特許第6019937号(P6019937)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社デンソーの特許一覧

<>
  • 特許6019937-半導体装置の製造方法 図000002
  • 特許6019937-半導体装置の製造方法 図000003
  • 特許6019937-半導体装置の製造方法 図000004
  • 特許6019937-半導体装置の製造方法 図000005
  • 特許6019937-半導体装置の製造方法 図000006
  • 特許6019937-半導体装置の製造方法 図000007
  • 特許6019937-半導体装置の製造方法 図000008
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6019937
(24)【登録日】2016年10月14日
(45)【発行日】2016年11月2日
(54)【発明の名称】半導体装置の製造方法
(51)【国際特許分類】
   H01L 29/84 20060101AFI20161020BHJP
   H01L 21/3063 20060101ALI20161020BHJP
【FI】
   H01L29/84 B
   H01L29/84 A
   H01L21/306 L
【請求項の数】4
【全頁数】12
(21)【出願番号】特願2012-189352(P2012-189352)
(22)【出願日】2012年8月30日
(65)【公開番号】特開2014-49512(P2014-49512A)
(43)【公開日】2014年3月17日
【審査請求日】2015年2月13日
(73)【特許権者】
【識別番号】000004260
【氏名又は名称】株式会社デンソー
(74)【代理人】
【識別番号】110001472
【氏名又は名称】特許業務法人かいせい特許事務所
(72)【発明者】
【氏名】有吉 博海
【審査官】 加藤 俊哉
(56)【参考文献】
【文献】 特開平10−135484(JP,A)
【文献】 特開平07−086619(JP,A)
【文献】 特開2003−069044(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 29/84
H01L 21/3063
(57)【特許請求の範囲】
【請求項1】
電気化学エッチングにより薄肉状に形成されたダイヤフラム(23)と、動作用電源端子(7)に印加された動作用電源に基づいて動作すると共に前記ダイヤフラム(23)に印加された物理量を検出するセンシング部(13)と、が半導体基板(11)に形成されてなる半導体装置の製造方法であって、
前記半導体基板(11)に逆流防止用のダイオード素子(17)をCMOS工程によって形成する工程と、
前記半導体基板(11)に抵抗素子(16)を形成する工程と、
前記半導体基板(11)のうち前記ダイヤフラム(23)が形成される部分に外部から前記抵抗素子(16)を介してエッチング用電源を供給するための第1通電経路(14)を形成する工程と、
前記半導体基板(11)のうち前記ダイヤフラム(23)が形成される部分と前記動作用電源端子(7)とを電気的に接続するための第2通電経路(15)を形成する工程と、
前記第1通電経路(14)及び前記第2通電経路(15)を形成した後、前記第1通電経路(14)から前記抵抗素子(16)を介して前記半導体基板(11)のうち前記ダイヤフラム(23)となる部分に前記エッチング用電源を供給し、前記半導体基板(11)に前記電気化学エッチングを行うことにより前記ダイヤフラム(23)を形成する工程と、
を含んでいることを特徴とする半導体装置の製造方法。
【請求項2】
前記ダイヤフラム(23)を形成する工程の後、前記抵抗素子(16)を断線する工程
を含んでいることを特徴とする請求項に記載の半導体装置の製造方法。
【請求項3】
前記抵抗素子(16)を形成する工程では、前記抵抗素子(16)として、薄膜ヒューズ抵抗もしくはAl配線のいずれかを形成することを特徴とする請求項またはに記載の半導体装置の製造方法。
【請求項4】
前記半導体基板(11)を用意する工程では、前記半導体基板(11)として第1導電型のものを用意し、
