特許第6021485号(P6021485)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社朝日ラバーの特許一覧

<>
  • 特許6021485-光学部材付半導体発光装置 図000002
  • 特許6021485-光学部材付半導体発光装置 図000003
  • 特許6021485-光学部材付半導体発光装置 図000004
  • 特許6021485-光学部材付半導体発光装置 図000005
  • 特許6021485-光学部材付半導体発光装置 図000006
  • 特許6021485-光学部材付半導体発光装置 図000007
  • 特許6021485-光学部材付半導体発光装置 図000008
  • 特許6021485-光学部材付半導体発光装置 図000009
  • 特許6021485-光学部材付半導体発光装置 図000010
  • 特許6021485-光学部材付半導体発光装置 図000011
  • 特許6021485-光学部材付半導体発光装置 図000012
  • 特許6021485-光学部材付半導体発光装置 図000013
  • 特許6021485-光学部材付半導体発光装置 図000014
  • 特許6021485-光学部材付半導体発光装置 図000015
  • 特許6021485-光学部材付半導体発光装置 図000016
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6021485
(24)【登録日】2016年10月14日
(45)【発行日】2016年11月9日
(54)【発明の名称】光学部材付半導体発光装置
(51)【国際特許分類】
   H01L 33/58 20100101AFI20161027BHJP
   H01L 33/54 20100101ALI20161027BHJP
【FI】
   H01L33/58
   H01L33/54
【請求項の数】11
【全頁数】16
(21)【出願番号】特願2012-158413(P2012-158413)
(22)【出願日】2012年7月17日
(65)【公開番号】特開2014-22489(P2014-22489A)
(43)【公開日】2014年2月3日
【審査請求日】2015年5月8日
(73)【特許権者】
【識別番号】597096161
【氏名又は名称】株式会社朝日ラバー
(74)【代理人】
【識別番号】100133798
【弁理士】
【氏名又は名称】江川 勝
(72)【発明者】
【氏名】本柳 翔之
【審査官】 高椋 健司
(56)【参考文献】
【文献】 特開2012−064654(JP,A)
【文献】 特開2011−233315(JP,A)
【文献】 国際公開第2011/033407(WO,A2)
【文献】 特開昭63−142684(JP,A)
【文献】 特開2005−354545(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 33/00−33/64
G02B 9/00−17/08,21/02−21/04,
25/00−25/04
(57)【特許請求の範囲】
【請求項1】
半導体発光素子及び前記半導体発光素子を封止する半球状の透明封止体を備えた発光装置と、前記半導体発光素子から発光される光の配光特性を制御するための光学部材とを備え、
前記透明封止体の表面と前記光学部材との間には前記透明封止体及び前記光学部材よりも屈折率が小さい層がさらに存在し、
前記光学部材の形状は、
前記半球状の透明封止体を収容するための凹状の内側輪郭と、光の出射面の輪郭を規定する外側輪郭とを備え、
前記半導体発光素子の発光中心における発光面に対する垂直軸を光軸とし、前記光軸を含む面で切断した任意の縦断面において
前記発光中心から引いた該光軸に対して角度θを成す仮想直線を基準線とし、前記光軸と、前記基準線と前記内側輪郭の表面との交点における法線との成す角度をψとし、前記基準線と前記外側輪郭の表面との交点における法線との成す角度をδとした場合、
0°≦θ≦45°の範囲で0≦δ≦30°であり、
0°<θ≦15°の範囲にψ/θが最大値(ψ/θ)maxになる角度θxを有し、
θx>θの範囲ではθが大きくなるにつれてψ/θが増加し、θ>θxの範囲では少なくともθ=70°の範囲まではθが大きくなるにつれてψ/θが減少し、
