のマウス細胞および他の種由来の赤血球に対する、ERY1の結合の、またはERY1の結合がないことの、特徴付け
結果:一連の種間細胞株のフローサイトメトリーによるスクリーニングにより、ERY1ファージがマウスおよびラット赤血球に対して特異的であり、マウス白血球またはヒト細胞に測定できるほど結合しないことが証明された(
図3)。これらのデータから、ERY1リガンドとして働く特異的膜タンパク質は、赤血球細胞にのみ認められ、骨髄またはリンパ系細胞系譜には認められないことが示唆された。さらに、このことにより、標的の遠心分離以外に事前の精製をほとんど行わずに新たに単離された血液を使用するスクリーニング方法の妥当性も立証された。
【0091】
方法:ファージ結合を判定するため、約10
10のファージ粒子を使用して5×10
5細胞をPBSA−50中、37Cで1時間標識した。200gで4分の遠心分離後、細胞をPBSA−5に再懸濁し、1:20希釈にて室温で1時間抗ファージ−PEを加えた。最終の回転/洗浄サイクル後、細胞をPBSA−5に再懸濁し、フローサイトメーターで解析した。
【0092】
実施例5:モデルタンパク質による血管内薬物動態の特徴付け
結果:我々は、タンパク質の薬物動態に対するERY1ペプチドの作用の特徴付けを行うため、モデルタンパク質マルトース結合タンパク質(MBP)をERY1ペプチドとのN末端融合体として発現させた(ERY1−MBP)。血管内投与すると、このERY1−MBPバリアントは、野生型タンパク質と比較して循環の延長を示した(
図4)。注射直後に取得した時点での血液サンプルから、どちらの製剤も初濃度、したがってその用量が同一であることが確認された。静脈内注射の4時間後から、ERY1−MBPは、非結合の生型MBPより統計学的に有意にゆっくりとした速度で循環から除去された。
【0093】
ERY1−MBPは野生型MBPと比較して、血清中半減期が3.28倍(シングルコンパートメントモデルの場合)から6.39倍(2−コンパートメントモデル)長くなること、さらに、クリアランスが2.14倍低下することが証明された。標準的な1−コンパートメント薬物動態モデルを用いて濃度解析を行ったところ、野生型バリアントおよびERY1バリアントの半減期はそれぞれ0.92時間および3.02時間であった。このデータは2−コンパートメントモデル(R
2≧0.98)にも正確に適合し、野生型バリアントおよびERY1バリアントのα半減期およびβ半減期はそれぞれ0.41時間および1.11時間、および2.62時間および3.17時間であった。したがって、本明細書に教示されたヒト赤血球結合ペプチドおよび他の赤血球結合リガンドによる半減期の延長を予想することができる。
【0094】
方法:標準的なプラスミド単離キットを用いて、クローン複製形態M13KE DNAを抽出した。得られたプラスミドをAcc651およびEagIで消化してgIII融合遺伝子を得、次いでpMAL−pIIIの同じ部位にライゲートし、本明細書でpMAL−ERY1と呼ぶプラスミドを得た。配列確認済みのクローンをBL21 大腸菌(E.coli)に発現させた。簡単に言えば、対数増殖中期のBL21培養物を最終濃度0.3mMになるようにIPTGで37Cにて3時間誘導した。20mMのトリス、20%スクロース、2mMのEDTAで10分間浸透圧ショック処理し、続いて5mMのMgSO
4中、4℃で15分間第2の処理を行い、ペリプラズムに発現したMBP融合体を細胞片から単離できるようにした。アミロースセファロースで融合タンパク質の精製を行い、SDS−PAGEにより純度を解析した。
【0095】
Swiss Vaud獣医局(Veterinary Office)は既にすべての動物処置を承認した。ケタミン/キシラジンによる麻酔下で、マウス尾を42℃の水で温め、150μgのタンパク質を100μL量で直接尾静脈に注射した。マウスを麻酔下で37℃に確実に維持するように注意した。尾の付け根を小刀で切開して血液を採取し、PBSA−5、10mMのEDTAで10倍希釈し、その後解析まで−20Cで保存した。サンドイッチELISAにより血液サンプルをMBP濃度について解析した。簡単に言えば、モノクローナルマウス抗MBPを捕捉抗体として、ポリクローナルウサギ抗MBPを一次抗体として、およびヤギ抗ウサギHRPを二次抗体として使用した。下記式1および式2を使用し、標準的な薬物動態コンパートメント解析を用いてPRISM4でデータを解析した
式1:標準的な1−コンパートメントモデル
【数1】
式中、Aはt時における体内の遊離薬剤の量、A
0はゼロ時における薬剤の初期量である。
式2:標準的な2−コンパートメントモデル
【数2】
式中、Aはt時の中心コンパートメントにおける遊離薬剤の量である。
【0096】
実施例6:モデルタンパク質による皮下薬物動態の特徴付け
結果:ERY1−MBPバリアントは血管外投与すると、野生型タンパク質と比較して、循環の延長を示した(
図5)。注射直後に取得した時点での血液サンプルから、どちらの製剤も初濃度、したがってその用量が同一であることが確認された。皮下注射後も、ERY1−MBPの血中濃度の上昇という同様の傾向が見られ、実験期間を通して維持された。血中濃度の解析から、ERY1−MBPバリアントは野生型MBPと比較して、バイオアベイラビリティーが1.67の上昇を示すことが明らかになった。したがって、本明細書に教示されたヒト赤血球結合ペプチドおよび他の赤血球結合リガンドにより半減期が延長される可能性がある。
【0097】
方法:標準的なプラスミド単離キットを用いてクローン複製形態M13KE DNAを抽出した。得られたプラスミドをAcc651およびEagIで消化してgIII融合遺伝子を得、次いでpMAL−pIIIの同じ部位にライゲートし、本明細書でpMAL−ERY1と呼ぶプラスミドを得た。配列確認済みのクローンをBL21 大腸菌(E.coli)に発現させた。簡単に言えば、対数増殖中期のBL21培養物を最終濃度0.3mMになるようにIPTGで37Cにて3時間誘導した。20mMのトリス、20%スクロース、2mMのEDTAで10分間浸透圧ショック処理し、続いて5mMのMgSO
4中、4Cで15分間第2の処理を行い、ペリプラズムに発現したMBP融合体を細胞片から単離できるようにした。アミロースセファロースで融合タンパク質の精製を行い、SDS−PAGEにより純度を解析した。
【0098】
Swiss Vaud獣医局(Veterinary Office)は既にすべての動物処置を承認した。イソフルランによる麻酔下で、150μgのタンパク質を100μL量で直接マウスの背部皮膚に注射した。マウスを麻酔下で37Cに確実に維持するように注意した。尾の付け根を小刀で切開して血液を採取し、PBSA−5、10mMのEDTAで10倍希釈し、その後解析まで−20Cで保存した。サンドイッチELISAにより血液サンプルをMBP濃度について解析した。簡単に言えば、モノクローナルマウス抗MBPを捕捉抗体として、ポリクローナルウサギ抗MBPを一次抗体として、およびヤギ抗ウサギHRPを二次抗体として使用した。下記式3を使用し、標準的な薬物動態コンパートメント解析を用いてPrism4でデータを解析した。
式3:バイオアベイラビリティー
【数3】
式中、AUCは血漿中濃度と時間のグラフの曲線下面積、s.c.は皮下およびi.v.は静脈内である。
【0099】
実施例7:scFv抗体のリンカードメインの操作
方法:フィブロネクチンのエキストラドメインAに対するscFvフラグメントをコードする遺伝子を注文し、DNA2.0(Menlo Park,CA,USA)で合成した:
5’ATGGCAAGCATGACCGGTGGCCAACAAATGGGTACGGAAGTGCAACTGCTGGAGTCTGGCGGTGGCCTGGTTCAGCCGGGTGGCAGCTTGCGCCTGAGCTGTGCGGCGTCTGGCTTCACCTTTAGCGTCATGAAAATGAGCTGGGTTCGCCAGGCACCAGGTAAAGGCCTGGAGTGGGTGTCGGCAATCAGCGGTTCCGGTGGTAGCACCTATTACGCTGACAGCGTGAAAGGCCGTTTTACGATTTCGCGTGATAACAGCAAGAACACGCTGTACTTGCAAATGAATAGCCTGCGTGCAGAGGACACGGCAGTGTACTATTGTGCGAAGAGCACTCACCTGTACTTGTTTGATTACTGGGGTCAAGGCACCCTGGTTACCGTTAGCAGCGGCGGTGGTGGCTCCGGTGGTGGTGGTAGCGGTGGCGGTGGTTCTGGTGGTGGCGGCTCTGAAATTGTCCTGACTCAGAGCCCTGGCACGCTGAGCCTGAGCCCGGGTGAGCGCGCGACGCTGAGCTGCCGTGCGAGCCAGTCCGTTAGCAACGCGTTCCTGGCTTGGTATCAACAGAAACCGGGTCAGGCCCCTCGCCTGCTGATTTACGGTGCCAGCTCCCGTGCGACGGGCATCCCGGACCGTTTTTCCGGCTCCGGTAGCGGCACCGACTTCACCCTGACCATCAGCCGCCTGGAGCCGGAGGATTTCGCGGTGTATTACTGCCAGCAAATGCGTGGCCGTCCGCCGACCTTCGGTCAGGGTACCAAGGTCGAGATTAAGGCTGCGGCCGAACAGAAACTGATCAGCGAAGAAGATTTGAATGGTGCCGCG−3’(配列番号21)。野生型scFvを含む発現プラスミドを構築する場合には、プライマーSK01およびSK02を使用して遺伝子をPCR増幅し、HindIII(5’末端)およびXhoI(3’末端)制限部位のほか、3’末端に2つの終止コドンを付加した。scFvのリンカー領域にERY1ペプチドを含むREP変異体scFvを構築する場合には、オーバーラップエクステンションPCRを使用した。プライマーSK01およびSK03を用い、scFvの5’半分に続きERY1遺伝子フラグメントを含む遺伝子フラグメントをPCRにより作製した。プライマーSK02およびSK04を用い、ERY1遺伝子フラグメント(前述のフラグメントに相補的(complimentary))に続きscFvの3’半分を含む遺伝子フラグメントをPCRにより作製した。標準的なキット(Zymo Research,Orange,CA,USA)を用いて、この遺伝子フラグメントをアガロース電気泳動後に精製し、PCRを用いて2つのフラグメントを融合した。SK01およびSK02プライマーを用いた最終の増幅PCRを行い、正しい制限部位および終止コドンを作製した。INS変異体scFvの構築については、プライマーSK03の代わりにSK05を使用し、SK04の代わりにSK06を使用したこと以外はREP変異体とちょうど同じようにした。最終的に完成したscFv遺伝子産物をそれぞれHindIIIおよびXhoI(NEB、Ipswich、MA、USA)で消化し、pSecTagA哺乳動物発現プラスミド(Invitrogen,Carlsbad,CA,USA)の同じ部位にライゲートした。
【0100】
【表3】
【0101】
配列確認済みのクローンを増幅し、ヒト胎児腎臓(HEK)293T細胞で発現させるためそのプラスミドDNAを精製した。発現プラスミドは、目的の組換えタンパク質を培地に分泌させるN末端シグナル配列を含む。発現から7日後、細胞をペレット状にし、培地を回収し、SUPERDEX 75カラム(GE Life Sciences,Piscataway,NJ,USA)を用いたサイズ排除クロマトグラフィーによりscFvを精製した。
【0102】
C末端システインを含むERY1ペプチドを、スクシンイミジル−4−(N−マレイミドメチル)シクロヘキサン−1−カルボキシレート(SMCC、CAS番号64987−85−5,Thermo Scientific)をクロスリンカーとして使用して野生型scFvにコンジュゲートした。SMCCをジメチルホルムアミドに溶解させ、リン酸塩緩衝生理食塩水(PBS)中、30倍モル過剰でscFvに加えた。4Cで2時間後、反応物をZEBASPIN脱塩カラム(Thermo Scientific)で脱塩し、産物を5モル過剰のペプチドでERY1ペプチドと反応させた。4Cで2時間後、10kDaのMWCO透析チューブを用いて2日間4Cで反応物をPBSに対して透析した。コンジュゲートされたscFvをSDS−PAGE、ウエスタンブロッティングおよびMALDIにより解析した。
【0103】
実施例8:ヒト赤血球による赤血球結合ペプチドのスクリーニング
結果:ヒト赤血球に結合する7種の新規なペプチドを選択するため、大腸菌(E.coli)表面提示ライブラリーを利用した。白血球への非特異的結合を減らすため、高濃度の血清アルブミン(50mg/mL)を用いて4Cで洗浄した全血を用いてスクリーニングプロセスを行った。3つのラウンドで最初に、ペプチドライブラリーを血液とインキュベートしてから、細菌の結合した赤血球を十分な洗浄および密度勾配遠心分離により他の細胞から慎重に分離して濃縮した。その後、選択したペプチドをコードする細菌プラスミドを、緑色蛍光タンパク質バリアントを発現する細菌に形質転換した。これにより、赤血球に結合した緑色細菌をハイスループットFACSでソートできるようになり、回収された個々の細菌クローンについて、赤血球への結合をサイトメトリーによりアッセイした。表1に示すように7種の赤血球結合ペプチドを同定した。これらのペプチドは、UniProtのBLASTアルゴリズムを用いて既知のタンパク質に対して解析したところ、コンセンサスモチーフを含まず、関連するタンパク質配列の相同性も認められなかった。