前記ダイオード素子(17)を形成する工程では、前記半導体基板(11)の表層部に第2導電型のソース領域(29)と第2導電型のドレイン領域(30)とを形成し、これらソース領域(29)及びドレイン領域(30)の間のチャネル領域(32)の上方にゲート電極(31)を形成することにより、前記ゲート電極(31)の印加電圧に基づいて前記チャネル領域(32)に形成されるチャネルが制御されるMOS構造のダイオード素子(17)を形成することを特徴とする請求項ないしのいずれか1つに記載の半導体装置の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電気化学エッチングにより形成された薄肉部を有する半導体装置の製造方法に関する。
【背景技術】
【0002】
従来より、薄肉部すなわちダイヤフラムを有する半導体センサとして、例えばピエゾ抵抗式の圧力センサや加速度センサ等が知られている。検出精度に影響するダイヤフラムの厚さを精度良く制御するため、ダイヤフラムは半導体ウェハに対する電気化学エッチング工程により形成されることが、例えば特許文献1に提案されている。
【0003】
ここで、特許文献1では、二つの逆流防止用のダイオードが備えられた半導体装置の構成が提案されている。一方のダイオードは電気化学エッチング時の逆流防止ダイオードであり、他方のダイオードは回路動作時の逆流防止ダイオードである。これらのダイオードは、P型の半導体基板の上にN型のエピタキシャル層が形成されて構成されたウェハの表面近傍を電流が流れるように、横方向PNPトランジスタ構造として形成されている。
【0004】
また、半導体基板とエピタキシャル層との界面部には高濃度のn形埋込層が予め形成されている。これは、製造プロセスにおいて各ダイオードがバイポーラ工程によって形成されているからである。埋込層は、電気化学エッチング工程においてウェハにバイアスが印加されたとき、エピタキシャル層のうちのダイオード領域から半導体基板側に流れるリーク電流を阻止する役割を果たす。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特許第3564898号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
近年、半導体センサは高精度化、高機能化、高集積化に伴い、デジタル信号処理の1チップ集積化センサが主流になりつつある。このため、半導体センサを製造するに際し、バイポーラ工程ではなくCMOS工程の製造プロセスによりデバイスを形成することが行われ始めている。
【0007】
ここで、特許文献1で提案されている半導体センサは、バイボーラ工程に電気化学エッチング工程を追加して製造されるため、高機能化や高集積化は困難である。そこで、半導体センサの高機能化や高集積化のためにCMOS工程に電気化学エッチング工程を追加することが考えられる。
【0008】
しかし、CMOS工程で形成されたダイオード構造は、例えばP型の半導体基板の表層部にN型のウェル領域が形成されていると共にウェル領域の表層部にPN領域が形成された構造であり、CMOS工程で用いる半導体基板に埋込層は設けられていない。このため、CMOS工程で形成されたダイオードを順方向で使用する場合は半導体基板の厚さ方向に形成された寄生PNPトランジスタを介してウェル領域から半導体基板へリーク電流が発生してしまう。
【0009】
通常、電気化学エッチング処理では、例えばP型の半導体基板と半導体基板の表層部に形成されたN型のウェル領域とのPN接合部分に形成される空乏層まで半導体基板がエッチングされると、エッチング液とN型のウェル領域とに電位差が生じる。これにより、エッチング液内に電流が流れ、エッチングが停止する。
【0010】
しかし、CMOS工程で半導体基板にダイオード構造が形成された場合、電気化学エッチング時の逆流防止ダイオードは電気化学エッチング工程において順方向で使用することになる。このため、上述のリーク電流の影響により、エッチングが終了していなくてもエッチング液に電流が流れてしまうため、バイボーラ工程のように正常な電気化学エッチングができない。したがって、ダイヤフラムの厚さの精度が悪くなり、高精度な半導体センサが実現できないという問題があった。
【0011】