前記半球状透明封止体の表面と前記凹状の内側輪郭の表面との前記基準線上の距離は、θ=0°のとき最大になり、45°<θ≦70°の範囲の領域に前記距離が最小になる角度θを有することを特徴とする光学部材付発光装置。
【請求項2】
角度θにおける、前記半球状の透明封止体の表面と凹状の内側輪郭の表面との基準線上における距離をD(θ)とした場合、
D(θ)=Acos(Bθ)+C(式中、0≦θ≦70°、0≦A≦1、0≦B≦5、-1≦C≦1)で表され、
前記θに対してD(θ)をプロットしたグラフにおいて、20<θ<45°の範囲に存在する変化点を境として、前記θが大きい側のA,B,Cそれぞれが、前記θが小さい側のA,B,Cそれぞれよりも小さい請求項1に記載の光学部材付発光装置。
【請求項3】
前記外側輪郭は、少なくとも0°≦θ≦45°の範囲において、平面を含む、上に凸状の滑らかな曲面であり、角度θの微小変化量Δθに対する角度δの微小変化量Δδの比をΔδ/Δθとした場合、0°≦θ≦20°の範囲で0≦Δδ/Δθ≦0.2であり、20°<θ≦45°の範囲で0.05≦Δδ/Δθ≦1.2である請求項1または2に記載の光学部材付発光装置。
【請求項4】
前記半導体発光素子の発光中心の表面を基準とし、前記半球状透明封止体の最大高さをH1、前記光学部材の最大高さをH2とした場合、H2/H1≦3である請求項1〜3の何れか1項に記載の光学部材付発光装置。
【請求項5】
角度θ±15°の範囲に最大相対光量を有する請求項1〜4の何れか1項に記載の光学部材付発光装置。
【請求項6】
前記屈折率が小さい層は、空気層である請求項1〜5の何れか1項に記載の光学部材付発光装置。
【請求項7】
前記屈折率が小さい層の屈折率は、前記半球状透明封止体の屈折率よりも0.3以上小さい請求項1〜5の何れか1項に記載の光学部材付発光装置。
【請求項8】
5°≦θ≦15°の範囲にψ/θが最大値(ψ/θ)maxになる角度θxを有する請求項1〜7の何れか1項に記載の光学部材付発光装置。
【請求項9】
前記光軸との交点付近において、前記凹状の内側輪郭の曲率が、前記半球状の透明封止体の曲率よりも大きい請求項1〜8の何れか1項に記載の光学部材付発光装置。
【請求項10】
前記発光装置は、裏面にアノードマーク及びカソードマークを有するサブマウント基板と、前記サブマウント基板の主面に実装された前記半導体発光素子と前記サブマウント基板上で前記半導体発光素子を封止する前記半球状の透明封止体を備え、
前記光学部材は、前記半球状の透明封止体を収容する前記凹状の内側輪郭を形成する凹部と、前記凹部に連接する前記サブマウント基板を固定するための嵌合形状を備えるフランジ部分を底面に備え、
前記フランジ部分の角に前記サブマウント基板のアノードマーク及びカソードマークの方向である端子極性の方向を示すための切り欠き形状が形成されている請求項1〜9の何れか1項に記載の光学部材付発光装置。
【請求項11】
前記発光装置は、裏面にアノードマーク及びカソードマークを有するサブマウント基板と、前記サブマウント基板の主面に実装された前記半導体発光素子と前記サブマウント基板上で前記半導体発光素子を封止する前記半球状の透明封止体を備え、
前記光学部材は、前記半球状の透明封止体を収容する前記凹状の内側輪郭を形成する凹部と、前記凹部に連接する前記サブマウント基板を固定するための嵌合形状を備えるフランジ部分を底面に備え、
前記フランジ部分には、前記凹部に連接する部分に外部に連通する通気孔を有する請求項1〜10の何れか1項に記載の光学部材付発光装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、照射面における照度分布のバラつきを抑えながら広い配光角度で配光する、光学部材を備えた発光装置に関する。
【背景技術】
【0002】
近年、発光ダイオード(LED)を用いた半導体発光装置(以下、LEDパッケージとも呼ぶ)の用途が広がっている。具体的には、例えば、一般室内照明器具、車内灯のようなスポットライト、薄型テレビや情報端末機器に用いられるバックライト、広告パネルやサインパネル、自動車のテールランプ、街灯、交通信号機等で採用されている。
【0003】