【0104】
方法:大腸菌(E.coli)表面提示は10億を超える異なる細菌からなり、各々が骨格タンパク質のN末端に15merのランダムペプチド、外膜タンパク質Xの円順列バリアントeCPXを約1000コピー提示していた(Rice and Daugherty,2008)。選択の第1の3サイクルでは、ヒト赤血球に結合している細菌を共沈降を用いて選択し、続いて1ラウンドのFACSで選択した(Dane,Chanら,2006年)。eCPX表面提示ライブラリーを含む10
11細胞の凍結したアリコートを解凍し、37℃で34μg/mLのクロラムフェニコール(Cm)および0.2%D−(+)−グルコースを補充したLuria Bertani(LB)ブロスで一晩増殖した。細菌を、Cmを補充したLBにて1:50で3時間サブカルチャーし、0.02%L−(+)−アラビノースで1時間誘導した。健常ドナーのヒト血液(B型)を5%HSA、2%FBSを含むPBS(HFS)で2回洗浄し、コニカルチューブに再懸濁し、10
11細菌細胞と回転シェーカー(inversion shaker)で4℃にて1時間コインキュベートした。細胞浮遊液を500gで5分間遠心し、上清の非結合細菌を除去した。赤血球を50mLのHFSで3回洗浄し、LBに再懸濁して結合細菌を一晩増殖した。回収した細菌クローンを、Cmを補充したLB寒天プレートに蒔いてカウントした。2および3ラウンドでは、10
8および5×10
7の細菌を加え、上記のように1回洗浄し、70%パーコール(GE Life Sciences)グラジエントを用いて1000gで10分間赤血球を分離した。フローサイトメトリーのソーティングでは、選択されたeCPXライブラリー集団のプラスミドを、Zyppy Miniprepキットを用いて細菌細胞から抽出した。その後、GFPの誘導発現のため、これらのプラスミドを大腸菌(E.coli)MC1061/pLAC22Grn1に形質転換した。GFPの発現を1mMのIPTGで2時間、続いてペプチド表面発現を0.02%L−(+)−アラビノースで1時間、どちらも37Cで誘導した。FACSのサンプル調製は、上記に記載したのと同様の技術を用いて行い、赤血球に結合しているラウンド3の蛍光集団は、FACSAria(BD Biosciences)を用いてソートした。
【0105】
実施例9:ヒト赤血球に対する結合の特徴付け
結果:ヒト赤血球に結合した選択されたペプチドの特徴付けを行うため、個々のペプチドを提示している細菌を、複数の細胞型による結合アッセイに供した。7種のうち6種(ERY19、ERY59、ERY64、ERY123、ERY141およびERY162)のペプチドが、ヒト上皮293T細胞およびヒト内皮HUVEC(
図7A)に対する結合と比較してヒト赤血球に特異的に結合した。加えて、ヒト血液型AおよびBに結合したが、マウス血液に結合しなかったペプチドがあることから(
図7B)、これらのペプチドは、ヒト血液に特異的であるが、共通の血液型抗原に依存しないことが示唆された。ペプチドは、標準的な固相f−moc化学を用いて合成し、ナノ粒子にコンジュゲートし、上述の個々の細胞型に対する結合について解析する。赤血球表面への結合は、顕微鏡観察およびフローサイトメトリーの両方を用いて調べた。
【0106】
方法:特異性の特徴付けを行うため、ヒト赤血球(A型およびB型)、マウス赤血球、HEK293T細胞およびHUVECに対する結合について、配列決定された個々のクローンをサイトメトリーを用いて解析した。結合アッセイでは、10
6哺乳動物細胞を5×10
7細菌と4Cで1時間コインキュベートし、続いてHFS(5%HSA、2%FBSを含むPBS)で3回の洗浄後、AccuriA6で走査した。緑色細菌の結合した細胞の割合をFLOWJOソフトウェアを用いて計算した。
【0107】
実施例10:scFv抗体のリンカードメインの操作
腫瘍血管マーカーフィブロネクチンEDA(EDA)に対して操作したscFvを、ヒト赤血球に特異的に結合するペプチドとの融合体として作製することができる。実施例8の複数のペプチドまたは各々のペプチドを、2つのERY1を含むように設計した変異体と同様に(GGGGS)
4(配列番号18)リンカー領域または同等の領域に挿入する。したがって、REPおよびINS変異体(
図6A)の配列中のERY1の代わりにペプチドERY19、ERY50、ERY59、ERY64、ERY123、ERY141、ERY162を加えることになる。ヒトERYペプチドは、骨格タンパク質eCPXのN末端につながっていることが分かったため、リンカー領域に挿入されたこれらのコンストラクトは、赤血球結合に影響を与える可能性がある。このことを検討するため、ERY1(
図6C)と同様に合成ヒトERYペプチドとの化学的コンジュゲーションによりscFvバリアントを作製する。これにより、単独あるいは組み合わせて最適な数のERYペプチドをscFvに加えて赤血球結合を刺激することができる。
【0108】
実施例11:ポリマーナノ粒子およびミセルの薬物動態および体内分布の特徴付け
本発明の研究室は以前に、薬物送達および免疫調節に使用されるポリマーを用いたナノ粒子およびミセルを多く開発したことがある。この技術は、チオールを含む分子のナノ粒子への定量的な部位特異的コンジュゲーションを容易に行うことができるため強力である(van der Vlies,O’Neilら,2010年)。本研究室はまた、単一のミセル上に複数の化学基を提示するミセル製剤、および疎水性薬剤の制御送達を可能にする製剤も開発した(O’Neil,van der Vliesら,2009年;Velluto,Demurtasら,2008年)。本研究室はさらに、それらの製剤がリンパ節の抗原提示細胞を標的とするため、研究室のナノ粒子技術を免疫応答のモジュレーターとして使用することも検討してきた(Reddy,Rehorら,2006年;Reddy,van der Vliesら,2007年)。本明細書の材料および方法を組み合わせるミセル技術および粒子技術は、米国特許出願公開第2008/0031899号明細書、米国特許出願公開第2010/0055189号明細書、および米国特許出願公開第2010/0003338号明細書に記載されており、これらを本明細書に援用する。
【0109】
これらのナノ粒子およびミセルのプラットフォームにERY1ペプチドまたはヒト赤血球結合ペプチドを付加すると、それらの薬物動態学的挙動が改善され、それにより、循環する薬剤キャリアとしてのそれらの性能が高まる。ナノ粒子またはミセルの任意のバリアントへのERY1またはヒト赤血球結合ペプチドのコンジュゲーションは様々な反応スキームにより行うことができ、直交化学を用いて最終産物への検出分子のコンジュゲーションを行ってもよい。ERY1またはヒト赤血球結合ペプチド基の存在に起因する赤血球に対するナノ粒子またはミセルの結合の検証は、フローサイトメトリーおよび顕微鏡観察により確認することができ、マウスに投与後の様々な時点で検出分子を定量して、インビボでの特徴付けによる詳細な検証を行ってもよい。
【0110】
実施例12:腫瘍血管系を閉塞するためのポリマーナノ粒子およびミセルの操作
赤血球および腫瘍血管マーカーの両方に対する二重特異性を持つように設計された操作されたポリマーナノ粒子およびミセルを調製して、腫瘍血管床に赤血球の凝集現象を引き起こし、その血液供給を特異的に閉塞することができる。リンカー領域にシステインを含むフィブロネクチンEDAの修飾scFv、GPRPペプチドモチーフを含むフィブリノーゲン結合ペプチドの修飾scFv、および切断型組織因子融合タンパク質の修飾scFv(各々粒子に結合できるように操作されたシステインまたはビオチンを含む)など、いくつかの腫瘍標的化マーカーを評価して利用してもよい。これらの腫瘍標的化リガンドは、赤血球結合ペプチドまたはグリコホリンA scFvと組み合わせてナノ粒子およびミセルに二重標的化を達成するのに最適な比率でつなげてもよい。ジスルフィド結合またはアビジン−ビオチン相互作用により、複数のリガンドを粒子に結合することができる。検証のため、標準的なマウス固形癌モデルを利用することにより、マウスの背部皮膚にマウス腫瘍細胞を注射し、所定の期間増殖させ、この時点でマウスにナノ粒子またはミセルを投与してもよい。投与量および処置レジメンは、療法剤の薬物動態の特徴付け後に決定してもよい。さらに検証するには、処置後の様々な時点で処置群間の腫瘍容積を比較して、腫瘍塊のさらなる増殖を阻止する療法剤の能力を評価してもよい。赤血球による腫瘍血管系の遮断の詳細な確認は、腫瘍を有する生きたマウスを用いた灌流実験により評価してもよい。赤血球に対する療法剤の親和性と腫瘍血管閉塞との間で正の相関関係が観察されよう。
【0111】
実施例13:腫瘍血管系の閉塞のためのscFv抗体の操作
腫瘍血管マーカーEDAおよび赤血球に対して特異的である操作されたscFvは、腫瘍血管床に赤血球の凝集現象を引き起こし、その血液供給を特異的に閉塞することができる。EDAに対して修飾されたscFvは、融合体としてリンカー領域に、またはscFvとのコンジュゲートとして、ヒトERY結合ペプチドを含む。標準的なマウス固形癌モデルを利用することにより、マウスの背部皮膚にマウス腫瘍細胞を注射し、所定の期間増殖させ、この時点でマウスにナノ粒子またはミセルを投与してもよい。投与量および処置レジメンは、療法剤の薬物動態の特徴付け後に決定する。処置後の様々な時点で、処置群間の腫瘍容積を比較して、腫瘍塊のさらなる増殖を阻止する療法剤の能力を評価してもよい。赤血球による腫瘍血管系の遮断の確認は、腫瘍を有する生きたマウスを用いた灌流実験により評価してもよい。赤血球に対する療法剤の親和性は、腫瘍血管閉塞に相関する。
【0112】
実施例14:ERY1ペプチド−コンジュゲート抗原またはヒト赤血球結合ペプチド−コンジュゲート抗原との非共有結合的赤血球結合による抗原特異的免疫学的トレランスの誘導
我々は、赤血球に対する抗原の強力で特異的な生物物理学的結合を得るため、我々がファージディスプレイによりマウスグリコホリンAに特異的に結合することを発見した合成12アミノ酸ペプチド(ERY1)を使用した(Kontos and Hubbell,2010)。この研究では、モデル抗原OVAを、CD8
+T細胞集団がMHC I免疫優性OVAペプチドSIINFEKL(配列番号3)に特異的なT細胞受容体を発現するトランスジェニックマウス株(OT−I)と共に使用した。ERY1ペプチドをOVAに化学的にコンジュゲートして、高い親和性および特異性でマウス赤血球に結合するOVAバリアント(ERY1−OVA)を作製した(
図8a)。高解像度供焦点顕微鏡観察から、ERY1結合に関して従来の観察結果が確認された(Kontos and Hubbell,2010)、すなわち細胞膜赤道周辺に局在するが、ERY1−コンジュゲートタンパク質の細胞内トランスロケーションがないことが確認された。ERY1と同一のアミノ酸を含むが、一次配列の順序を入れ換えたミスマッチペプチド(MIS−OVA)とコンジュゲートしたOVAバリアントは、無視できる程度の結合を示したため(
図8b)、ERY1によるグリコホリンAへの結合は配列特異的であった。OVAペプチドをコンジュゲートするのに使用した架橋分子のみとコンジュゲートしたOVAは、赤血球に対して測定可能な親和性を何ら示さなかったことから、ERY1−OVA結合は、赤血球表面でのERY1ペプチドとグリコホリンAとの非共有結合性相互作用によるものであることが示唆された。さらに、ERY1−OVAは、高親和性で赤血球に結合し、平衡状態における結合の測定により判定すると、6.2±1.3nMという抗体と同様の解離定数(K
d)を示した(
図8c)。
【0113】
マウスへの静脈内投与後、循環赤血球に対するERY1−OVAの結合をインビボで検証した。150μgのOVAまたはERY1−OVAの注射から30分後に採取した全血サンプルから、血液の複雑で不均一な環境および血管系の中でもERY1−OVAの特異的な赤血球結合能が確認された(
図9a)。ERY1−OVAは、グリコホリンAとの結合を裏付けるように、赤血球(CD45
−)に結合するが、白血球(CD45
+)には結合しなかった。ERY1−OVAの結合は、赤血球のアポトーシス状態に関して偏ることなく、アネキシン−V
+およびアネキシン−V
−のCD45
−集団の両方に強く結合した(
図9b)。OVAコンジュゲートの薬物動態研究から、ERY1−OVAの赤血球結合がインビボで長く続くものであり、細胞表面半減期が17.2時間を示すことが証明された(
図9c)。ERY1−OVAは投与後、72時間という長時間にわたり赤血球に結合した状態が続いた。マウスでは、この期間に約13%の赤血球が除去される(Khandelwal and Saxena,2006)。インビボで赤血球に結合したERY1−OVAの定量により、10
6赤血球当たり0.174±0.005ngのOVAという比較的高い負荷が示された。
【0114】
OVAの負荷により赤血球機能に対して起こり得る任意の生理的作用を排除するため、ERY1−OVAまたはOVAの静脈内投与後の様々な時点で血液学的パラメーターの特徴付けを行った。ERY1−OVAによる赤血球結合はOVAの投与と比較して、ヘマトクリット、血球容積または赤血球ヘモグロビン量に検出可能な相違を惹起しなかった(