本発明は上記点に鑑み、CMOS工程で形成されたダイオードを備えた構成であっても、電気化学エッチングによって形成された高精度なダイヤフラムを備えた半導体装置の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0012】
上記目的を達成するため、請求項1に記載の発明では、電気化学エッチングにより薄肉状に形成されたダイヤフラム(23)と、動作用電源端子(7)に印加された動作用電源に基づいて動作すると共にダイヤフラム(23)に印加された物理量を検出するセンシング部(13)と、が半導体基板(11)に形成されてなる半導体装置の製造方法であって、以下の点を特徴としている。
【0013】
すなわち、半導体基板(11)に逆流防止用のダイオード素子(17)をCMOS工程によって形成し、半導体基板(11)に抵抗素子(16)を形成する。続いて、半導体基板(11)のうちダイヤフラム(23)が形成される部分に外部から抵抗素子(16)を介してエッチング用電源を供給するための第1通電経路(14)を形成する。また、半導体基板(11)のうちダイヤフラム(23)が形成される部分と動作用電源端子(7)とを電気的に接続するための第2通電経路(15)を形成する。
【0014】
そして、第1通電経路(14)及び第2通電経路(15)を形成した後、第1通電経路(14)から抵抗素子(16)を介して半導体基板(11)のうちダイヤフラム(23)となる部分にエッチング用電源を供給し、半導体基板(11)に電気化学エッチングを行うことによりダイヤフラム(23)を形成することを特徴とする。
【0015】
これによると、電気化学エッチング時に外部からエッチング用電源が第1通電経路(14)及び抵抗素子(16)を介して半導体基板(11)に供給されたとしても、抵抗素子(16)の構造に起因した寄生トランジスタは半導体基板(11)に発生しない。また、ダイオード素子(17)がCMOS工程で形成されていたとしても、電気化学エッチング時は逆流防止用として動作するため順方向では動作しない。
【0016】
以上により、CMOS工程で形成されたダイオード素子(17)を備えた構成であっても、電気化学エッチング時にダイオード素子(17)の構造から半導体基板(11)へのリーク電流を阻止することができる。また、電気化学エッチング時に当該リーク電流が半導体基板(11)に流れないので、高精度なダイヤフラム(23)が形成された構造を得ることができる。
【0020】
なお、この欄及び特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
【図面の簡単な説明】
【0021】
図1】本発明の第1実施形態に係る半導体装置の全体構成を示した図である。
図2図1の半導体センサ部が形成された半導体基板の断面図である。
図3図1のダイオード素子の断面構造と等価回路を示した図である。
図4図1の半導体装置の一製造工程を示した図である。
図5】本発明の第3実施形態に係る半導体センサ部の回路構成を示した図である。
図6】本発明の第4実施形態に係る半導体センサ部の回路構成を示した図である。
図7図6の半導体センサ部が形成された半導体基板の断面図である。
【発明を実施するための形態】
【0022】
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。また、以下の各実施形態で示されるP−型、P+型は本発明の第1導電型に対応し、N−型、N+型は本発明の第2導電型に対応している。
【0023】
(第1実施形態)
以下、本発明の第1実施形態について図を参照して説明する。本実施形態に係る半導体装置は、物理量として例えば圧力媒体の圧力を検出する半導体ピエゾ抵抗式圧力センサとして構成されたものである。
【0024】
図1に示されるように、半導体装置は、半導体センサ部1と、演算増幅器2(Amp)と、アナログデジタル変換回路3(ADC)と、デジタル補正演算回路4と、メモリ5(ROM)と、出力インターフェース6と、を備えて構成されている。また、半導体装置は、外部との電気的接続のため、動作用電源端子7(Vcc)と、ピエゾ抵抗島電位端子8(VN+)と、電気化学エッチング用電源端子9(Vin)と、出力端子10(Vout)と、を備えている。これらは、図2に示された半導体基板11に形成されている。
【0025】