従来、LEDパッケージとして、例えば、図10に示したような平面型のパッケージであるLEDパッケージ300が広く知られていた。このようなLEDパッケージ300は、LED素子301を収容する上面が開口した凹状の発光体収容部材302を有する。そして、LED素子301を収容する凹部は、表面が平面または中央部分がやや窪んだ輪郭を形成する透明封止体303で封止されている。このようにLED素子をパッケージにすることにより、回路基板への実装が容易になった。
【0004】
図10に示したような、LEDパッケージ300においては、図10中の矢印で示すように、LED素子301から発せられた光は、透明封止体303の内部及び界面で反射または屈折されることによりその光路が曲げられ、それにより、外部に出射する光の照射範囲が広くなる。このような平面型のパッケージは、図11に示すように、LED素子301の中心を通る光出射面に対して垂直な光軸を中心として、発光面の輝度が全方向でほぼ一定になるランバート配光を示す。ランバート配光においては、光軸とのなす角をαとした場合、光度分布はcos αに比例する。しかし、このような平面型のパッケージにおいては、透明封止体の内部で全反射を繰り返して乱反射される光が存在するために、光量を大幅にロスしてしまうという問題があった。
【0005】
このような平面型のパッケージの光量のロスの問題を解決した、光の取出効率が高いLEDパッケージとして、図12に示すような、サブマウント基板1bにマウントされたLED素子1aを半球状の透明封止体1cで封止してなるLEDパッケージ1が知られている。
【0006】
半球状の透明封止体1cを備えたLEDパッケージ1は、LED素子1aからの発光を透明封止体1cの内部に放射する。そして、放射された光は透明封止体1cの半球状の界面にほぼ直角に入射し、全反射されることなく透明封止体1cから出射する。このようなLEDパッケージ1によれば、平面型のパッケージで生じるような光量のロスが抑制される。
【0007】
半球状の透明封止体を備えたLEDパッケージは、上述のように光量のロスは抑制されるが、次のような問題があった。図12の矢印に示すように、半球状の透明封止体1cから出射される光は、透明封止体1cから空気層である外部に出射するときに半球状の透明封止体1cの凸レンズ効果により、平面型のパッケージに比べて光軸方向に集光される傾向があった。具体的には、平面型のパッケージを備えたLEDパッケージは、図11に示すように、完全拡散するランバート配光になるように発光する。一方、半球状の透明封止体を備えたLEDパッケージは、図13に示すように、ランバート配光が崩れて光軸方向に集光し、相対的に光軸近傍の光量が多くなり、その周囲の光量が相対的に少なくなる。その結果、被照射面における照度のバラつきが大きくなるという問題があった。
【0008】
例えば、下記特許文献1は、図14に示すような、半球状透明封止体198を備えたLED装置に空気層204を介して広角放射角レンズ202を組み合わせて配置することにより、広い角度範囲の配光を実現する発光装置188を開示する。
【0009】
また、例えば、下記特許文献2は、図15に示すように、基板上に配設されたLED素子201を、所定の形状の光入射面202a及び光出射面202bを有し、光出射面202bの光軸の中央部分に窪み202cを有するようなレンズ202で覆うことにより、LED素子201の発光をレンズ202の光入射面202a及び光出射面202bで屈折させることにより広い角度範囲の配光を実現することを提案している。なお、特許文献2はLED素子自身からの配光を制御したLED装置に関する技術である。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特表2010−519757号公報
【特許文献2】特開2009−44016号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
特許文献1に開示されたような、従来の半球状の透明封止体を備えたLEDパッケージに光を大きく屈折させるためのレンズを配置する場合、図14に示したように、レンズ202の凹部の表面の輪郭を主たる屈折面として用い、凹部の表面に光束が入射するときの入射角を大きくするために、垂直に近いように立ち上がるような内壁を形成する必要があった。そして、立ち上がる内壁面を形成するために、レンズの高さを充分に確保する必要があった。このような場合、高さ方向の空間が少ない領域に設置しにくくなるという問題があった。すなわち、図14に示したようなレンズを備えた発光装置の場合、実装する領域に高さ方向に充分な空間が必要であった。
