(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0002】
多くの家庭用装置は、最高で約C/50(50時間の充電速度)の細流充電電流を扱うことができるニッケルカドミウム又はニッケル水素電池を使用している。ここで、1Cの速度は、特定の充電池を1時間以内に充電する充電電流に対応する充電速度である。しかしながら、費用の制約により、多くの電池充電器は、この要件に応じておらず、継続的な充電状態に放置されたときに電池を過充電し、したがって電池寿命を短縮している。この結果、短い使用期間の後に、家庭用装置の実用時間が相当に減じられている。
【課題を解決するための手段】
【0003】
少なくとも1つの充電池を充電する電池充電装置が開示され、この電池充電装置は、細流充電電流を減少させて所定の限界値未満にする。
【0004】
一態様において、少なくとも1つの充電池を充電するための電池充電装置が、あるDC電圧を受け、所定の充電電流及び細流充電電流で、実質的に一定の調整電圧出力を供給するように構成された電圧レギュレータ回路であって、その細流充電電流が第1の所定値未満となる電圧レギュレータ回路と、充電電流を制限して第1の所定値未満にするために、電圧レギュレータ回路の出力及び少なくとも1つの充電池に結合された抵抗器とを備える。
【0005】
以下は、この態様の範囲に含まれる実施形態である。
【0006】
この電池充電装置は、電圧レギュレータ回路にあるDC電圧を供給するためのAC/DCアダプタ回路を更に備える。このAC/DCアダプタ回路は、2次側の回路と1次側の回路とを有する変圧器と、変圧器の2次側の回路に結合された整流回路であって、DC電圧を供給する整流回路とを備える。電圧レギュレータ回路は、制御端子と、電流源と、電流シンク端子とを有するトランジスタと、トランジスタの制御端子に接続されたダイオードであって、実質的に一定な調整DC電圧を制限して第3の所定値未満にするように選択された電圧特性を有するダイオードとを備える。第2の所定値は、充電サイクルの最後に達せられる第1の所定値よりも低いものである。トランジスタはバイポーラ接合トランジスタであり、ダイオードはツェナーダイオードである。抵抗値は、少なくとも1つの充電池の両端間の電圧値と、実質的に一定の調整DC電圧との平均差に関連付けられる。
【0007】
実質的に一定な調整電圧出力は、少なくとも1つの充電池の両端間の最大連続充電電圧に関連付けられる。電池充電装置は、少なくとも1つの充電池に接続された負荷を更に含む。その負荷は、移動式電気装置のDCモータである。その少なくとも1つの充電池は、少なくとも1つ又は複数のニッカド又はニッケル水素セルを更に含む。
【0008】
更なる態様において、少なくとも1つの充電池を充電するための電池充電装置は、2次側の回路と1次側の回路とを有する変圧器と、変圧器の2次側の回路に連結された整流回路であって、あるDC電圧を供給する整流回路と、少なくとも1つの充電池に実質的に一定な調整DC電圧及びある充電電流を供給するために整流回路に結合された電圧レギュレータ回路であって、充電電流の値がその実質的に一定な調整電圧出力及び少なくとも1つの充電池の両端間の電圧値に関連付けられる電圧レギュレータ回路と、電圧レギュレータ回路の出力と少なくとも1つの充電池との間に連結された抵抗器であって、充電電流を制限して第1の所定値未満にするように与えられた抵抗値を有する抵抗器とを含む。
【0009】
以下は、この態様の範囲に含まれる実施形態である。
【0010】
電圧レギュレータ回路は更に、細流充電電流を制限して第2の所定値未満にする。第2の所定値は、第1の所定値未満である。電圧レギュレータ回路は、制御端子と、電流源と、電流シンク端子とを有するトランジスタと、トランジスタの制御端子に接続されたダイオードであって、実質的に一定な調整DC電圧を制限して第3の所定値未満にするように選択された電圧特性を有するダイオードとを備える。トランジスタはバイポーラ接合トランジスタであり、ダイオードはツェナーダイオードである。
【0011】
抵抗値は、少なくとも1つの充電池の両端間の電圧値と、実質的に一定な調整DC電圧との平均差に関連付けられる。実質的に一定な調整電圧出力は、少なくとも1つの充電池の両端間の最大連続充電電圧に関連付けられる。電池充電装置は、少なくとも1つの充電池に接続された負荷を更に含む。その負荷は、移動式電気装置のDCモータである。その少なくとも1つの充電池は、少なくとも1つ又は複数のニッカド又はニッケル水素セルを更に含む。