半導体センサ部1は、圧力媒体の圧力を検出するように構成されている。具体的に、半導体センサ部1は、図1に示されるように定電流源12と、センシング部13と、第1通電経路14と、第2通電経路15と、抵抗素子16と、ダイオード素子17と、を備えている。言い換えると、半導体基板11はこれらの構成要素を備えていると言える。
【0026】
定電流源12は、動作用電源端子7に印加された動作用電源に基づいて一定電流を生成する回路部である。この定電流源12は、動作用電源端子7とセンシング部13との間の経路に設けられている。
【0027】
センシング部13は、定電流源12から供給される一定電流に基づいて圧力を検出すると共に、検出した圧力に応じた信号を出力するように構成された回路部である。センシング部13は、4つのピエゾ抵抗18が四角形に接続されて構成されたホイートストンブリッジ回路を備えている。ホイートストンブリッジ回路の一方の一対の対角点は定電流源12と基準電位(GND)とにそれぞれ接続されている。また、ブリッジ回路の他方の一対の対角点から物理量に応じた信号が出力される。
【0028】
図2に示されるように、センシング部13はP−型の半導体基板11に形成されている。半導体基板11の一面19側の表層部にはN−型のピエゾ抵抗島20が形成されている。ピエゾ抵抗島20はウェル領域である。また、半導体基板11の他面21側は電気化学エッチングされたことにより凹部22が形成され、ピエゾ抵抗島20の一部が凹部22から露出している。この凹部22から露出するピエゾ抵抗島20が薄肉状のダイヤフラム23となっている。
【0029】
そして、ピエゾ抵抗島20の表層部であってダイヤフラム23とピエゾ抵抗島20との接続部分に4つのP+型のピエゾ抵抗18がそれぞれ離間して形成されている。各ピエゾ抵抗18は、半導体基板11の一面19側に形成された図示しない配線により電気的に接続されている。
【0030】
さらに、ピエゾ抵抗島20の表層部にはピエゾ抵抗18に離間してN+型の最高電位領域24が形成されている。最高電位領域24はピエゾ抵抗島電位端子8に電気的に接続されており、半導体センサ部1の通常動作時に最高電位となるようにピエゾ抵抗島電位端子8を介して所定の電圧が印加される。なお、図1には最高電位領域24が示されていると共に、ピエゾ抵抗島20の範囲が破線で示されている。
【0031】
第1通電経路14は、電気化学エッチング用電源端子9と最高電位領域24とを繋ぐ配線経路である。具体的には、第1通電経路14は、半導体基板11の電気化学エッチング時に半導体基板11のうちダイヤフラム23が形成される部分に外部からエッチング用電源を供給するための配線経路である。
【0032】
第2通電経路15は、動作用電源端子7と最高電位領域24とを繋ぐ配線経路である。この第2通電経路15は、動作用電源端子7とホイートストンブリッジ回路とを繋ぐ配線経路とは別経路である。
【0033】
抵抗素子16は、半導体基板11の電気化学エッチング時に半導体基板11のうち最高電位領域24にエッチング用電源を供給する際に用いられる素子である。抵抗素子16は第1通電経路14に設けられており、抵抗素子16の一端側が第1通電経路14を介して電気化学エッチング用電源端子9に接続され、他端側が第1通電経路14を介して半導体基板11の最高電位領域24に接続されている。
【0034】
このような抵抗素子16は、図2に示されるように、半導体基板11の上に形成された図示しない絶縁膜の上に形成されている。また、本実施形態では、抵抗素子16として薄膜ヒューズ抵抗が用いられている。薄膜ヒューズ抵抗は、例えばCrSiやポリシリコン等で形成されている。
【0035】
ダイオード素子17は、電気化学エッチング時に半導体基板11に印加されるエッチング用電源に基づいて半導体基板11から第2通電経路15を介してセンシング部13に電流が流れることを阻止するための逆流防止用としての役割を果たすものである。ダイオード素子17は、図1に示されるように第2通電経路15に設けられている。
【0036】
また、ダイオード素子17は、半導体基板11にCMOS工程によって形成されている。図2に示されるように、ダイオード素子17は、半導体基板11のピエゾ抵抗島20の周囲の表層部に形成されたN−型のウェル領域25に形成されている。ウェル領域25の表層部には、N+型領域26と、N+型領域26に離間すると共にこのN+型領域26を挟むように形成されたP+型領域27と、が形成されている。そして、一方のP+型領域27が第2通電経路15を介して動作用電源端子7に電気的に接続され、他方のP+型領域27及びN+型領域26が第2通電経路15を介して最高電位領域24に電気的に接続されている。