【0012】
本発明は、半球状の透明封止体を備えた半導体発光装置において、半導体発光素子の光軸近傍の光束を大きく屈折させることにより、被照射面における照度分布のバラつきを抑えながら広い角度範囲に配光させることができる、厚みを抑えた光学部材を備えた発光装置を提供することを目的とする。
【課題を解決するための手段】
【0013】
本発明の一局面は、半導体発光素子及び半導体発光素子を封止する半球状の透明封止体を備えた発光装置と、半導体発光素子から発光される光の配光特性を制御するための光学部材とを備え、透明封止体の表面と光学部材との間には透明封止体及び光学部材よりも屈折率が小さい層がさらに存在し、光学部材の形状は、透明封止体を収容するための凹状の内側輪郭と、光の出射面の輪郭を規定する外側輪郭とを備え、半導体発光素子の発光中心における発光面に対する垂直軸を光軸とし、光軸を含む面で切断した任意の縦断面において、発光中心から引いた該光軸に対して角度θを成す仮想直線を基準線とし、光軸と、基準線と内側輪郭の表面との交点における法線との成す角度をψとし、基準線と外側輪郭の表面との交点における法線との成す角度をδとした場合、0°≦θ≦45°の範囲で0≦δ≦30°であり、0°<θ≦15°好ましくは5°≦θ≦15°の範囲にψ/θが最大値(ψ/θ)maxになる角度θxを有し、θx>θの範囲ではθが大きくなるにつれてψ/θが増加し、θ>θxの範囲では少なくともθ=70°の範囲まではθが大きくなるにつれてψ/θが減少し、半球状透明封止体の表面と凹状の内側輪郭の表面との基準線上の距離は、θ=0°のとき最大になり、45°<θ≦70°の範囲の領域にその距離が最小になる角度θyを有する光学部材付発光装置である。0°<θ≦15°の範囲にψ/θが最大値(ψ/θ)maxになる角度θxを有し、また、光学部材の出射面の形状を0°≦θ≦45°の範囲で0≦δ≦30°になるように規定することにより、光軸近傍の光束を大きく屈折させることができる。また、距離がθ=0°のとき最大になり、45°<θ≦70°の範囲の領域に距離が最小になる角度θを有することにより、相対的に光量が少ない半球状の透明封止体から出射する45°<θ≦70°の範囲の光束の配光角を広げることができる。その結果、広い配光範囲において被照射面における照度分布のバラつきを抑制することが出来る。
【0014】
また、光学部材付発光装置においては、角度θにおける半球状の透明封止体の表面と凹状の内側輪郭の表面との基準線上における距離をD(θ)とした場合、D(θ)=Acos(Bθ)+C(式中、0≦θ≦70°、0≦A≦1、0≦B≦5、-1≦C≦1)で表され、θに対してD(θ)をプロットしたグラフにおいて、20<θ<45°の範囲に存在する変化点を境として、θが大きい側のA,B,Cそれぞれが、θが小さい側のA,B,Cそれぞれよりも小さくなることが好ましい。このような場合には、変化点よりも小さい範囲の角度範囲における凹状の内側輪郭の傾きが、変化点よりも大きい範囲の角度範囲における凹状の内側輪郭の傾きよりも大きくなる。その結果、光束を大きく曲げることができる。
【0015】
また、外側輪郭は少なくとも0°≦θ≦45°の範囲において、光軸近傍に平面を含む、上に凸状の滑らかな曲面で構成されており、角度θの微小変化量Δθに対する角度δの微小変化量Δδの比をΔδ/Δθとした場合、0°≦θ≦20°の範囲で0≦Δδ/Δθ≦0.2であり、20°<θ≦45°の範囲で0.05≦Δδ/Δθ≦1.2であり、さらには、45°≦θ≦60°の範囲で0.5≦Δδ/Δθ≦1.8であることが好ましい。このような場合には、光軸近傍から発光する光束を光学部材の外側輪郭で屈折させ、照度のバラつきをより最適に抑制することができる点から好ましい。
【0016】
また、半導体発光素子の発光中心の表面を基準とし、半球状透明封止体の最大高さをH1、光学部材の最大高さをH2とした場合、H2/H1≦3である場合には、厚みを充分に薄くしながら、広い角度範囲の配光を維持することができる点から好ましい。
【0017】
また、角度θy±15°の範囲に最大相対光量を有する場合には、配光バラつきを充分に低減することができる点から好ましい。
【0018】