【0012】
更なる態様において、少なくとも1つの充電池を充電するための電池充電装置が、あるDC電圧を供給するための整流回路と、そのDC電圧を受け、所定値の充電電流で少なくとも1つの充電池に実質的に一定の調整DC電圧を供給するために整流回路に連結された回路であって、その所定値が、少なくとも1つの充電池の両端間の電圧値及び細流充電電流の所定値に関連付けられ、所定の限界値未満となる回路とを含む。いくつかの実施形態において、その回路は、スイッチモードAC/DCアダプタ回路によって実現される。
【0013】
1つ以上の態様が、1つ以上の利点をもたらしてもよい。本発明による1つ以上の実施形態の詳細を、添付の図面及び以下の説明に示す。本発明の他の特徴、目的、及び利点は、その説明と図面から、また特許請求の範囲から明らかとなろう。
【発明を実施するための形態】
【0015】
図1を参照すると、少なくとも1つの充電セルを有する少なくとも1つの充電池12を充電するための例示的な家庭用装置の充電器又は充電池充電装置10が示されている。充電池12は、典型的には、例えば、コードレス電気掃除機、コードレス電話機、及び充電式懐中電灯などの家庭用又は移動式の電子装置に使用される。いくつかの実施形態において、充電池12は、陽極用のカドミウム又は水素吸蔵合金及び陰極用のニッケルを有するニッケルカドミウム又はニッケル水素セルを含む。
図1は、単一の充電池12を示しているが、充電池充電装置10は、2つ以上の充電池を同時に受容し充電するように適合されてもよい。更に、充電池充電装置10は、例えば、円柱状の電池又は角柱状の電池を含めて、種々の電池型を充電してもよい。
【0016】
充電池充電装置10は、85V〜265V及び50Hz〜60Hzの定格で電力を供給する電源などのAC電源14に電気的に結合されている。図示のように、AC電源14は、充電池装置10内で変圧器16に結合されている。いくつかの実施形態において、変圧器16は、1次巻線16aと2次巻線16bとを有する限流線形変圧器である。
充電池充電装置10は、整流回路、例えば、変圧器16の2次巻線16bに結合された全波整流回路18を含む。逓降AC電圧が、変圧器16の1次巻線16aに結合されたAC電源14から、2次巻線16bにおいて誘導される。
【0017】
全波整流回路18は、逓降AC電圧を、充電池12を充電するのに好適なレベルの低DC電圧(例えば、1.5V〜14V)、例えば、上述の各ニッカド又はニッケル水素セルに対して約1.0V〜1.5VのレベルにあるDC電圧に変換する。他のタイプのセルが、異なる電圧レベルを有することもある。
【0018】
フィルタコンデンサ20が、全波整流回路18の出力の両端間に結合されている。そのようなフィルタコンデンサ20の両端間の開回路電圧は、充電池12の両端間の電圧よりも約50%高くなる。電池充電電圧が上昇すると、公称の充電電流を供給する間、フィルタコンデンサ20と充電池12との電圧差が低下する。
【0019】
全波整流回路18は電圧レギュレータ回路22に結合されており、電圧レギュレータ回路22は限流抵抗器24に接続されている。電圧レギュレータ回路22は、抵抗器26と、電流シンク端子、例えばコレクタ28a、制御端子、例えばベース28b、及び電流源端子、例えばエミッタ28cを有するトランジスタ、例えばバイポーラ接合トランジスタ28と、トランジスタ28の制御端子28bとアース端子32との間に逆バイアス状態で結合されたダイオード、例えばツェナーダイオード30とを含む。あるいは、トランジスタ28は電界効果トランジスタである。あるいは、電圧レギュレータ回路22は、例えば可変型3端子線形電圧レギュレータチップ(three-terminal adjustable linear voltage regulator chip)(LM 317)などの集積型の電圧レギュレータチップによって実現される。
【0020】
電圧レギュレータ回路22の出力電圧の値は、充電池12の両端間の許容可能な最大連続充電電圧の関数である。例えば、典型的な移動式電気掃除機を動作させるためには、直列にした6つの充電式ニッカドセルを有する7.2Vの電池が必要である。それゆえに、充電池12の両端間の最大充電電圧は、したがって電圧レギュレータ回路22の端子間の出力電圧の値は、7.2Vを超える(例えば8.4V)ように選択される。