図10)。これらの結果により、抗原とのグリコホリンAを介した赤血球結合は、その血液学的パラメーターを変化させなかったことが証明される。
【0115】
投与時の赤血球結合抗原の細胞標的を明らかにするため、ERY1(ERY1−アロフィコシアニン)またはMISペプチド(MIS−アロフィコシアニン)とコンジュゲートした強い蛍光を発するアロフィコシアニンタンパク質をマウスに静脈内注射した。投与から12時間後および36時間後の脾臓のDC集団のフローサイトメトリー解析により、MHCII
+CD11b
−CD11c
+DCによるERY1−アロフィコシアニンの取り込みがMIS−アロフィコシアニンと比較して9.4倍増強する一方、MHCII
+CD11b
+CD11c
+DCによるERY1−アロフィコシアニンおよびMIS−アロフィコシアニンの取り込みは同等であることが示された(
図11a)。加えて、MHCII
+CD8α
+CD11c
+CD205
+脾臓DCは、MIS−アロフィコシアニンより3.0倍程度多くERY1−アロフィコシアニンを取り込むものの、絶対量は、脾臓の他のDC集団の場合より著しく低いことが明らかになった。非活性およびCD8α
+CD205
+脾臓のDCに対する抗原のこうした標的化は、これらの集団が、アポトーシス細胞による免疫寛容誘導に関係していることが広く知られているため、赤血球結合の寛容誘導の可能性を高め得る(Ferguson,Choiら,2011年;Yamazaki,Dudziakら,2008年)。肝臓では、ERY1−アロフィコシアニンはMIS−アロフィコシアニンと比較して、肝実質細胞(CD45
−MHCII
−CD1d
−;78.4倍)および肝星細胞(CD45
−MHCII
+CD1d
+;60.6倍)による取り込みも大きく増強した(
図11b)。どちらの集団も、CD8
+T細胞除去性トレランスを誘発する抗原提示細胞として報告されている(Holz,Warrenら,2010年;Ichikawa,Mucidaら,2011年;Thomson and Knolle,2010)。興味深いことに、こうした取り込みは、赤血球および補体被覆粒子のクリアランスを助ける細網内皮系のメンバーとして働く肝臓DC(CD45
+CD11c
+)またはクッパー細胞(CD45
+MHCII
+F4/80
+)では見られない。寛容誘導性の脾臓DCおよび肝臓細胞集団による赤血球結合抗原の取り込みの増大からは、非リンパ球肝細胞と標準的な脾臓細胞とのクロストークにより生じる抗原特異的T細胞欠損の相互に関係する複雑なメカニズムの可能性が示唆される。
【0116】
ERY1−OVAの赤血球結合は、APCによるOVA免疫優性MHC Iエピトープ(SIINFEKL)(配列番号3)の効率的なクロスプレゼンテーションおよび対応する反応性T細胞のクロスプライミングを起こすことが観察された。CFSE標識OT−I CD8
+T細胞(CD45.2
+)をCD45.1
+マウスに養子移入した。10μgのOVA、10μgのERY1−OVA、または10μgの無関係な赤血球結合抗原、ERY1−グルタチオン−S−トランスフェラーゼ(ERY1−GST)の静脈内投与後5日にわたり、OT−I CD8
+T細胞の増殖について測定を行った。フローサイトメトリーで測定したfluor CFSEの希釈により判定すると、OT−I CD8
+T細胞の増殖(
図12a)は、OVAと比較してERY1−OVAを投与されたマウスで著しく増強された(
図12b)ことから、赤血球結合により、可溶性抗原と比較して抗原特異的CD8
+T細胞のクロスプライミングが増強された。同様の結果は、10倍低い1μgという抗原用量の投与によっても得られたことから、赤血球結合抗原により誘導されるOT−I CD8
+T細胞増殖の有効性の作用範囲が広いことが証明された。クロスプレゼンテーションおよびクロスプライミングの結果は、アポトーシス細胞由来抗原を貪食するAPCによるMHC Iの寛容誘導抗原提示に関する他の研究と一致する(Albert,Pearceら,1998年;Green,Fergusonら,2009年)。
【0117】
機能的なエフェクター表現型になるT細胞と増幅および除去されるT細胞とを区別するため、増殖するOT−I CD8
+T細胞はアポトーシス、したがって除去の特徴としてアネキシン−Vについて、解析された(
図12c)。ERY1−OVAによりOVAと比較して、非常に多くのアネキシン−V
+の増殖するOT−I CD8
+T細胞が誘導された(
図12d)ことから、アポトーシスが不可避であり、最終的にクローン除去が生じるであろうことが示唆された。ERY1−OVA投与により誘導された同じ増殖するOT−I CD8
+T細胞は、1μgおよび10μgの用量の両方で抗原と接触した表現型を示し、CD44のアップレギュレーションおよびCD62Lのダウンレギュレーションを示した(
図13)。増殖するCD8
+T細胞のこの表現型は、APCにより制御された抗原特異的T細胞受容体の結合が炎症応答を誘導できないと報告された他のOT−I養子移入モデルと一致する(Bursch,Richら,2009年)。
【0118】
確立されたOT−Iチャレンジ対トレランスモデル(Liu,Iyodaら,2002年)(
図14a)を用いて、ERY1−OVAが、非常に強力な細菌由来のアジュバントを用いたワクチン介在性抗原チャレンジに対してその後の免疫応答を妨げることが証明された。我々は、寛容化するため、OT−I CD8
+(CD45.2
+)T細胞の養子移入から1日後および6日後、10μgのOVAあるいはERY1−OVAをCD45.1
+マウスに静脈内投与した。さらに9日後、移入したT細胞が除去され得るように、我々は次いで、皮内注射によりリポ多糖(LPS)をアジュバント添加したOVAを被投与マウスにチャレンジした。チャレンジから4日後、流入領域リンパ節および脾臓細胞のほか、その炎症応答の特徴付けにより、除去が実際に生じたかどうかを判定することができた。
【0119】
ERY1−OVAの静脈内投与の結果、流入領域リンパ節(
図14;
図14bにゲーティング)および脾臓のOT−I CD8
+T細胞集団が、LPSによる抗原チャレンジの前に非修飾OVAを投与したマウス(
図14c)と比較して顕著に減少したことから、除去性トレランスが証明された。ERY1−OVAで処置したマウス由来の流入領域リンパ節に含まれたOT−I CD8
+T細胞は、OVAで処置したマウスと比較して11倍を超えて減少し、抗原の静脈内注射をしなかったチャレンジ対照マウスより39倍減少した。脾臓細胞の応答も同様であった。ERY1−OVAを投与されたマウスに示されたこの効果的なクローン除去は、OT−I CD8
+T細胞のクロスプライミングの増強という前述の観察結果(
図12)を支持するものであり、さらにクロスプライミングが、共刺激分子のAPC提示の非存在下で起こり、除去性トレランスを起こしたことを示す。
【0120】
抗原チャレンジ後の免疫応答をさらに評価するため、OT−I CD8
+T細胞によるインターフェロンγ(IFNγ)の発現から、常在性のリンパ節および脾臓細胞の炎症特性の特徴付けを行った(
図14d)。OVAおよびLPSによるチャレンジ後、ERY1−OVAで予め処置したマウスのリンパ節のIFNγ発現細胞は、チャレンジ対照マウス(抗原を予め投与していない)と比較して53倍少なく、同用量のOVAで予め処置したマウスと比較して19倍を超えて減少した(
図14e)ことから、チャレンジに対する寛容誘導による保護における赤血球結合の重要性が証明された。脾臓細胞の応答も同様であった。さらに、ERY1−OVAで予め処置したマウスのリンパ節および脾臓に存在する少ないOT−I CD8
+T細胞集団の中で、IFNγを発現する割合が低いことから、クローンの不活化が示唆された。さらに、ERY1−OVAで予め処置したマウスでは、SIINFEKLの再刺激時に流入領域リンパ節から単離された細胞で産生される総IFNγレベルの大きさも、実質的に低下し(
図14f)、赤血球結合はIFNγレベルをOVAの投与と比較して16倍低下させ、チャレンジ対照と比較して115倍を超えて低下させた。特記される点として、この抑制性の現象は、インターロイキン−10(IL−10)発現のダウンレギュレーションとも相関関係にあり、ERY1−OVAで予め処置したマウス由来のリンパ節細胞に発現したIL−10は、OVAで予め処置したマウスおよびチャレンジ対照マウスと比較してそれぞれ38%および50%減少した(
図14g)。Th1応答を抑制するAPCとT細胞とのコミュニケーションの文脈では、制御性CD4
+T細胞に発現されるサイトカインを考慮するのが一般的であり(Darrah,Hegdeら,2010年;Lee and Kim,2007年)、IL−10の発現は、チャレンジに対する減感作には不要であった。IL−10のダウンレギュレーションは同様に、CD8
+T細胞による免疫寛容誘導にも関係していると考えられてきた(Fife,Guleriaら,2006年;Arnaboldi,Roth−Walterら.,2009年;Saint−Lu,Tourdotら,2009年)。さらに、ERY1−OVAで処置したマウス血清中の抗原特異的なIgG力価が、可溶性OVAで処置したマウスと比較して100倍低下したため、赤血球結合は、抗原に対する液性免疫応答も実質的に減弱した(
図14h)。赤血球結合に起因するOVA特異的なIgG力価の同様の低下は、非養子移入のC57BL/6(CD45.2
+)マウスでも見られた。1μgのOVAまたはERY1−OVAを7日間の間隔を置いて2回静脈内投与した後、ERY1−OVAで処置したマウスは、血清中のOVA特異的なIgGレベルが、第1の抗原投与から19日後39.8倍の低下を示した(
図15)。抗原による赤血球の連結後のB細胞活性化におけるこの明らかな低下は、トレランスの誘導における非炎症性の抗原提示に関する現在の仮説を裏付けるものである(Miller,Turleyら,2007年;Green,Fergusonら,2009年;Mueller,2010年)。
【0121】
抗原特異的免疫トレランスの誘導をさらに検証するため、OT−Iチャレンジ対トレランスモデルをOVA発現腫瘍移植片モデルと組み合わせた(
図14i)。以前の実験デザインと同様に、OT−I CD8
+T細胞の養子移入後に10μgのERY1−OVAまたは10μgのOVAを2回静脈内投与して、マウスを寛容化した。第1の抗原投与から5日後、ERY1−OVAを注射したマウスの血液の増殖していない(0世代)OT−I CD8
+T細胞は2.9倍減少したため、顕著なT細胞除去が検出された(
図14j)。外部から投与される強力なアジュバントの非存在下で増殖するOT−I CD8
+T細胞の機能応答性を判定するため、養子移入から9日後、OVA発現EL−4胸腺腫細胞(E.G7−OVA)をマウスの背部皮膚に皮内注射した。赤血球結合抗原の寛容誘導の有効性を評価するため、用量およびスケジュールをチャレンジ対トレランスモデルと同様にして、腫瘍移植から6日後、腫瘍を持つマウスにLPSをアジュバント添加したOVAをチャレンジした。ERY1−OVAで処置したマウスではOVAで処置したマウスまたは未処置対照マウスと比較して、十分な腫瘍増殖が腫瘍移植から8日後まで持続的に観察された(
図14k)ことから、ERY1−OVAによるOT−I CD8
+T細胞の増殖が、OVAに対する機能的な免疫非応答性を誘導することが確認された。腫瘍の大きさが移植から8日後に定常状態になったことは、ERY1−OVAによる除去性トレランスをまだ受けていないOT−I CD8
+T細胞が残存していたことを示唆し得る。
【0122】
動物
スイス獣医当局は既にすべての動物処置を承認した。インビボ結合研究には8〜12週齢の雌C57BL/6マウス(Charles River)をE.G7−OVA腫瘍の宿主として使用した。C57BL/6−Tg(TcraTcrb)1100Mjb(OT−I)マウス(Jackson Labs)をEPFL動物施設で飼育し、脾細胞単離には6〜12週齢の雌を使用した。OT−I CD8
+T細胞の養子移入およびトレランス誘導研究には、8〜12週齢の雌B6.SJL−Ptprc
aPepc
b/Boy(CD45.1)マウス(Charles River)を対象宿主として使用した。
【0123】
ペプチドの設計および合成
ERY1
【化1】
ペプチドおよびミスマッチ(H
2N−PLLTVGMDLWPWGGSGCRG−CONH
2)(配列番号20)ペプチドは、TGR樹脂(Nova Biochem)を用いて自動リキッドハンドラー(CHEMSPEED)で標準的な固相f−moc化学により合成した。下線で示した配列は、我々が以前ファージディスプレイによりマウスグリコホリンAバインダーとして発見したERY1の12−mer配列である(Kontos and Hubbell,2010)。GGSG領域は、コンジュゲーションに使用されるシステイン残基とのリンカーとして機能した。隣接するアルギニン残基はpKaを低下させ、したがってシステイン残基の反応性を高める役割を果たした(Lutolf,Tirelliら,2001年)。ペプチドは、95%トリフルオロ酢酸、2.5%エタンジチオール、2.5%水を用いて樹脂から3時間かけて切断し、氷冷ジエチルエーテルで沈殿させた。精製は、C18逆相カラム(PerSpective Biosystems)を用いて分取HPLC−MS(Waters)で行った。
【0124】
ERY1−抗原のコンジュゲーション