【0037】
すなわち、図3に示されるように、ダイオード素子17はPNPトランジスタとして構成され、このPNPトランジスタがダイオードとして動作する。なお、図3に示されるように、CMOS工程で形成されたダイオード素子17は順方向に電流を流す動作を行うと、半導体基板11の厚さ方向に発生した寄生PNPトランジスタによって少なからずリーク電流ILが流れる。
【0038】
また、図1に示される演算増幅器2は、半導体センサ部1から入力したアナログ信号を所定の増幅率で増幅するための回路部である。演算増幅器2は、例えばオペアンプ等の種々の回路によって構成されている。
【0039】
アナログデジタル変換回路3は、演算増幅器2で増幅されたアナログ信号をデジタル信号に変換して出力する回路部である。また、デジタル補正演算回路4は、メモリ5に予め記憶されたパラメータデータを用いて動作する回路部であり、アナログデジタル変換回路3から入力したデジタル信号に対して所定の補正を行う。
【0040】
出力インターフェース6は、デジタル補正演算回路4で補正されたデジタル信号を出力端子10を介して外部に出力するためのインターフェース回路である。
【0041】
上記各構成のうち、定電流源12、抵抗素子16、ダイオード素子17、演算増幅器2、アナログデジタル変換回路3、デジタル補正演算回路4、メモリ5、及び出力インターフェース6等の各回路は、半導体基板11のうちピエゾ抵抗島20の周囲に形成されている。
【0042】
以上が、本実施形態に係る半導体装置の全体構成である。このような半導体装置の構成において、ダイヤフラム23に圧力媒体の圧力が印加されると、ダイヤフラム23が変形するので、ピエゾ抵抗18も変形する。これにより、ピエゾ抵抗18の抵抗値が増減し、ホイートストンブリッジ回路の出力電圧が圧力に比例して増加する。この電圧をアナログデジタル変換回路3で増幅し、デジタル補正演算回路4で補正して出力インターフェース6を介して出力する。
【0043】
ここで、回路動作中において最高電位領域24にはダイオード素子17を介して動作用電源に基づく電圧が印加されるか、もしくは電気化学エッチング用電源端子9を介して所定の電圧が印加される。これにより、最高電位領域24は半導体センサ部1において最高電位となる。したがって、ピエゾ抵抗島20において最高電位領域24とピエゾ抵抗18との間にはバイアスが加わることになるので、ピエゾ抵抗18からの漏れ電流を抑制することができる。
【0044】
次に、半導体装置の製造方法について説明する。まず、P−型の半導体ウェハを用意する。この半導体ウェハに半導体装置となる部分を多数形成することとなる。続いて、半導体ウェハの表面にレジスト等のマスクを配置し、P(リン)等のN型不純物をイオン注入する。また、半導体ウェハの表面に別のマスクを配置し、As(ヒ素)等のN型不純物やB(ホウ素)等のP型不純物をイオン注入する。
【0045】
この後、半導体ウェハを高温処理して不純物を熱拡散することにより、N−型のウェル領域であるピエゾ抵抗島20やウェル領域25等を形成すると共に、P+型のピエゾ抵抗18やP+型領域27、さらにはN+型の最高電位領域24及びN+型領域26を形成する。すなわち、半導体ウェハのうち半導体基板11となる部分にCMOS工程によって逆流防止用のダイオード素子17を形成する。なお、半導体ウェハの半導体基板11となる部分に素子等を形成するCMOS工程においては、定電流源12や演算増幅器2等の他の回路部も形成する。
【0046】
この後、半導体ウェハの表面に図示しない絶縁膜を形成する。そして、この絶縁膜の上に抵抗素子16、第1通電経路14、第2通電経路15等の配線を形成する。また、動作用電源端子7、ピエゾ抵抗島電位端子8、電気化学エッチング用電源端子9、及び出力端子10の各端子を形成する。
【0047】
抵抗素子16として薄膜ヒューズ抵抗を形成するが、当該薄膜ヒューズ抵抗の抵抗値を小さくする。この理由は、半導体ウェハを電気化学エッチングする際に電気化学エッチングが停止したときに抵抗素子16に電流が流れ、この電流による抵抗素子16の電圧降下を抑えるためである。