さらに、光軸との交点付近において、凹状の内側輪郭の曲率が、半球状の透明封止体の曲率よりも大きい場合には、半球状透明封止体により光軸付近に多く集光された光をより拡散させることができる点から好ましい。
【0019】
本発明の目的、特徴、局面、及び利点は、以下の詳細な説明及び添付する図面により、明白となる。
【発明の効果】
【0020】
本発明によれば、光軸中心付近の集光傾向が高い半球状透明封止体を備えたLED装置を用いて、被照射面における発光バラつきを抑えながら広い角度範囲の配光を実現することができる。
【図面の簡単な説明】
【0021】
図1図1(a)は本実施形態の光学部材付発光装置10の上面模式図、図1(b)は、図1(a)のA−A’断面の断面模式図である
図2図2は、光学部材付発光装置10の形状の詳細を説明するための説明図である。
図3図3は、光学部材付発光装置10の光の伝播方向の一例を説明する説明図である。
図4図4は、光学部材付発光装置10のθに対するψ/θをプロットしたグラフを示す。
図5図5は、光学部材付発光装置10のθに対するδをプロットしたグラフを示す。
図6図6は、光学部材付発光装置10のθに対する半球状の透明封止体1cの表面と光学部材5の凹状の内側輪郭5aとの間の基準線上の距離Dをプロットしたグラフを示す。
図7図7は光学部材付発光装置10の照射パターンの光強度分布図の一例を示す。
図8図8は、光学部材付発光装置10の寸法の具体例を説明する説明図である。
図9図9は、光学部材付発光装置10の裏面の形状例を説明する模式図である。
図10図10は、平面型のLEDパッケージの配光を説明する説明図である。
図11図11は、平面型のLEDパッケージの照射パターンの光強度分布図の一例を示す。
図12図12は、半球状のLEDパッケージの配光を説明する説明図である。
図13図13は、半球状のLEDパッケージの照射パターンの光強度分布図の一例を示す。
図14図14は、従来の発光装置の配光を説明する説明図である。
図15図15は、従来の発光装置の配光を説明する説明図である。
【発明を実施するための形態】
【0022】
以下、本発明に係る光学部材付発光装置の一実施形態を図面を参照して説明する。図1は本実施形態の光学部材付発光装置10の模式図であり、図1(a)は上面図、図1(b)は、図1(a)のA−A’断面における断面図である。光学部材付発光装置10は、半導体発光素子であるLED素子1a及びLED素子1aを封止する半球状の透明封止体1cを備えたLED装置1と、LED素子1aから発光された光の配光を制御する光学部材5とを備える。
【0023】
LED装置1は、サブマウント基板1bと、サブマウント基板1b上に実装されたLED素子1aと、LED素子1aを封止する半球状の透明封止体1cと、を備える。サブマウント基板1bは、その底面に、図略のリード端子を備える。LED素子1aとしては、従来から知られた紫外光、近紫外光、青色から赤色の領域の波長を示す可視光、近赤外光、赤外光等の波長領域の光を発するLED素子が特に限定なく用いられる。また、LED素子1aの表面やその近傍等には、LED素子1aから発光された光の波長を波長変換するための蛍光体層が設けられていてもよい。
【0024】
透明封止体1cは、半球状の形状を有し、その外表面からLED素子1aの発光を出射する。このような半球状の透明封止体を備えるLED装置の具体例としては、例えば、直径2〜3mmの半球面の透明封止体を有する、日亜化学(株)製のNVSW119B、NVSL119Bや、直径3〜5mmの半球面の透明封止体を有する、日亜化学(株)製のNS9W383等が挙げられる。
【0025】
なお、本実施形態ではLED装置1として、サブマウント基板上に発光素子をマウントして、半球状の透明封止体で封止した発光装置を用いた例について代表例として説明する。このようなLED装置1の代わりに、一枚の基板上に、複数の発光素子を並べ、各発光素子をオーバーレイ成形によりそれぞれ半球状に封止して得られたLEDアレイに対して、上述したような光学部材を装着してもよい。この場合、光学部材としては、それぞれ独立した光学部材を装着しても、上述した光学部材を複数個一体化して形成されたレンズアレイとして装着してもよい。
【0026】