ジメチルホルムアミドに溶解させた10モル当量のスクシンイミジル−4−(N−マレイミドメチル)シクロヘキサン−1−カルボキシレート(SMCC、CAS番号64987−85−5、Thermo Scientific)を5mg/mLのエンドトキシンフリー(<1EU/mg)OVA(Hyglos GmbH)とPBS中、1時間室温で反応させた。2mLのZeba脱塩スピンカラム(Thermo Scientific)で脱塩後、3Mのグアニジン−HClに溶解させた10当量のERY1またはMISペプチドを加え、2時間室温で反応させた。このコンジュゲートを2mLのZeb脱塩スピンカラムを用いて脱塩し、0.2μmのフィルターで濾過滅菌し、作業アリコート(working aliquot)に分け、−20Cで保存した。タンパク質濃度は、BCAアッセイ(Thermo Scientific)により決定した。このスキームにより、ペプチドのシステイン側鎖と抗原のリジン側鎖とのコンジュゲーションが得られる。グルタチオン−S−トランスフェラーゼ(GST)をBL21エシェリキア・コリ(Escherichia coli)に発現させ、標準的なグルタチオンアフィニティークロマトグラフィーを用いて精製した。十分なトリトン−X114(Sigma Aldrich)洗浄によりオンカラムエンドトキシン除去を行い、エンドトキシンの除去は、THP−1X Blue細胞(InvivoGen)で確認した。同じ反応手順を使用してERY1をGSTにコンジュゲートした。マレイミド活性化アロフィコシアニン(Innova Biosciences)をPBSに溶解させ、上記のようにERY1またはMISとコンジュゲートした。
【0125】
赤血球への結合の顕微鏡観察
単離されたばかりのマウス赤血球5×10
5を、10mg/mLのBSAを含むPBS中の100nMのERY1−OVAまたはOVAに37Cで1時間さらした。遠心分離および洗浄の後、1:200希釈ヤギ抗マウスグリコホリンA(Santa Cruz)およびウサギ抗OVA(AbD SEROTEC)で細胞を氷上にて20分間標識した。遠心分離および洗浄の後、1:200 ALEXAFLUOR488抗ヤギIgG(Invitrogen)およびAlexaFluor546抗ウサギIgG(Invitrogen)で細胞を氷上にて20分間標識した。最終の回転/洗浄サイクル後、細胞を固化固定し、63×油浸対物レンズを備えたZeiss LSM700共焦点倒立顕微鏡で画像を取得した。画像解析は、IMAGEJ(NIH)で行い、どちらの画像も同一の処理を行った。
【0126】
インビボでの結合および体内分布
150μgのERY1−OVAまたはOVAを含む0.9%食塩水(B.Braun)を100μLの量で8〜12週齢の雌C57BL/6マウスの尾に、イソフルランによる麻酔下で静脈内注射した。実験中は、加温パッドを用いてマウスを37Cに確実に維持するように注意した。所定の時点で、尾に小さな切れ目を入れて5μLの血液を採取し、10mMのEDTAを含むPBSに100倍希釈し、10mg/mLのBSAを含むPBSで3回洗浄し、フローサイトメトリーおよびELISAによりOVA含有量について解析した。OVAは、サンドイッチELISAにより定量し、捕獲用にマウスモノクローナル抗OVA抗体(Sigma)、検出用にポリクローナルウサギ抗OVA抗体(AbD SEROTEC)、最終検出用にヤギ抗ウサギ−IgG−HRP抗体(BioRad)を、続いてTMB基質(GE Life Sciences)を使用した。ADVIVA 2120 Hematology System(Siemens)で血液学的特徴付けを行った。赤血球結合ERY1−GSTは、標識細胞をヤギ抗GST(GE Healthcare Life Sciences)とインキュベートし、続いてAlexaFluor488ロバ抗ヤギ(Invitrogen)とインキュベーションすることにより検出し、フローサイトメトリーにより解析した。体内分布の研究では、上記のような8〜12週齢の雌C57BL/6マウスの尾静脈に20μgのERY1−APCまたはMIS−APCを静脈内注射した。マウスを所定の時点で屠殺し、脾臓、血液および肝臓を除去した。各器官をコラゲナーゼD(Roche)で消化し、ホモジナイズしてフローサイトメトリー染色のための単一細胞浮遊液を得た。
【0127】
T細胞の養子移入
CD8磁性ビーズネガティブ選択キット(Miltenyi Biotec)を製造者の指示通り用いて、OT−I(CD45.2
+)マウス脾臓由来のCD8
+T細胞を単離した。単離されたばかりのCD8
+OT−I細胞をPBSに再懸濁し、1μMのカルボキシフルオレセインスクシンイミジルエステル(CFSE、Invitrogen)で6分間室温にて標識し、10%FBS(Gibco)を含む等量のIMDMで反応を1分間クエンチした。細胞を洗浄し、カウントし、注射前に純粋なIMDMに再懸濁した。CFSE標識CD8
+OT−I細胞3×10
6を被注射CD45.1
+マウス尾静脈に静脈内注射した。短期増殖研究では、養子移入から24時間後に10μgのERY1−OVAまたはOVAを100μL量で注射した。抗原投与から5日後に脾細胞を採取し、フローサイトメトリーによる解析のため染色した。
【0128】
OT−Iのトレランスおよびチャレンジモデル
CFSE標識OT−I CD8
+T細胞3×10
5を上記のようにCD45.1
+被注射マウスに注射した。養子移入から1日後および6日後に、マウスの尾静脈に10μgのERY1−OVAまたはOVAを含む100μLの食塩水を静脈内投与した。養子移入から15日後、5μgのOVAおよび25ngの超高純度のエシェリキア・コリ(Escherichia coli)LPS(InvivoGen)を25μLでマウスの後肢の肉趾それぞれに皮内チャレンジした(Hock法、10μgのOVAおよび50ngのLPSの総投与量)。マウスをチャレンジから4日後に屠殺し、再刺激のため脾臓および流入領域リンパ節細胞を単離した。細胞内サイトカインのフローサイトメトリー解析では、細胞を1mg/mLのOVAまたは1μg/mLのSIINFEKL(配列番号3)ペプチド(Genscript)の存在下で3時間再刺激した。ブレフェルジンA(Sigma、5μg/mL)を加え、染色およびフローサイトメトリー解析の前に再刺激をさらに3時間続けた。分泌因子のELISA測定では、100μg/mLのOVAまたは1μg/mLのSIINFEKL(配列番号3)ペプチドの存在下で4日間細胞を再刺激した。細胞を回転させ、IFNγおよびIL−10のReady−Set−Goキット(eBiosciences)を製造者の指示通り使用してELISA解析のため培地を集めた。OVA特異的血清IgGを、OVAコートプレートでマウス血清を様々に希釈してインキュベートしてから、最後にヤギ抗マウスIgG−HRP(Southern Biotech)とインキュベートして検出した。
【0129】
OT−IのE.G7−OVAトレランスモデル
CFSE標識OT−I CD8
+T細胞1×10
6を、上記のように8〜12週齢の雌C57BL/6マウスに注射した。養子移入から1日後および6日後、10μgのERY1−OVAまたは10μgのOVAを含む100μLの食塩水をマウスの尾静脈に静脈内投与した。養子移入から5日後、フローサイトメトリーによるOT−I CD8
+T細胞増殖の特徴付けのため血液を採取した。OVA発現EL−4胸腺腫細胞(E.G7−OVA、ATCC CRL−2113)をATCCガイドライン通りに培養した。簡単に言えば、10%ウシ胎仔血清、10mMのHEPES、1mMのピルビン酸ナトリウム、0.05mMのβ−メルカプトエタノール、1%ピューロマイシン/ストレプトマイシン(Invitrogen Gibco)および0.4mg/mLのG418(PAA Laboratories)を補充したRPMI1640で細胞を培養した。注射の直前に、G418を含まない培地で細胞を増幅させ、回収時にHBSS(Gibco)に再懸濁した。養子移入から9日後、マウスをイソフルランで麻酔し、背部を剪毛し、両肩甲骨の間にE.G7−OVA細胞を皮内注射した。E.G7−OVA移植から4日後、腫瘍寸法を24時間毎にデジタルカリパスで測定し、腫瘍容積を楕円体(V=(π/6)l・w・h)として計算した。式中、Vは腫瘍の容積、lは長さ、wは幅、hは高さである)。養子移入から15日後、5μgのOVAおよび25ngの超高純度のエシェリキア・コリ(Escherichia coli)LPS(InvivoGen)を25μLでマウスの前肢の肉趾それぞれに皮内チャレンジした(10μgのOVAおよび50ngのLPSの総投与量)。
【0130】
抗体およびフローサイトメトリー
フローサイトメトリーには以下の抗マウス抗体:CD1d Pacific Blue、CD3ε PerCP−Cy5.5、CD8α PE−Cy7、CD11b PE−Cy7、CD11c Pacific Blue、ビオチン化CD45、CD45.2 Pacific Blue、CD45 Pacific Blue、IFNγ−APC、CD8α APC−eF780、CD44 PE−Cy5.5、CD62L PE、CD205 PE−Cy7、F4/80 PE、I−A/I−E MHCII FITC(すべてeBioscience)のほか、fixable live/dead色素(Invitrogen)、アネキシン−V−Cy5標識キット(BioVision)、ストレプトアビジン Pacific Orange(Invitrogen)および抗OVA−FITC(Abcam)を使用した。サンプルは、CyAn ADPフローサイトメーター(Beckman Coulter)で解析した。最初にPBSで細胞を洗浄し、live/dead色素にて20分間氷上で染色し、24G2ハイブリドーマ培地にて20分間氷上でブロッキングし、20分間氷上で表面染色し、2%パラホルムアルデヒドで20分間氷上にて固定し、0.5%サポニンの存在下で45分間氷上にて細胞内染色してから、解析の前に最後の洗浄を行った。アポトーシス染色の場合、解析の前にアネキシン−V−Cy5を5分加えた。CD45染色では、細胞をストレプトアビジンPacific Orangeで20分間氷上にて染色し、洗浄して解析した。
【0131】
粒子を用いた実施
免疫寛容誘導のため、ERY1ペプチドを、ERY1ペプチドおよび寛容誘導抗原の両方をコンジュゲートしたナノ粒子の形態でも実施した。
【0132】
ERY1とポリマーナノ粒子とのコンジュゲートであって、ペプチドまたはタンパク質抗原にもコンジュゲートされたコンジュゲートを形成するには、コンジュゲーションの変換を制御するため、化学量論量の各成分を連続して加えることができる。OVAとERY1またはミスマッチペプチドとの両方とコンジュゲートしたナノ粒子を形成するには、ペプチドを最初に3Mの水性グアニジンHClに溶解させ、0.5当量を、チオール反応性ピリジルジスルフィド基を含むナノ粒子に加えた。343nmの吸光度測定を行い、反応変換をモニターした。本反応では、この波長で高い吸光度を持つ非反応性ピリジン−2−チオン種が発生するためである。室温で2時間後、343nmの吸光度は安定し、OVAを3Mの水性グアニジンHClに溶解させ、2倍モル過剰でナノ粒子溶液に加えた。室温で2時間後、343nmの吸光度はより高い値に再び安定し、溶液中のペプチドおよびOVAの両方の濃度を算出した。この二機能性ナノ粒子を、セファロースCL6B充填カラムを用いたゲル濾過により非反応成分から精製された。0.5mLの各画分をフルオレサミンによりタンパク質および/またはペプチドについて解析し、ナノ粒子の大きさを動的光散乱(DLS)により評価した。
【0133】
抗原が、こうした反応を行うための遊離チオール基をまったく含まない場合、遊離チオール基を組換えDNA技術により導入して変異体を作製してもよく、その後変異体を組換え技術で発現させ、精製することができる。あるいは、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド(EDC)を用いてナノ粒子と抗原との間でアミン−カルボン酸架橋を行うことができる。
【0134】
ERY1とポリマーミセルとのコンジュゲートであって、ペプチドまたはタンパク質抗原にもコンジュゲートされたコンジュゲートを形成するには、ポリマーナノ粒子で記載したのと同様の反応を使用することができる。ミセルは、当該コンジュゲーションスキームに望ましい官能基を含むように形成されるであろう。我々のナノ粒子およびミセルが多様な官能化学基を含むように合成し得ることを踏まえれば、ナノ粒子/ミセル−抗原−ERY1複合体の作製に利用するコンジュゲーションスキームには、多くの可能性が存在する。
【0135】
実施例15:マウス赤血球および/またはヒト赤血球に結合する抗体および抗体フラグメントの開発
抗原特異的免疫学的トレランスを誘導するため、赤血球に非共有結合的に結合する別の方法として、赤血球結合抗体を使用してもよい。最新のディスプレイプラットフォーム、以下に限定されるものではないが、バクテリオファージディスプレイ、酵母および大腸菌(E.coli)表面提示を使用した抗体ライブラリーのスクリーニングにより、赤血球表面タンパク質に対して高親和性を示す抗体を単離することができる。新規な赤血球結合抗体を発見したら、ERY1で行ったのと同様に結合に関する生化学的特徴付けを評価することができる。結合特性の向上した、より高い親和性の変異体を作製するには、最初のライブラリーのスクリーニングから赤血球に結合することが分かった抗体フラグメントに対し親和性成熟を行う。エラープローンPCRおよび部位特異的変異誘発などの標準的な組換えDNA技術を用いて、親結合配列から新しいライブラリーを作製する。次いで上記のような最新のディスプレイプラットフォームを用いて、親結合配列と比較して赤血球に対する親和性が増強された他の抗体フラグメントの親和性成熟ライブラリーを提示させる。