【0021】
バイポーラ接合トランジスタ(トランジスタ28)の制御端子28bと電流源端子28cとの間の電圧降下は、典型的には約0.6Vである。したがって、最大充電電圧が8.4Vである実施形態においては、この電圧降下を補うために、9V(0.6Vプラス8.4V)の逆方向ブレークダウン電圧特性を有するツェナーダイオードがダイオード30として設けられる。
【0022】
限流抵抗器24の抵抗値は、所望の充電電流、充電池12の両端間の充電電圧と電圧レギュレータ回路22の出力電圧の値との平均差に関連付けられる。上述のように、一例において、電圧レギュレータ回路22の出力電圧の値は、8.4V(充電池12の両端間の最大充電電圧)となるように選択される。それゆえに、平均の電池充電電圧が7.8Vであり、所望の充電電流が150mAである場合、限流抵抗器24の抵抗値は約(8.4V−7.8V)/0.15A=4オームである。
【0023】
充電池充電装置10の所望の充電電流は、充電に利用可能な時間に基づいて選択される。例えば、いくつかの実施形態において、充電池充電装置10で使用される充電電流は、平均C/10(10時間の充電速度)となるように選択される。
【0024】
また、充電池充電装置10内の限流抵抗器24の抵抗値は、細流充電電流を制限して所定の限界値未満にするように選択される。したがって、充電池12の両端間の電圧が、電圧レギュレータ回路22の端子間の出力電圧の値、例えば、8.4V(1.4V/充電セル)に近づくと、充電電流は、所定の限界値未満である細流充電値にまで低下する。
【0025】
例えば、充電の最初の10時間(例えば、平均C/10の充電速度での完全充電サイクル)の後、充電池12の両端間の電圧が8.4Vに近づくと、充電池充電装置10から供給される充電電流は、C/50以下に自動的に低下する。その結果として、充電池12は、使用量又は充電パターンにかかわらず、活力的な状態に維持される。
【0026】
充電池12は、負荷、例えば、典型的な家庭用装置、例えば、移動式電気掃除機の負荷モータ36に、スイッチ34を介して接続される。図示のように、所定の定格値(例えば、〜20A)を超える負荷電流から充電池12及び負荷モータ36を保護するために、通常、ヒューズ38が充電池充電装置10内に含められる。
【0027】
いくつかの実施形態において、変圧器16及び全波整流回路18は、充電池充電装置10(
図1)内ではなく、AC電源アダプタ(図示せず)内に設けられる。それゆえに、AC/DCアダプタはAC電圧を受け、DC電圧を供給する。他の実施形態において、変圧器16は、AC電源アダプタ(図示せず)内に設けられ、全波整流回路18は、
図1に示すものと同様の充電池充電装置の一部をなす。
【0028】
ここで
図2を参照すると、充電池充電装置の別の構成が、図示のようにスイッチモードAC/DCアダプタ回路40となっている。この構成40は、変圧器42の一次側に全波整流器41を含み、集積型の制御装置を使用して実現された電圧レギュレータを有している。図示のように、少なくとも1つの充電池12が、スイッチモードAC/DCアダプタ回路40の出力端子間に接続される。上述のように、スイッチモードAC/DCアダプタ回路40は、複数の充電池を同時に受けかつ充電する。加えて、スイッチモードAC/DCアダプタ回路40は、例えば、円柱状の電池又は角柱状の電池を含めて、種々の形状の電池を充電してもよい。
【0029】
充電池12は、負荷、例えば、電気掃除機の負荷モータ36に、スイッチ34及びヒューズ38を介して接続される。
【0030】
スイッチモードAC/DCアダプタ回路40は、1次巻線42aと2次巻線42bとを有する変圧器42を含む。それゆえに、スイッチモードAC/DCアダプタ回路40は、1次側40aと2次側40bとを有している。
【0031】
スイッチモードAC/DCアダプタ回路40の1次側40aは、AC電源14に結合された全波整流回路42と、全波整流回路42の出力端子間に結合されたコンデンサ44とを含む。また、スイッチングトランジスタ46が、変圧器42の1次巻線42aと直列に接続されている。いくつかの実施形態において、スイッチングトランジスタ46は、酸化金属半導体電界効果トランジスタ(MOSFET)を使用して実現される。