【0048】
ここで、半導体ウェハのスクライブラインには、電気化学エッチング用電源端子9にエッチング用電源を印加するための配線も形成する。そして、この配線と電気化学エッチング用電源端子9とが繋がるように当該配線を形成する。ここまでの製造プロセスによって、半導体基板11の一面19側の構造が全て完成する。
【0049】
続いて、図4に示されるように、半導体ウェハの裏面側に保護膜28を形成し、半導体ウェハのうちダイヤフラム23となる部分に対応した領域を開口する。なお、図4では、半導体ウェハに形成された多数の半導体装置のうちの一つを示している。
【0050】
そして、図示しない電源回路の正極端子に半導体ウェハのスクライブラインに形成した配線を接続すると共に当該電源回路の負極端子に図示しない対向電極(GND電極)を接続し、半導体ウェハ及び対向電極を水酸化カリウム等のエッチング液に入れて電気化学エッチングを行う。
【0051】
具体的には、上述の半導体ウェハのスクライブラインに形成した配線を介して各半導体装置の電気化学エッチング用電源端子9にエッチング用電源を供給する。これにより、エッチング用電源に基づく電圧を第1通電経路14及び抵抗素子16を介して半導体ウェハに印加する。この状態ではN−型のピエゾ抵抗島20とP−型の半導体ウェハは逆バイアスになっている、また、第2通電経路15は半導体ウェハに接続されているが、第2通電経路15には逆流防止用のダイオード素子17を設けているため、電気化学エッチング用電源端子9にエッチング用電源を印加しても第2通電経路15から定電流源12側に電流は流れない。
【0052】
一方、半導体ウェハのうちピエゾ抵抗島20には電圧が印加されるので、ピエゾ抵抗島20と半導体ウェハとの間のpn接合に空乏層が広がる。この空乏層の広がりがエッチング処理により残すべきダイヤフラム23の厚みを制御するため、ダイヤフラム23の厚さを精度よく制御することができる。
【0053】
P−型の半導体ウェハのエッチングが進み、N−型のピエゾ抵抗島20が露出すると逆バイアスの状態がなくなるため、電気化学エッチング用電源端子9からエッチング液内の対向電極に電流が流れ出しエッチング液とN−型のピエゾ抵抗島20に電位差が発生することでエッチングが停止する。
【0054】
この後、半導体ウェハの裏面側の保護膜28を除去し、スクライブラインに沿ってダイシングカットすることにより個々の半導体装置に分割する。こうして半導体装置が完成する。なお、半導体ウェハに保護膜28を残しておいても良い。
【0055】
以上説明したように、本実施形態では、ダイオード素子17がCMOS工程で形成されていると共に、抵抗素子16を介してエッチング用電源が半導体基板11に供給される構成となっているそして、ダイヤフラム23が電気化学エッチングにより形成されていることが特徴となっている。
【0056】
これにより、電気化学エッチング時に外部からエッチング用電源が第1通電経路14及び抵抗素子16を介して半導体基板11に供給されたとしても、抵抗素子16の構造に起因した寄生トランジスタが半導体基板11に発生しないようにすることができる。
【0057】
また、ダイオード素子17はCMOS工程で形成されているが、電気化学エッチング時は逆流防止用として動作するため順方向では動作しない。したがって、電気化学エッチング時にダイオード素子17から半導体基板11にリーク電流ILが流れることを阻止することができ、ダイヤフラム23の厚みの精度に影響を及ぼさないようにすることができる。このため、高精度なダイヤフラム23を形成することができる。
【0058】
なお、実際に半導体装置を動作させると、動作用電源端子7、ダイオード素子17、抵抗素子16、電気化学エッチング用電源端子9の経路に流れる電流とダイオード素子17の寄生PNPトランジスタで発生するリーク電流ILとの和で大きな電流が流れることになる。しかし、抵抗素子16の抵抗値を小さくしているため、この電流を抑制することができる。
【0059】
(第2実施形態)
本実施形態では、第1実施形態と異なる部分について説明する。本実施形態では、半導体装置において、抵抗素子16は断線している。断線とは、抵抗素子が物理的に破壊されて電気的導通が遮断された状態である。
【0060】