【0136】
親和性成熟はまた、マウス赤血球またはヒト赤血球に結合する既存の抗体で行ってもよい。ラットモノクローナルTER−119クローン抗体(Kinaら,Br J Haematol,2000年)は、まだ十分に明らかにされていない部位でマウス赤血球に結合するが、その特異性は、不均一な細胞集団から赤血球を除去するのに一般に使用されている。マウス赤血球に対する親和性の増強された新しい抗体を発見するには、全長抗体またはscFvなどの抗体フラグメントとしてのTER−119抗体の親和性成熟を行う。マウスモノクローナル10F7クローン抗体(Langloisら,J Immunol 1984年)は、ヒト赤血球細胞表面のヒトグリコホリンAに結合する。ヒト赤血球に対する親和性の増強された新しい抗体を発見するには、全長抗体またはscFvなどの抗体フラグメントとしての10F7抗体の親和性成熟を行う。
【0137】
我々は、TER−119抗体の一次配列を判定するため、TER−119ハイブリドーマから単離された抗体特異的cDNAを、遺伝子フラグメントを容易にシーケンシングできるプラスミドにクローニングした。遺伝子セグメントの複数の可変ドメインの増幅を可能にする抗体遺伝子のPCR増幅プロセスには、特定のプライマーセットを使用した(Krebberら,1997年;Reddyら,2010年)。抗体ドメインのDNA配列から、TER−119 IgG抗体の重鎖および軽鎖の可変領域を決定することができた。我々は、TER−119 IgGのscFv体を構築するため、アセンブリーPCRを使用して、TER−119の可変重鎖、続いて(Gly−Gly−Gly−Gly−Ser)
4(配列番号18)リンカー、続いてTER−119の可変軽鎖を含む遺伝子を作製した。
【0138】
Superscript III First Strand Synthesis System(Invitrogen)を用いて、TER−119ハイブリドーマクローン由来のmRNAについて標準的な逆転写PCR(RT−PCR)を行い、クローンの相補(complimentary)DNA(cDNA)を作製した。次いで以下のプライマーセットを用いてPCRを行い、抗体の可変重鎖(VH)および可変軽鎖(VL)領域のDNA配列を特異的に増幅した。
【0139】
【表4】
【0140】
【表5】
【0141】
【表6】
【0142】
次いで、増幅したVH遺伝子およびVL遺伝子を制限エンドヌクレアーゼ(VLにはNcoIおよびNotI、VHにはNdeIおよびHindIII)で消化し、遺伝子フラグメントを、アガロース電気泳動後に標準的なキット(Zymo Research,Orange,CA,USA)を用いて精製し、クローニングプラスミドpMAZ360にライゲートした。VHまたはVLの遺伝子を含むプラスミドの配列決定を行い、アセンブリーPCRを用いて新しい遺伝子を構築し、下記のTER−119 scFv配列を得た。
5’−GAGGTGAAGCTGCAGGAGTCTGGAGGAGGCTTGGTGCAACCTGGGGGGTCTCTGAAACTCTCCTGTGTAGCCTCAGGATTCACTTTCAGGGACCACTGGATGAATTGGGTCCGGCAGGCTCCCGGAAAGACCATGGAGTGGATTGGAGATATTAGACCTGATGGCAGTGACACAAACTATGCACCATCTGTGAGGAATAGATTCACAATCTCCAGAGACAATGCCAGGAGCATCCTGTACCTGCAGATGAGCAATATGAGATCTGATTACACAGCCACTTATTACTGTGTTAGAGACTCACCTACCCGGGCTGGGCTTATGGATGCCTGGGGTCAAGGAACCTCAGTCACTGTCTCCTCAGCCGGTGGTGGTGGTTCTGGTGGTGGTGGTTCTGGCGGCGGCGGCTCCGGTGGTGGTGGATCCGACATTCAGATGACGCAGTCTCCTTCAGTCCTGTCTGCATCTGTGGGAGACAGAGTCACTCTCAACTGCAAAGCAAGTCAGAATATTAACAAGTACTTAAACTGGTATCAGCAAAAGCTTGGAGAAGCTCCCAAAGTCCTGATATATAATACAAACAATTTGCAAACGGGCATCCCATCAAGGTTCAGTGGCAGTGGATCTGGTACAGATTTCACACTCACCATCAGTAGCCTGCAGCCTGAAGATTTTGCCACATATTTCTGCTTTCAGCATTATACTTGGCCCACGTTTGGAGGTGGGACCAAGCTGGAAATCAAACGTACT−3’(配列番号76)。この配列は、翻訳されたタンパク質のN末端にTER−119クローンのVH領域、続いて(Gly−Gly−Gly−Gly−Ser)
4(配列番号18)リンカードメイン、続いて翻訳されたタンパク質のC末端にTER−119クローンのVL領域をコードする。TER−119 scFv遺伝子は、下記のVH領域に特異的なプライマーSK07およびSK08、ならびにVL領域に特異的なSK09およびSK10を用いてTER−119 cDNAを増幅することにより構築した。
【0143】
【表7】
【0144】
最終的に完成したscFv遺伝子産物をそれぞれSfiIおよびXhoI(NEB,Ipswich,MA,USA)で消化し、pSecTagA哺乳動物発現プラスミド(Invitrogen,Carlsbad,CA,USA)の同じ部位にライゲートした。
【0145】
ヒトグリコホリンAに結合する10F7 scFvを親和性成熟させるため、遺伝子を商業的に合成し、DNA2.0(Menlo Park,CA,USA)から以下の配列として得た:
5’−GTTATTACTCGCGGCCCAGCCGGCCATGGCGGCGCAGGTGAAACTGCAGCAGAGCGGCGCGGAACTGGTGAAACCGGGCGCGAGCGTGAAACTGAGCTGCAAAGCGAGCGGCTATACCTTTAACAGCTATTTTATGCATTGGATGAAACAGCGCCCGGTGCAGGGCCTGGAATGGATTGGCATGATTCGCCCGAACGGCGGCACCACCGATTATAACGAAAAATTTAAAAACAAAGCGACCCTGACCGTGGATAAAAGCAGCAACACCGCGTATATGCAGCTGAACAGCCTGACCAGCGGCGATAGCGCGGTGTATTATTGCGCGCGCTGGGAAGGCAGCTATTATGCGCTGGATTATTGGGGCCAGGGCACCACCGTGACCGTGAGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGATATTGAACTGACCCAGAGCCCGGCGATTATGAGCGCGACCCTGGGCGAAAAAGTGACCATGACCTGCCGCGCGAGCAGCAACGTGAAATATATGTATTGGTATCAGCAGAAAAGCGGCGCGAGCCCGAAACTGTGGATTTATTATACCAGCAACCTGGCGAGCGGCGTGCCGGGCCGCTTTAGCGGCAGCGGCAGCGGCACCAGCTATAGCCTGACCATTAGCAGCGTGGAAGCGGAAGATGCGGCGACCTATTATTGCCAGCAGTTTACCAGCAGCCCGTATACCTTTGGCGGCGGCACCAAACTGGAAATTAAACGCGCGGCGGCGGCCTCGGGGGCCGAGGGCGGCGGTTCT−3’(配列番号81)。
【0146】
上述の組換えDNA技術を用いてTER−119と同様の親和性成熟を10F7遺伝子に行い、ヒト赤血球に対して強化された結合をスクリーニングできる変異体のライブラリーを得る。
【0147】
実施例16:抗体コンジュゲート抗原との非共有結合的赤血球結合による抗原特異的免疫学的トレランスの誘導
抗体は、実施例14および本明細書の他の箇所で言及された標準的な架橋反応を用いて抗原とコンジュゲートしてもよい。精製された抗体−抗原コンジュゲートは、1型糖尿病、多発性硬化症、膵島移植の標準的なマウスモデルにおける抗原、およびOVAモデル抗原に対するトレランスの誘導を示す。
【0148】
OVAに対するトレランスの誘導を証明するには、OVA−抗体コンジュゲートまたはOVA−ナノ粒子−抗体コンジュゲートをマウスに静脈内投与あるいは血管外投与してもよい。投与後所定の日数で、マウスを屠殺し、解析のためリンパ節、脾臓および血液を採取する。脾細胞およびリンパ節由来の細胞を蒔き、OVAおよび/またはSIINFEKLペプチドにてエキソビボで3日間再刺激し、トレランスの確認された証拠である、それらによるIFNγ、IL−17a、IL−2およびIL−4の発現のダウンレギュレーション、ならびにTGF−β1のアップレギュレーションをELISAにより測定する。IFNγ、IL−17a、IL−2およびIL−4の細胞内染色は、OVAおよび/またはSIINFEKLペプチドによるエキソビボでの再刺激から6時間後、脾細胞およびリンパ節由来細胞のフローサイトメトリーを用いて行う。さらに、フローサイトメトリーを用いて、リンパ節、脾臓および血液由来細胞のCD4と、CD8と、制御性T細胞との発現プロファイルの特徴付けを行う。加えて、様々な時点でマウスから血液サンプルを採取してOVA抗原に対する液性抗体応答も測定する。エキソビボでの再刺激のバリアント実験を行って、全身性免疫トレランスが確立しているかどうかを判定する。マウスに上記のようにOVA−抗体コンジュゲートまたはOVA−抗体−ナノ粒子コンジュゲートを投与し、アジュバント(リポ多糖、完全フロイトアジュバント、ミョウバンまたはその他)と一緒に9日後にOVAを再投与し、OVA抗原に対する脾細胞の応答を上記のようにELISAおよび/またはフローサイトメトリーにより評価する。OVA−抗体コンジュゲートおよび/またはOVA−抗体−ナノ粒子製剤により、脾細胞はOVAおよびアジュバントによる第2のチャレンジに応答しなくなり、これは全身性免疫トレランスの効果的な確立を証明するための1つの方法である。OVA−抗体コンジュゲートおよび/またはOVA−抗体−ナノ粒子製剤による最初の投与後、トレランスをさらに証明するものとして、実施例14に詳細に記載した研究と同様にOT−I T細胞の養子移入など、遺伝子導入細胞株を用いてインビボで同様のチャレンジ実験を行ってもよい。自己免疫マウスモデルの免疫トレランスまたは療法剤分子の脱免疫化(deimmunization)を証明するため、本明細書に記載したようにOVAと関連する抗原に対する類似の抗体コンジュゲートを作製してもよい。
【0149】
実施例17:一本鎖抗体融合抗原との非共有結合的赤血球結合による抗原特異的免疫学的トレランスの誘導
一本鎖抗体フラグメント(scFv)は、赤血球に対する非共有結合バインダーとして使用してもよい。赤血球表面タンパク質に対して高親和性を示すScFvは、実施例13で考察したように最新のディスプレイプラットフォームを用いてscFvライブラリーをスクリーニングすることにより単離することができる。新規な赤血球結合抗体フラグメントを発見したら、ERY1ペプチドで行ったのと同様に結合の生化学的特徴付けを評価する。scFvは1本のポリペプチド鎖を有するため、標準的な組換えDNA技術を用いた部位特異的組換え法で抗原に融合される。抗原融合パートナーの性質に応じて、scFvを抗原のNまたはC末端に融合して二機能タンパク質種を作製する。抗原の主要組織適合性複合体(MHC)ペプチド認識配列が分かっている場合には、ペプチドをさらにscFvのリンカードメインに挿入して、ネイティブなscFvの末端を含む新しい二機能性抗体/抗原コンストラクトを作製する。
【0150】
OVAに対するトレランスの誘導を証明するには、OVA−scFvまたはOVA−ナノ粒子−scFvコンジュゲートをマウスに静脈内投与または血管外投与することができる。投与後所定の日数で、マウスを屠殺し、解析のためリンパ節、脾臓および血液を採取する。脾細胞およびリンパ節由来細胞を蒔き、OVAおよび/またはSIINFEKLペプチド(配列番号3)によりエキソビボで3日間再刺激し、トレランスの確認された証拠である、それらによるIFNγ、IL−17a、IL−2およびIL−4の発現のダウンレギュレーションとTGF−β1のアップレギュレーションとを、たとえば、ELISAにより測定する。IFNγ、IL−17a、IL−2およびIL−4の細胞内染色は、OVAおよび/またはSIINFEKLペプチド(配列番号3)によるエキソビボでの再刺激から6時間後、脾細胞およびリンパ節由来細胞のフローサイトメトリーを用いて行う。さらに、フローサイトメトリーを用いて、リンパ節、脾臓および血液由来細胞のCD4と、CD8と、制御性T細胞との発現プロファイルの発現プロファイルの特徴付けを行ってもよい。加えて、様々な時点でマウスから血液サンプルを採取してOVA抗原に対する液性抗体応答も測定する。エキソビボでの再刺激のバリアント実験を行って全身性免疫トレランスが確立しているかどうかを判定する。マウスに上記のようにOVA−scFvまたはOVA−ナノ粒子−scFvコンジュゲートを投与し、アジュバント(リポ多糖、完全フロイトアジュバント、ミョウバンまたはその他)と一緒に9日後にOVAを再投与し、OVA抗原に対する脾細胞の応答を上記のようにELISAおよび/またはフローサイトメトリーにより評価する。OVA−scFvおよび/またはOVA−scFv−ナノ粒子製剤により、脾細胞はOVAおよびアジュバントによる第2のチャレンジに応答しなくなり、それにより全身性免疫トレランスの効果的な確立が説明される。OVA−scFvおよび/またはOVA−scFv−ナノ粒子製剤による最初の投与後、トレランスを証明するため、実施例14に詳細に記載した研究と同様にOT−I T細胞の養子移入など、遺伝子導入細胞株を用いてインビボで同様のチャレンジ実験を行ってもよい。自己免疫マウスモデルの免疫トレランスまたは療法剤分子の脱免疫化を証明するため、本明細書に記載したようにOVAと関連する抗原に対する類似のscFv融合体を作製してもよい。