【0032】
主制御器50は、スイッチングトランジスタ46のスイッチングサイクルを制御する。したがって、主制御器50は、フィードバック制御されたデューティサイクルを用いてスイッチングトランジスタ46をオン及びオフにする。
【0033】
スイッチモードAC/DCアダプタ回路40の2次側40bは、変圧器42の2次巻線42Bと直列に接続された整流ダイオード52と、整流ダイオード52の陽極端子に接続されたフィルタコンデンサ54とを含む。フィルタコンデンサ54の端子は、抵抗器56a及び56bを有する分圧回路56に更に結合されている。
【0034】
2次側の制御器58が、分圧回路56の抵抗器56bの両端間に結合されている。いくつかの実施形態において、2次側の制御器58は、電流調整と電圧調整の双方を実施するための制御ループを有している。2次側の制御器58は、例えば、スイス国ジュネーブ(Geneva)のSTマイクロエレクトロニクス社(STMicroelectronics)によるTSM1052などの集積型の制御チップによって実現される。2次側の制御器58は更に、独立した光伝送経路60を介してフィードバック信号V
out及びI
outを主制御器50に伝送する。
【0035】
図3A〜3Cは、従来の充電回路(図示せず)を使用した7.2Vのニッケルカドミウム充電池に対する例示的な電池充電電圧62、電池充電電流64、及び細流充電電流66の挙動をそれぞれ示す。
【0036】
図3Bに示すように、電池充電電流64はわずかに低下するが、細流充電電流66は、充電池が完全に充電された後でも(約10時間)、依然として相当に一様である。
図3Cに示すように、48時間の充電の後の瞬間的な細流充電電流66は変動しており、その結果、ピーク値は約330mAとなっている。上述のように、7.2Vのニッケルカドミウム電池に対し、推奨される細流充電限界値は約30mAであり、例えば、1時間の充電速度でC/50、つまり6×1500/50である。結果的に、このようにして充電池12を継続的に過充電すると、充電池12の寿命が短縮され、家庭用装置の実用時間が減じられる。
【0037】
図4A〜4Bは、
図1又は
図2のいずれかに示すタイプの充電池充電器を使用して、直列にした6つの1500mAhのニッカドセルを、8.4Vの定電圧及び500mA以下に制限した電流で24時間超の充電にさらしたものに対する、例示的な電池充電電圧68(
図1の少なくとも1つの充電池12の両端間の電圧)及び電池充電電流70の挙動をそれぞれ示す。また、従来の充電器充電回路を使用して、直列にした6つの1500mAhのニッカドセルを、8.4Vの定電圧で24時間超の充電にさらしたものに対する、例示的な電池充電電圧72、及び電池充電電流74の挙動がそれぞれ示されている。約500mAの最大充電電流で、初めは実質的に完全に枯渇していたニッカド電池は、約10時間で完全に充電される。
【0038】
電池充電電流、例えば、例示的な電池充電電流70、74が充電池12に印加されると、充電池充電装置10の出力端子における電池充電電圧、例えば、例示的な電池充電電圧68、72が上昇し、8.2V〜8.6V(8.4V±0.2V)の平均電圧レベルに達する。その後に、充電池充電装置10の実施形態、例えば、
図1に示す回路に対応する電池充電電圧68は、一定の電圧レベルに維持される。比較のために、従来の充電池充電回路に対応する電池充電電圧72もまた、
図4Aに示されている。図示のように、従来の充電池充電回路は、一様でない出力電圧を示している。
【0039】
完全充電が達成された後に、充電池充電装置10は、変動、例えば、例示的な電池充電電流70に現れるスパイクを生じ、平均すると、非常に低い所定の細流充電値未満、例えば、C/50未満に達する。例えば、電池充電電流70の平均値は、30mA、即ち、1C=1500mAhとしてC/50=30mAh未満に低下する。その後、電池充電電流70は、充電値12が充電値充電装置10から取り外されるまで、引き続き依然として非常に低い所定の細流充電値にとどまる。
【0040】
他の実施形態
本発明の多数の実施形態について説明してきた。それでもなお、様々な修正が、本発明の趣旨及び範囲から逸脱することなくなされ得ることは理解されよう。それゆえに、他の実施形態が以下の特許請求の範囲に含まれる。