光学部材は、例えば、注型成形、圧縮成形、射出成形等により成形される。透明封止体及び光学部材を形成するための透明材料としては、光透過性に優れた材料であれば、特に限定なく用いられる。具体的には、例えば、シリコーンゲル,シリコーンエラストマー,シリコーンゴム,硬質のシリコーン樹脂,シリコーン変性エポキシ樹脂,エポキシ樹脂,シリコーン変性アクリル樹脂,アクリル樹脂等の透明樹脂の他、有機ガラスや無機ガラス等が挙げられる。これらの中では、光透過性に優れ、また、鉛フリー半田を用いた高温リフロー実装の際のヒートショック等による応力を緩和し、耐変形性や耐変色性に優れたレンズが得られる点から、シリコーンエラストマーやシリコーンゴムやシリコーン樹脂が特に好ましい。また、透明樹脂は、本発明の効果を損なわない範囲で、必要に応じて、LED素子から発光される光の波長を変換することにより、発光色を変換するための蛍光体や、光を拡散させるための光拡散剤等を含んでもよい。
【0027】
光学部材は、半導体発光素子から発光される光の光軸に対して光学的に軸対称になるような形状に形成されている場合には、半導体発光素子からの発光を光軸中心からその周囲に均質に配光させることができる点から好ましい。なお、用途に応じて、平面方向の特定の方向に配光させたい場合には、楕円形や光軸に非対称なまたは左右非対称な形状としてもよい。
【0028】
図1(b)に示すように、光学部材5は、半球状の透明封止体1cを収容するための凹状の内側輪郭5aと、内側輪郭5aの周囲に連なる底面輪郭5bと、底面輪郭5bに連なる外側輪郭5cとを備える。また内側輪郭5aの開口部および底面輪郭5bには、必要に応じて、後述するようにLED装置1を固定するための嵌合形状を設けてもよい。
【0029】
図2は、光学部材付発光装置10の形状を説明するための、半球状の透明封止体1cの輪郭形状及び光学部材5の輪郭形状を説明する説明図である。また、図3は、光学部材付発光装置10の、LED素子1aから発光された光の伝播方向の一例を示す説明図である。
【0030】
図3に示すように、光学部材付発光装置10においては、透明封止体1cの輪郭により形成される界面(I)、空間Sと光学部材5との界面(II)、光学部材5と外部との界面(III)、の合計3つの界面が形成されている。各界面においては、スネルの法則に従って光が屈折される。LED素子1aから発光された光は透明封止体1cに入射した後、透明封止体1cの半球状の出射面である界面(I)から出射する。このとき、光束は界面(I)で光軸方向に集光するように屈折される。そして、屈折された光束は、透明封止体1cと凹状の内側輪郭5aとの間の空間S内を直進し、凹状の内側輪郭5aに到達し、空間Sと凹状の内側輪郭5aとの界面(II)で屈折されて、光学部材5に入射する。そして、光学部材5に入射した光束は光学部材5の外側輪郭5cにまで直進し、外側輪郭5cが形成する界面(III)で光軸との成す角が大きくなるように屈折されて、出射され、被照射面6を照射する。
【0031】
光学部材付発光装置10は、図2に示すように、光軸Lに対して角度θを成す、発光中心1a’から引いた仮想直線を基準線SDとし、光軸Lと、基準線SDと半球状透明封止体の表面輪郭との交点Aにおける法線との成す角度をφ、基準線SDと内側輪郭の表面との交点Bにおける法線との成す角度をψ、基準線SDと外側輪郭の表面との交点Cにおける法線との成す角度をδとした場合、次のような形状の特徴を有する。
【0032】
図4に示すように、光学部材5の凹状の内側輪郭5aは、0°<θ≦15°、好ましくは5°≦θ≦15°の範囲にψ/θが最大値(ψ/θ)maxになる角度θxを有し、θx>θの範囲ではθが大きくなるにつれてψ/θが増加し、θ>θxの範囲ではθ=70°、好ましくは80°、さらに好ましくは90°の範囲まではθが大きくなるにつれてψ/θが減少している。ここで、ψ/θは、仮想的にLED素子1aから角度θで出射した光が、凹状の内側輪郭5aに入射するときの入射角を規定するパラメータであり、ψ/θが大きければ大きいほど、凹状の内側輪郭5aの界面における屈折角が大きくなることを示す。光学部材付発光装置10においては、0°<θ≦15°の範囲にψ/θが最大値(ψ/θ)maxになる角度θxを有することにより、図3のEに示すように、凹状の内側輪郭5aの界面は、光軸近傍に集光した光を光軸からのなす角が大きくなるように屈折させることができる。
【0033】