【0151】
標準的な組換えDNA技術を用いて、マウス赤血球に結合し、かつOVAの免疫優性MHC−Iエピトープ(SGLEQLESIINFEKL)(配列番号82)を提示する抗体コンストラクトを作製した。我々は最初に、オーバーラップエクステンションPCRを用いて、TER119配列の3’末端に相補的(complimentary)な重複5’ドメインと共に、SGLEQLESIINFEKL(配列番号82)ペプチドを含む末端3’ドメインをコードするDNAフラグメントを作製した。このDNAフラグメントをリバースプライマーとして、相補的(complimentary)なフォワード5’プライマーと共に使用して標準的なPCRで、TER119−SGLEQLESIINFEKL(配列番号82)をコードする下記全DNAフラグメント:
【化2】
を作製した。下線で示した配列は、SGLEQLESIINFEKLをコードする遺伝子セグメントを示す。このDNAフラグメントを組換え発現させるため哺乳動物および原核生物発現ベクターに挿入した。
【0152】
標準的な組換えDNA技術を用いて、マウス赤血球に結合し、かつクロモグラニンAミメトープ(mimetope)1040−p31(YVRPLWVRME)(配列番号84)を提示する抗体コンストラクトを作製した。オーバーラップエクステンションPCRを用いて、TER119配列の3’末端に相補的(complimentary)な重複5’ドメインと共に、YVRPLWVRME(配列番号84)ペプチドを含む末端3’ドメインをコードするDNAフラグメントを作製した。このDNAフラグメントをプライマーとして、相補的(complimentary)なフォワード5’プライマーと共に使用して標準的なPCRで、TER119−YVRPLWVRMEをコードする下記全DNAフラグメント:
【化3】
を作製した。下線で示した配列は、クロモグラニンA(1040−p31)ミメトープ(mimetope)(YVRPLWVRME)(配列番号84)をコードする遺伝子セグメントを示す。このDNAフラグメントを組換え発現させるため哺乳動物および原核生物発現ベクターに挿入した。
【0153】
標準的な組換えDNA技術を用いて、マウス赤血球に結合し、かつNODマウスの糖尿病の主要自己抗原マウスプロインスリンを提示する抗体コンストラクトを作製した。我々は最初に、オーバーラップエクステンションPCRを用いて、TER119配列の3’末端に相補的(complimentary)な重複5’ドメインと共に、全プロインスリンタンパク質を含む末端3’ドメインをコードするDNAフラグメントを作製した。このDNAフラグメントをプライマーとして、相補的(complimentary)フォワード5’プライマーと共に使用して標準的なPCRで、TER119−プロインスリンをコードする下記全DNAフラグメント:
【化4】
を作製した。下線で示した配列は、コンストラクトのプロインスリン遺伝子セグメントを示す。このDNAフラグメントを組換え発現させるため哺乳動物および原核生物発現ベクターに挿入した。
【0154】
実施例18:赤血球結合リガンドおよび他の機能を含む分岐ポリマーの合成
8アームPEG−チオアセテートを合成するため、8アームPEG−OH(Nektar)をトルエンに溶解させ、10当量のトリエチルアミン(Sigma Aldrich、CAS番号121−44−8)および10当量のメタンスルホニルクロリド(Sigma Aldrich、CAS番号124−63−0)とアルゴン下、室温で18時間反応させた。残渣を濾過し、濾液を減圧下で濃縮し、ジメチルホルムアミド(DMF)に溶解させ、10当量のチオ酢酸カリウム(Sigma Aldrich、CAS番号10387−40−3)を加えた。室温で18時間後、残渣を濾過し、濾液を減圧下で濃縮し、ジエチルエーテルで沈殿させた。沈殿物を濾過し、減圧下で乾燥させて最終生成物を得た。
【0155】
8アームPEG−ピリジルジスルフィドを合成するため、8アームPEG−チオアセテートをジメチルホルムアミド(DMF)に溶解させ、シュレンク管中、1.05当量のナトリウムメトキシド(Sigma Aldrich、CAS番号124−41−4)でアルゴン下、室温にて1時間脱保護した。脱保護したチオールをチオレートに還元するため、この溶液に2当量のトリス(2−カルボキシエチル)ホスフィンヒドロクロリド(TCEP、Thermo Scientific、CAS番号51805−45−9)および2当量の蒸留水を加えた。室温で2時間後、12当量の2,2’−ジチオジピリジン(アルドリチオール−2、Sigma Aldrich、CAS番号2127−03−9)を加え、溶液を室温で24時間撹拌した。次いで反応混合物を、MWCO3,500Daの透析チューブで5Lの蒸留水に対して48時間透析し、この間、蒸留水を4回交換した。25mMのTCEPを含む100mMのHEPES、pH8.0で還元して、8アームPEGにロードしたピリジルジスルフィドを定量し、343nmのUV−visスペクトルを測定してピリジン−2−チオン脱離基の存在をモニターした。
【0156】
8アームPEG−ピリジルジスルフィド−ALEXAFLUOR647の合成のため、8アームPEG−チオアセテートをDMFに溶解させ、シュレンク管中、1.05当量のナトリウムメトキシド(Sigma Aldrich、CAS番号124−41−4)でアルゴン下、室温で1時間脱保護した。脱保護したチオールをチオレートに還元するため、この溶液に2当量のトリス(2−カルボキシエチル)ホスフィンヒドロクロリド(TCEP、Thermo Scientific、CAS番号51805−45−9)および等量の100mMのHEPES pH8.0を加えた。室温で2時間後、0.125当量(8アームの1アームに相当)のAlexaFluor647−C2−マレイミド(Invitrogen)を加えた。室温で2時間後、12当量の2,2’−ジチオジピリジン(アルドリチオール−2、Sigma Aldrich、CAS番号2127−03−9)を加え、溶液を室温で24時間撹拌した。次いで反応混合物を、MWCO3,500Daの透析チューブで5Lの蒸留水に対して48時間透析し、この間、蒸留水を4回交換した。25mMのTCEPを含む100mMのHEPES、pH8.0で還元して、8アームPEGにロードしたピリジルジスルフィドを定量し、343nmのUV−visスペクトルを測定してピリジン−2−チオン脱離基の存在をモニターした。
【0157】
チオール含有ペプチドと8アームPEG−ピリジルジスルフィドとのコンジュゲートは、3Mの水性グアニジン−HCl(Sigma Aldrich、CAS番号50−01−10)に溶解させた化学量論的な量のペプチドを、8アームPEG−ピリジルジスルフィドの水溶液に室温で加えて行った。343nmのUV−visスペクトルを測定し、ピリジン−2−チオン脱離基の存在を定量して、反応変換をモニターした。8アームPEG−ピリジルジスルフィドに2つ以上の分子がコンジュゲートされた場合、この反応手順を同じポットで新しい分子と繰り返した。コンジュゲーションが終了したら、反応混合物をZEBASPIN脱塩カラム(Thermo Scientific)で脱塩し、精製された生成物を適切な滅菌条件下で保存した。
【0158】
OVAに対するトレランスの誘導については、8アームPEG−ERY1/MIS−SIINFEKLコンジュゲート(SIINFEKL:配列番号3)をマウスに静脈内投与あるいは血管外投与することにより証明することができる。この試験を用いれば、ヒト特異的リガンドを使用してヒトにおけるトレランスの誘導も明らかにされるであろう。こうした証明では、投与後所定の日数で、マウスを屠殺し、解析のためリンパ節、脾臓および血液を採取する。脾細胞およびリンパ節由来細胞を蒔き、OVAおよび/またはSIINFEKL(配列番号3)ペプチドにてエキソビボで3日間再刺激し、トレランスの確認された証拠である、それらによるIFNγ、IL−17a、IL−2およびIL−4の発現のダウンレギュレーション、ならびにTGF−β1のアップレギュレーションをELISAにより測定する。IFNγ、IL−17a、IL−2およびIL−4の細胞内染色は、OVAおよび/またはSIINFEKL(配列番号3)ペプチドによるエキソビボでの再刺激から6時間後、脾細胞およびリンパ節由来細胞のフローサイトメトリーを用いて行う。さらに、フローサイトメトリーを用いて、リンパ節、脾臓および血液由来細胞のCD4と、CD8と、制御性T細胞との発現プロファイルの特徴付けを行う。加えて、様々な時点でマウスから血液サンプルを採取してOVA抗原に対する液性抗体応答も測定する。エキソビボでの再刺激のバリアント実験を行って全身性免疫トレランスが確立しているかどうかを判定する。上記のようにマウスに8アームPEG−ERY1/MIS−SIINFEKLコンジュゲート(SIINFEKL:配列番号3)を投与し、アジュバント(リポ多糖、完全フロイトアジュバント、ミョウバンまたはその他)と一緒に9日後にOVAを再投与し、OVA抗原に対する脾細胞の応答を上記のようにELISAおよび/またはフローサイトメトリーにより評価する。8アームPEG−ERY1−SIINFEKLコンジュゲート(SIINFEKL:配列番号3)製剤により、脾細胞はOVAおよびアジュバントによる第2のチャレンジに応答しなくなり、これは全身性免疫トレランスの効果的な確立を証明する方法である。8アームPEG−ERY1/MIS−SIINFEKLコンジュゲート製剤(SIINFEKL:配列番号3)による最初の投与後、トレランスをさらに証明するため、実施例14に詳細に記載した研究と同様にOT−I T細胞の養子移入など、遺伝子導入細胞株を用いてインビボで同様のチャレンジ実験を行ってもよい。自己免疫マウスモデルの免疫トレランスまたは療法剤分子の脱免疫化を証明するため、本明細書に記載したようにSIINFEKL(配列番号3)と関連する抗原に対する類似の8アームPEGコンストラクトを作製してもよい。
【0159】
実施例19:アプタマー−コンジュゲート抗原との非共有結合的赤血球結合による抗原特異的免疫学的トレランスの誘導
非共有結合的赤血球結合による免疫学的トレランスの誘導能力を測定するため、他の非抗体生体親和性試薬を用いた方法を行ってもよい。他のタンパク質ベースの親和性部分、たとえば、設計されたアンキリンリピートタンパク質(DARPin)(Steiner,Forrerら,2008年)、設計されたアルマジロリピートタンパク質(Parmeggiani,Pellarinら,2008年)、フィブロネクチンドメイン(Hackel,Kapilaら,2008年)およびシステイン−ノット(knottin)親和性骨格(Silverman,Levinら,2009年)などを、赤血球に対する結合親和性を示す部分についてスクリーニングする。
【0160】
赤血球に対する高親和性DNA/RNAアプタマーを発見するライブラリースクリーニングは、十分に確立した試験管内進化法(Systematic Evolution of Ligands by Exponential Enrichmen:SELEX)法(Archemix,Cambridge,MA,USA)を用いて行う(Sampson,2003)。高親和性で赤血球に結合する新規なDNA/RNA配列を発見したら、その3’または5’末端に追加の化学反応基を含むようにそれらを化学合成して、抗原および/またはポリマーミセル/ナノ粒子とコンジュゲートする。化学合成したアプタマーは、たとえば、ナノ粒子または抗原またはナノ粒子−抗原複合体のいずれかに存在するCOOH基とのEDC/NHSコンジュゲーション化学によりコンジュゲートされる反応性NH2基を有しており、赤血球結合アプタマー、および抗原または抗原−ナノ粒子を含む単一のバイオコンジュゲートを形成する。アプタマー、抗原および/または抗原−ナノ粒子の直交反応基およびコンジュゲーションスキームの両方を変更させて、様々な化学的コンジュゲーション技術が試みられている。
【0161】