これにより、センシング部13が物理量を検出する通常動作時に、動作用電源端子7からダイオード素子17及び抵抗素子16を介して電気化学エッチング用電源端子9に流れる電流を阻止することができる。このため、第1通電経路14に設けられた抵抗素子16に電流が流れることによって消費電流が増大してしまうことを防止することができる。
【0061】
抵抗素子16は、電気化学エッチングにより半導体基板11にダイヤフラム23を形成した後に断線する。抵抗素子16を断線する方法としては、レーザを用いたトリミングの方法やピエゾ抵抗島電位端子8と電気化学エッチング用電源端子9との間に大電流を流して抵抗素子16を破壊する方法等がある。
【0062】
なお、抵抗素子16の抵抗値を例えば数kΩ以上にある程度大きくしても電気化学エッチングでダイヤフラム23の厚さが精度良く決まるのであれば、抵抗素子16を断線する必要はない。
【0063】
(第3実施形態)
本実施形態では、第1、第2実施形態と異なる部分について説明する。図5に示されるように、第1通電経路14に設けられた抵抗素子16としてAl配線(AL)が設けられている。このAl配線(AL)は、半導体基板11の上に図示しない絶縁膜を介して、蒸着やスパッタ等の方法により形成されている。
【0064】
Al配線は抵抗が非常に小さいので、電圧降下がほとんどないという利点がある。このため、抵抗素子16で消費される電流を小さくすることができる。また、電気化学エッチング時には、ピエゾ抵抗島20に高精度な電圧を印加することが可能となる。なお、第2実施形態で説明したように、電気化学エッチング終了後、Al配線を断線しても良い。
【0065】
(第4実施形態)
本実施形態では、第1〜第3実施形態と異なる部分について説明する。本実施形態では、図6に示されるように、ダイオード素子17としてMOS構造のものを採用している。
【0066】
具体的には、図7に示されるように、ダイオード素子17は、半導体基板11の表層部に形成されたN+型のソース領域29及びN+型のドレイン領域30と、半導体基板11の上の図示しないゲート絶縁膜の上に形成されたゲート電極31と、を備えている。ゲート電極31はソース領域29とドレイン領域30との間のチャネル領域32の上方に形成されている。
【0067】
このような構成によると、ゲート電極31への印加電圧に基づいてチャネル領域32に形成されるチャネルが制御されることでダイオード素子17に電流が流れるようになっている。すなわち、本実施形態ではダイオード素子17はNチャネル型のMOS構造になっている。
【0068】
このようにダイオード素子17をMOS構造とすることにより、ダイオード素子17を流れる電流はチャネル領域32に形成されるチャネルすなわち半導体基板11の一面19の面方向に沿って流れる。これにより、半導体基板11の厚さ方向にリーク電流ILが漏れないようにすることができる。
【0069】
ダイオード素子17を形成する際には、上述のCMOS工程により形成することができる。具体的には、半導体ウェハの表層部にN型の不純物をイオン注入して熱拡散することによりソース領域29及びドレイン領域30を形成する。また、半導体ウェハの所定領域にゲート絶縁膜を形成し、このゲート絶縁膜の上すなわちチャネル領域32の上方にゲート電極31を形成する。
【0070】
なお、第2実施形態で説明したように、本実施形態に係る抵抗素子16を電気化学エッチング終了後に断線しても良いし、抵抗素子16として第3実施形態で説明したAl配線を用いても良い。
【0071】
(他の実施形態)
上記各実施形態で示された半導体装置の構成は一例であり、上記で示した構成に限定されることなく、本発明を実現できる他の構成とすることもできる。例えば、ダイヤフラム23に設けられたセンシング部13は圧力を検出する場合に限らず、物理量として例えば加速度を検出するように構成されていても良い。また、半導体装置の用途としては、車両や医療機器等に用いることができる。
【符号の説明】
【0072】
7 動作用電源端子
11 半導体基板
13 センシング部
14 第1通電経路
15 第2通電経路
16 抵抗素子
17 ダイオード素子
23 ダイヤフラム
29 ソース領域
30 ドレイン領域
31 ゲート電極
32 チャネル領域
図1
図2
図3
図4
図5
図6
図7