OVAに対するトレランスの誘導を証明するには、OVA−アプタマーまたはOVA−ナノ粒子−アプタマーコンジュゲートをマウスに静脈内投与あるいは血管外投与する。投与後所定の日数で、マウスを屠殺し、解析のためリンパ節、脾臓および血液を採取する。脾細胞およびリンパ節由来細胞を蒔き、OVAおよび/またはSIINFEKLペプチド(配列番号3)によりエキソビボで3日間再刺激し、トレランスの確認された証拠である、それらによるIFNγ、IL−17a、IL−2およびIL−4の発現のダウンレギュレーション、ならびにTGF−β1のアップレギュレーションをELISAにより測定する。IFNγ、IL−17a、IL−2およびIL−4の細胞内染色は、OVAおよび/またはSIINFEKL(配列番号3)ペプチドによるエキソビボでの再刺激から6時間後、脾細胞およびリンパ節由来細胞のフローサイトメトリーを用いて行う。さらに、フローサイトメトリーを用いて、リンパ節、脾臓および血液由来細胞のCD4と、CD8と、制御性T細胞との発現プロファイルの特徴付けを行う。加えて、様々な時点でマウスから血液サンプルを採取してOVA抗原に対する液性抗体応答も測定する。エキソビボでの再刺激のバリアント実験を行って全身性免疫トレランスが確立しているかどうかを判定する。マウスに上記のようにOVA−抗体またはOVA−抗体−ナノ粒子コンジュゲートを投与し、アジュバント(リポ多糖、完全フロイトアジュバント、ミョウバンまたはその他)と一緒に9日後にOVAを再投与し、OVA抗原に対する脾細胞の応答を上記のようにELISAおよび/またはフローサイトメトリーにより評価する。我々は、我々のOVA−抗体および/またはOVA−抗体−ナノ粒子製剤により、脾細胞がOVAおよびアジュバントによる第2のチャレンジに応答しなくなり、それにより全身性免疫トレランスの効果的な確立が説明されると予想する。我々のOVA−アプタマーおよび/またはOVA−アプタマー−ナノ粒子製剤による最初の投与後、トレランスを証明するため、実施例14に詳細に記載した研究と同様にOT−I T細胞の養子移入など、遺伝子導入細胞株を用いてインビボで同様のチャレンジ実験を行う。自己免疫マウスモデルの免疫トレランスまたは療法剤分子の脱免疫化を証明するため、本明細書に記載したようにOVAと関連する抗原に対する類似のアプタマーコンストラクトを作製する。
【0162】
さらなる開示
本発明の種々の実施形態について記載する。実施形態は、配列番号11、配列番号13、配列番号14、配列番号15、配列番号16、配列番号17、配列番号1およびそれらの保存的置換体からなる群から選択される配列の少なくとも5個の連続したアミノ酸残基を含む単離されたペプチドであり、前記配列は赤血球に特異的に結合する。実施形態は、配列番号11、配列番号13、配列番号14、配列番号15、配列番号16、配列番号17、および配列番号1からなる群から選択される配列の少なくとも1個および2個以下のアミノ酸のDからLへの置換を有する1つ以上の残基を含むペプチドであるか、または配列番号11、配列番号13、配列番号14、配列番号15、配列番号16、配列番号17、および配列番号1からなる群から選択される配列の少なくとも1個および2個以下のアミノ酸の保存的置換を有する。実施形態は、配列番号11、配列番号13、配列番号14、配列番号15、配列番号16、配列番号17、配列番号1およびそれらの保存的置換体からなる群から選択される配列の少なくとも5個の連続したアミノ酸残基を含むペプチドであり、前記配列は赤血球に特異的に結合する。ペプチドは、たとえば、約10〜約80個の多くの残基を有してもよい。ペプチドは、たとえば、インスリン、酢酸プラムリンチド、成長ホルモン、インスリン様成長因子−1、エリスロポエチン、1型インターフェロンα、インターフェロンα2a、インターフェロンα2b、インターフェロンβ1a、インターフェロンβ1b、インターフェロンγ1b、β−グルコセレブロシダーゼ、アデノシンデアミナーゼ、顆粒球コロニー刺激因子、顆粒球マクロファージコロニー刺激因子、インターロイキン1、インターロイキン2、インターロイキン11、第VIIa因子、第VIII因子、第IX因子、エクセナチド、L−アスパラギナーゼ、ラスブリカーゼ、腫瘍壊死因子受容体およびエンフビルチドからなる群から選択される治療薬をさらに含んでもよい。ペプチドは、抗体、抗体フラグメントおよび一本鎖抗原結合ドメイン(ScFv)からなる群のメンバーをさらに含んでいてもよい。ペプチドは、たとえば、遺伝性疾患により欠損しているタンパク質、非ヒト型グリコシル化タンパク質、非ヒトタンパク質、ヒトに天然には見出されない合成タンパク質、ヒト食物抗原、ヒト移植抗原およびヒト自己免疫抗原からなる群から選択される寛容誘導抗原をさらに含んでいてもよい。ペプチドは、赤血球に特異的に結合する1つ以上の配列を有してもよく、配列は、同じ配列の反復でも、または前記結合を行う様々な配列を混合したものでもよい。
【0163】
一実施形態は、免疫寛容を引き起こす方法であって、寛容誘導抗原、および患者の赤血球に特異的に結合し、それにより抗原を赤血球に結合する赤血球結合部分を含む分子融合体を含む組成物を投与することを含み、分子融合体は、寛容誘導抗原を含む物質に免疫寛容を引き起こすのに効果的な量で投与する方法である。一実施形態は、分子融合体が、抗原に直接共有結合した少なくとも1つの赤血球結合部分からなる方法であり、たとえば、融合タンパク質は、その結合部分および抗原を含む。一実施形態は、分子融合体が、抗原に結合するまたは抗原を含む粒子に結合した少なくとも1つの赤血球結合部分を含み、たとえば、粒子はマイクロ粒子、ナノ粒子、リポソーム、ポリマーソームおよびミセルからなる群から選択される方法である。一実施形態は、寛容誘導抗原が治療用タンパク質の一部分を含む、たとえば、タンパク質は第VIII因子または第IX因子を含む事例である。一実施形態は、寛容誘導抗原が非ヒトタンパク質の一部分を含む事例である。一実施形態は、タンパク質がアデノシンデアミナーゼ、L−アスパラギナーゼ、ラスブリカーゼ、抗胸腺細胞グロブリン、L−アルギナーゼおよびL−メチオナーゼを含む事例である。一実施形態は、患者がヒトであり、寛容誘導抗原が自然界に見出されないタンパク質の一部分を含む方法である。一実施形態は、患者がヒトであり、寛容誘導抗原が、非ヒト型グリコシル化を含むタンパク質のグリカンを含む事例である。一実施形態は、寛容誘導抗原が、ヒト移植抗原の少なくとも一部分を含む事例である。一実施形態は、寛容誘導抗原が、たとえば、プレプロインスリン、プロインスリン、インスリン、GAD65、GAD67、IA−2、IA−2β、チログロブリン、甲状腺ペルオキシダーゼ、サイロトロピン受容体、ミエリン塩基性タンパク質、ミエリンオリゴデンドロサイト糖タンパク質、プロテオリピドタンパク質、コラーゲンII、コラーゲンIV、アセチルコリン受容体、マトリックスメタロプロテイン1および3、分子シャペロン熱ショックタンパク質47、フィブリリン−1、PDGF受容体α、PDGF受容体βならびに核タンパク質SS−Aからなる群から選択されるヒト自己免疫疾患タンパク質の一部分を含む事例である。一実施形態は、寛容誘導抗原が、たとえば、コンアラキン(Ara h 1)、アレルゲンII(Ara h 2)、ピーナッツアグルチニン(Ara h 6)、α−ラクトアルブミン(ALA)、ラクトトランスフェリン、グルテイン、低分子量グルテイン、α−およびγ−グリアジン、ホルデイン、セカリンならびにアベニンからなる群から選択されるヒトの食品の一部分を含む事例である。一実施形態は、赤血球結合部分がペプチドリガンド、抗体、抗体フラグメントおよび一本鎖抗原結合ドメイン(ScFv)からなる群から選択される事例である。一実施形態は、scFvが10F7の一部分または全部、たとえば、10F7の軽鎖および/もしくは10F7の重鎖の1つ以上、ならびに/または、10F7の軽鎖および/もしくは10F7の重鎖のより高い親和性のバリアントを含む事例である。一実施形態は、赤血球結合部分が、配列番号11、配列番号13、配列番号14、配列番号15、配列番号16、配列番号17、配列番号1およびそれらの保存的置換体からなる群から選択される配列の少なくとも5個の連続したアミノ酸残基を含むペプチドリガンドを含み、前記配列は赤血球に特異的に結合する方法である。
【0164】
一実施形態は、寛容誘導抗原、および患者の赤血球に特異的に結合し、それにより抗原を赤血球に結合する赤血球結合部分を含む分子融合体を含む組成物である。1つの例は、赤血球結合部分が抗原に共有結合する事例である。別の例は、分子融合体が、抗原に結合する粒子、たとえば、マイクロ粒子、ナノ粒子、リポソーム、ポリマーソームまたはミセルに結合した赤血球結合部分を含む事例である。寛容誘導抗原の例として、治療用タンパク質の一部分、非ヒトタンパク質の一部分、ヒトで天然には見出されないタンパク質の一部分(そのタンパク質の全部、すなわち、すべてのタンパク質)、非ヒト型グリコシル化を含むタンパク質のグリカン、ヒト自己免疫抗原の一部分、ヒトの食品の一部分が挙げられる。一実施形態は、赤血球結合部分がペプチドリガンド、抗体、抗体フラグメントおよび一本鎖抗原結合ドメイン(ScFv)、たとえば、10F7の全部または一部分からなる群から選択される組成物である。赤血球結合部分は、配列番号11、配列番号13、配列番号14、配列番号15、配列番号16、配列番号17、配列番号1およびそれらの保存的置換体からなる群から選択される配列の少なくとも5個の連続したアミノ酸残基を含むペプチドリガンドを含んでもよく、前記配列は赤血球に特異的に結合する。赤血球結合部分は、ペプチドと赤血球との平衡状態における結合の測定により判定した場合、約10μM〜0.1nMの解離定数を有するペプチドリガンドを含む部分であってもよい。
【0165】
別の例は、合成ポリマー、分岐合成ポリマーおよび粒子からなる群から選択される実体に結合した、赤血球に特異的に結合する赤血球結合部分を含む組成物である。粒子は、たとえば、マイクロ粒子、ナノ粒子、リポソーム、ポリマーソームおよびミセルであってもよい。組成物は、寛容誘導抗原、治療薬または腫瘍ホーミングリガンドをさらに含んでもよい。
【0166】
実施形態は、患者の腫瘍を塞栓する方法であって、赤血球結合部分および腫瘍ホーミングリガンドの分子融合体を含む組成物、または組成物を含む薬物を患者に投与することを含み、腫瘍ホーミングリガンドは、腫瘍および腫瘍血管系からなる群から選択される標的に特異的に結合するように調節された抗体、抗体フラグメント、一本鎖抗原結合ドメイン(ScFv)またはペプチドリガンドであり、かつ赤血球結合部分は、赤血球に特異的に結合するペプチドリガンド、抗体、抗体フラグメント、scFv、またはアプタマーである、方法を含む。腫瘍ホーミングリガンドの例として、アミノペプチダーゼA、アミノペプチダーゼN、エンドシアリン、細胞表面ヌクレオリン、細胞表面アネキシン−1、細胞表面p32/gC1q受容体、細胞表面プレクチン−1、フィブロネクチンEDA、フィブロネクチンEDB、インターロイキン11受容体α、テネイシン−C、エンドグリン/CD105、BST−2、ガレクチン−1、VCAM−1、フィブリンおよび組織因子受容体が挙げられる。赤血球部分は、たとえば、ペプチドリガンド、scFvまたは抗体もしくはフラグメントを含んでもよい。
【0167】
一実施形態は、赤血球に特異的に結合するペプチドリガンドを含む一本鎖抗原結合ドメイン(scFv)である。ペプチドは、scFvに結合していても、またはリンカー部分に配置されていてもよい。1つ以上のペプチドリガンドを含んでもよい。
【0168】
本明細書に言及した特許出願、特許および刊行物はすべて、あらゆる目的のため本明細書に援用する。矛盾がある場合は、本明細書が優先する。
【0169】
参考文献
1 Pasut G & Veronese FM(2009年)「PEG conjugates in clinical development or use as anticancer agents:an overview.」Adv Drug Deliv Rev 61(13):1177〜1188頁.
2 Fishburn CS(2008年)「The pharmacology of PEGylation:balancing PD with PK to generate novel therapeutics.」J Pharm Sci 97(10):4167〜4183頁.
3 Gao W,Liu W,Mackay JA,Zalutsky MR,Toone EJ,& Chilkoti A(2009年)「In situ growth of a stoichiometric PEG−like conjugate at a protein’s N−terminus with significantly improved pharmacokinetics.」Proc Natl Acad Sci USA 106(36):15231〜15236頁.
4 Huang L,Gough PC,& Defelippis MR(2009年)「Characterization of poly(ethylene glycol)and PEGylated products by LC/MS with postcolumn addition of amines.」Anal Chem 81(2):567〜577.頁.
5 Bailon P,Palleroni A,Schaffer CA,Spence CL,Fung WJ,Porter JE,Ehrlich GK,Pan W,Xu ZX,Modi MW,Farid A,Berthold W,& Graves M(2001年)「Rational design of a potent,long−lasting form of interferon:a 40 kDa branched polyethylene glycol−conjugated interferon alpha−2a for the treatment of hepatitis C.」Bioconjug Chem 12(2):195〜202頁.
6 Dhalluin C,Ross A,Leuthold LA,Foser S,Gsell B,Mueller F,& Senn H(2005年)「Structural and biophysical characterization of the 40 kDa PEG−interferon−alpha2a and its individual positional isomers.」Bioconjug Chem 16(3):504〜517頁.
7 Dennis M(2002年)「Albumin Binding as a General Strategy for Improving the Pharmacokinetics of Proteins.」Journal of Biological Chemistry 277(38):35035〜35043頁.
8 Walker A,Dunlevy G,Rycroft D,Topley P,Holt LJ,Herbert T,Davies M,Cook F,Holmes S,Jespers L,& Herring C(2010年)「Anti−serum albumin domain antibodies in the development of highly potent,efficacious and long−acting interferon.」Protein Engineering Design and Selection.
9 Hall SS,Mitragotri S,& Daugherty PS(2007年)「Identification of peptide ligands facilitating nanoparticle attachment to erythrocytes.」Biotechnol Prog 23(3):749〜754頁.
10 Godsel LM,Wang K,Schodin BA,Leon JS,Miller SD,& Engman DM(2001年)「Prevention of autoimmune myocarditis through the induction of antigen−specific peripheral immune tolerance.」Circulation 103(12):1709〜1714頁.
11 Luo X,Pothoven KL,McCarthy D,DeGutes M,Martin A,Getts DR,Xia G,He J,Zhang X,Kaufman DB,& Miller SD(2008年)「ECDI−fixed allogeneic splenocytes induce donor−specific tolerance for long−term survival of islet transplants via two distinct mechanisms.」Proc Natl Acad Sci USA 105(38):14527〜14532頁.
12 Fife BT,Guleria I,Gubbels Bupp M,Eagar TN,Tang Q,Bour−Jordan H,Yagita H,Azuma M,Sayegh MH,& Bluestone JA(2006年)「Insulin−induced remission in new−onset NOD mice is maintained by the PD−1−PD−L1 pathway.」J Exp Med 203(12):2737〜2747頁.
13 Miller SD,Turley DM,& Podojil JR(2007年)「Antigen−specific tolerance strategies for the prevention and treatment of autoimmune disease.」Nat Rev Immunol 7(9):665〜677頁.
14 Maluccio MA,Covey AM,Porat LB,Schubert J,Brody LA,Sofocleous CT,Getrajdman GI,Jarnagin W,Dematteo R,Blumgart LH,Fong Y,& Brown KT(2008年)「Transcatheter arterial embolization with only particles for the treatment of unresectable hepatocellular carcinoma.」J Vasc Interv Radiol 19(6):862〜869頁.
15 Gadaleta CD & Ranieri G(2010年)「Trans−arterial chemoembolization as a therapy for liver tumours:New clinical developments and suggestions for combination with angiogenesis inhibitors.」Crit Rev Oncol Hematol.
16 Huang X,Molema G,King S,Watkins L,Edgington TS,& Thorpe PE(1997年)「Tumor infarction in mice by antibody−directed targeting of tissue factor to tumor vasculature.」Science 275(5299):547〜550頁.
17 Sheridan C(2010年)「Fresh from the biologic pipeline−2009.」Nat Biotechnol 28(4):307〜310頁.
18 Maynard J & Georgiou G(2000年)「Antibody engineering.」Annual review of biomedical engineering 2:339〜376頁.
19 Weisser NE & Hall JC(2009年)「Applications of single−chain variable fragment antibodies in therapeutics and diagnostics.」Biotechnol Adv 27(4):502〜520頁.
20 Moghimi SM & Szebeni J(2003年)「Stealth liposomes and long circulating nanoparticles:critical issues in pharmacokinetics,opsonization and protein−binding properties.」Prog Lipid Res 42(6):463〜478頁.
21 Vogl TJ,Naguib NN,Nour−Eldin NE,Rao P,Emami AH,Zangos S,Nabil M,& Abdelkader A(2009年)「Review on transarterial chemoembolization in hepatocellular carcinoma:palliative,combined,neoadjuvant,bridging,and symptomatic indications.」Eur J Radiol 72(3):505〜516頁.
22 Fonsatti E,Nicolay HJ,Altomonte M,Covre A,& Maio M(2010年)「Targeting cancer vasculature via endoglin/CD105:a novel antibody−based diagnostic and therapeutic strategy in solid tumours.」Cardiovasc Res 86(1):12〜19頁.
23 Dienst A,Grunow A,Unruh M,Rabausch B,Noer JE,Fries JW,& Gottstein C(2005年)「Specific occlusion of murine and human tumor vasculature by VCAM−1−targeted recombinant fusion proteins.」CancerSpectrum Knowledge Environment 97(10):733〜747頁.
24 Ruoslahti E,Bhatia SN,& Sailor MJ(2010年)「Targeting of drugs and nanoparticles to tumors.」J Cell Biol 188(6):759〜768頁.
25 Thijssen VL,Postel R,Brandwijk RJ,Dings RP,Nesmelova I,Satijn S,Verhofstad N,Nakabeppu Y,Baum LG,Bakkers J,Mayo KH,Poirier F,& Griffioen AW(2006年)「Galectin−1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy.」Proc Natl Acad Sci USA 103(43):15975〜15980頁.
26 Schliemann C,Roesli C,Kamada H,Borgia B,Fugmann T,Klapper W,& Neri D(2010年)「In vivo biotinylation of the vasculature in B−cell lymphoma identifies BST−2 as a target for antibody−based therapy.」Blood 115(3):736〜744頁.
27 Brack SS,Silacci M,Birchler M,& Neri D(2006年)「Tumor−targeting properties of novel antibodies specific to the large isoform of tenascin−C.」Clin Cancer Res 12(10):3200〜3208頁.
28 Rybak J,Roesli C,Kaspar M,Villa A,& Neri D(2007年)「The extra−domain A of fibronectin is a vascular marker of solid tumors and metastases.」Cancer Res 67(22):10948〜10957頁.
29 Mohandas N & Gallagher PG(2008年)「Red cell membrane:past,present,and future.」Blood 112(10):3939〜3948頁.
30 Rice JJ & Daugherty PS(2008年)「Directed evolution of a biterminal bacterial display scaffold enhances the display of diverse peptides.」Protein Eng Des Sel 21(7):435〜442頁.
31 Dane KY,Chan LA,Rice JJ,& Daugherty PS(2006年)「Isolation of cell specific peptide ligands using fluorescent bacterial display libraries.」J Immunol Methods 309(1−2):120〜129頁.
32 van der Vlies AJ,O’Neil CP,Hasegawa U,Hammond N,& Hubbell JA(2010年)「Synthesis of pyridyl disulfide−functionalized nanoparticles for conjugating thiol−containing small molecules,peptides,and proteins.」Bioconjug Chem 21(4):653〜662頁.
33 O’Neil CP,van der Vlies AJ,Velluto D,Wandrey C,Demurtas D,Dubochet J,& Hubbell JA(2009)「Extracellular matrix binding mixed micelles for drug delivery applications.」J Control Release 137(2):146−151.
34 Velluto D,Demurtas D,& Hubbell JA(2008年)「PEG−b−PPS diblock copolymer aggregates for hydrophobic drug solubilization and release:cyclosporin A as an example.」Mol Pharm 5(4):632〜642頁.
35 Reddy ST,Rehor A,Schmoekel HG,Hubbell JA,& Swartz MA(2006年)「In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide)nanoparticles.」J Control Release 112(1):26〜34頁.
36 Reddy ST,van der Vlies AJ,Simeoni E,Angeli V,Randolph GJ,O’Neil CP,Lee LK,Swartz MA,& Hubbell JA(2007年)「Exploiting lymphatic transport and complement activation in nanoparticle vaccines.」Nat Biotechnol 25(10):1159〜1164頁.
37 Kontos S & Hubbell JA(2010年)「Improving protein pharmacokinetics by engineering erythrocyte affinity.」Mol.Pharmaceutics 7(6):2141〜2147頁.
38 Khandelwal S & Saxena RK(2006年)「Assessment of survival of aging erythrocyte in circulation and attendant changes in size and CD147 expression by a novel two step biotinylation method.」Exp Gerontol 41(9):855〜861頁.
39 Ferguson TA,Choi J,& Green DR(2011年)「Armed response:how dying cells influence T−cell functions.」Immunol Rev 241(1):77〜88頁.
40 Yamazaki S,Dudziak D,Heidkamp GF,Fiorese C,Bonito AJ,Inaba K,Nussenzweig MC,& Steinman RM(2008年)「CD8+ CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells.」Journal of immunology(Baltimore,Md :1950)181(10):6923〜6933頁.
41 Holz LE,Warren A,Le Couteur DG,Bowen DG,& Bertolino P(2010年)「CD8+ T cell tolerance following antigen recognition on hepatocytes.」Journal of Autoimmunity 34(1):15〜22頁.
42 Ichikawa S,Mucida D,Tyznik AJ,Kronenberg M,& Cheroutre H(2011年)「Hepatic stellate cells function as regulatory bystanders.」Journal of immunology(Baltimore,Md :1950)186(10):5549〜5555頁.
43 Thomson AW & Knolle PA(2010年)「Antigen−presenting cell function in the tolerogenic liver environment.」Nat Rev Immunol 10(11):753−766.
44 Albert ML,Pearce SF,Francisco LM,Sauter B,Roy P,Silverstein RL,& Bhardwaj N(1998)「Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36,and cross−present antigens to cytotoxic T lymphocytes.」J Exp Med 188(7):1359〜1368頁.
45 Green DR,Ferguson T,Zitvogel L,& Kroemer G(2009年)「Immunogenic and tolerogenic cell death.」Nat Rev Immunol 9(5):353〜363頁.
46 Bursch LS,Rich BE,& Hogquist KA(2009年)「Langerhans cells are not required for the CD8 T cell response to epidermal self−antigens.」J Immunol 182(8):4657〜4664頁.
47 Liu K,Iyoda T,Saternus M,Kimura Y,Inaba K,& Steinman RM(2002年)「Immune tolerance after delivery of dying cells to dendritic cells in situ.」J Exp Med 196(8):1091〜1097頁.
48 Darrah PA,Hegde ST,Patel DT,Lindsay RWB,Chen L,Roederer M,& Seder RA(2010年)「IL−10 production differentially influences the magnitude,quality,and protective capacity of Th1 responses depending on the vaccine platform.」J Exp Med 207(7):1421〜1433頁.
49 Lee MS & Kim Y−J(2007年)「Signaling pathways downstream of pattern−recognition receptors and their cross talk.」Annu.Rev.Biochem.76:447〜480頁.
50 Arnaboldi PM,Roth−Walter F,& Mayer L(2009年)「Suppression of Th1 and Th17,but not Th2,responses in a CD8(+)T cell−mediated model of oral tolerance.」Mucosal Immunol 2(5):427〜438頁.
51 Saint−Lu N,Tourdot S,Razafindratsita A,Mascarell L,Berjont N,Chabre H,Louise A,Van Overtvelt L,& Moingeon P(2009年)「Targeting the allergen to oral dendritic cells with mucoadhesive chitosan particles enhances tolerance induction.」Allergy 64(7):1003〜1013頁.
52 Mueller DL(2010年)「Mechanisms maintaining peripheral tolerance.」Nat Immunol 11(1):21〜27頁.
53 Lutolf MP,Tirelli N,Cerritelli S,Cavalli L,& Hubbell JA(2001年)「Systematic modulation of Michael−type reactivity of thiols through the use of charged amino acids.」Bioconjug Chem 12(6):1051〜1056頁.
54 Steiner D,Forrer P,& Plueckthun A(2008年)「Efficient selection of DARPins with sub−nanomolar affinities using SRP phage display.」Journal of Molecular Biology 382(5):1211〜1227頁.
55 Parmeggiani F,Pellarin R,Larsen AP,Varadamsetty G,Stumpp M,Zerbe O,Caflisch A,& Plueckthun A(2008年)「Designed armadillo repeat proteins as general peptide−binding scaffolds:consensus design and computational optimization of the hydrophobic core.」Journal of Molecular Biology 376(5):1282〜1304頁.
56 Hackel BJ,Kapila A,& Wittrup KD(2008年)「Picomolar affinity fibronectin domains engineered utilizing loop length diversity,recursive mutagenesis,and loop shuffling.」J Mol Biol 381(5):1238〜1252頁.
57 Silverman AP,Levin AM,Lahti JL,& Cochran JR(2009年)「Engineered cystine−knot peptides that bind alpha(v)beta(3)integrin with antibody−like affinities.」Journal of Molecular Biology 385(4):1064〜1075頁.
58 Keefe AD,Pai S,& Ellington A(2010年)「Aptamers as therapeutics.」Nat Rev Drug Discov 9(7):537〜550頁.
59 Rockey WM,Huang L,Kloepping KC,Baumhover NJ,Giangrande PH,& Schultz MK(2011年)「Synthesis and radiolabeling of chelator−RNA aptamer bioconjugates with copper−64 for targeted molecular imaging.」Bioorg Med Chem 19(13):4080〜4090頁.
60 Savla R,Taratula O,Garbuzenko O,& Minko T(2011年)「Tumor targeted quantum dot−mucin 1 aptamer−doxorubicin conjugate for imaging and treatment of cancer.」J Control Release 153(1):16〜22頁.
61 Sampson T(2003年)「Aptamers and SELEX:the technology.」World Patent Information(25):123〜129頁.