(ψ/θ)maxの値は、1.2〜8、さらには2〜5、とくには、2.5〜4、最も好ましくは3〜3.5程度であることが被照射面において均一度の高い照度分布を実現できる点から好ましい。なお、(ψ/θ)maxの値が、小さすぎる場合には、光軸近傍に集光した光が屈折される角度が小さくなり、その結果、拡散効果が小さくなり光軸近傍での照度が上昇することにより照度分布のバラつきが増加する傾向がある。また、大きすぎる場合には光軸近傍の光束が少なくなりすぎて過剰な拡散効果が得られて光軸近傍での照度が低下し照度分布のバラつきが増加する傾向がある。また、光軸近傍の0<θ<5°におけるψ/θの値は、1〜5、さらには2〜3、とくには2.5〜3程度であることが被照射面において光軸直上付近の配光を適度に残すことができる点から好ましい。
【0034】
図5に光学部材付発光装置10のθに対するδをプロットしたグラフを示す。図5のグラフに示すように、光学部材5の外側輪郭5cは、0°≦θ≦45°の範囲で0≦δ≦30°を満たすように規定される。図3のEに示すように、凹状の内側輪郭5aが、0°<θ≦15°の範囲にψ/θが最大値(ψ/θ)maxになる角度θxを有する場合、凹状の内側輪郭5aの界面により、光軸近傍の光束は光軸に対する角度が大きくなるように屈折される。この場合において、光学部材5の外側輪郭5cの形状を、0°≦θ≦45°の範囲で0≦δ≦30°、さらには0≦δ≦20°を満たすように規定することにより、凹状の内側輪郭5aで屈折された光軸近傍の光束の外側輪郭5cの界面への入射角を大きくすることができ、その結果、光軸に対する角度が大きくなるように屈折される。
【0035】
光学部材5の外側輪郭5cは、光軸近傍が平面であり、少なくとも0°≦θ≦45°の範囲、さらには0°≦θ≦60°の範囲において、その平面に連続した、上に凸状の滑らかな曲面で構成されており、0°≦θ≦5°の範囲で0°≦δ≦5°であり、5°<θ≦30°の範囲で0°≦δ≦10°であり、30°<θ≦45°の範囲で2≦δ≦30°になり、とくには、45°<θ≦60°の範囲で5≦δ≦45°になるように形成されていることが好ましい。光学部材5の出射面である外側輪郭5cの形状をこのように規定することにより、光軸近傍の光束の光学部材5の出射面に対する入射角を充分に大きくすることができ、その結果、拡散方向に大きく屈折させることができる。
【0036】
とくに、光学部材5の外側輪郭5cは、0°≦θ<10°の範囲においてδ=0°となるθの範囲を有することが好ましい。また、10°≦θ≦45°の範囲においては、θの増加に対してδが、連続的に増加していることが好ましい。さらに、0°≦θ≦45°の範囲においては、θが増加するときにδは減少しないことが好ましい。このような場合には、光軸近傍での照度を低下させすぎずに、効果的に、照度分布のバラつきを抑制することができる点から好ましい。
【0037】
さらに、角度θの微小変化量Δθに対する角度δの微小変化量Δδの比をΔδ/Δθとした場合、0°≦θ≦20°の範囲で0≦Δδ/Δθ≦0.2であり、20°<θ≦45°の範囲で0.05≦Δδ/Δθ≦1.2であり、45°≦θ≦60°の範囲で0.5≦Δδ/Δθ≦1.8であるように規定されていることが好ましい。このような場合には集光方向の光を外側輪郭により屈折させて、照度のバラつきをより抑えることができる。
【0038】
図6は、本実施形態の光学部材付発光装置10の、角度θに対する、半球状の透明封止体1cの表面と凹状の内側輪郭5aの表面との基準線上における距離Dをプロットした一例である。図6に示すように、半球状の透明封止体1cの表面と凹状の内側輪郭5aの表面との距離Dは、θ=0°のとき最大になり、45°<θ≦70°の範囲、好ましくは50°<θ≦65°の範囲の領域にその距離が最小になる角度θを有する。なお、図6は、θ=55°のときの例である。なお、距離Dはθ>θの範囲では、少なくともθ<70°の範囲において、θの増加に伴ってDが徐々に大きくなるよう変化する。
【0039】
図13に示したように、半球状の透明封止体を備えたLEDパッケージにおいては、光軸方向に集光する傾向があるために、45°<θ≦70°の範囲においては光量が相対的に少なくなる。このような範囲の光束はできるだけ光軸方向に集光しないように配光制御することが好ましい。半球状の透明封止体1cから出射した光は、透明封止体1cよりも屈折率の小さい空間Sに入射した場合、透明封止体1cと空間Sとの界面で光軸方向に屈折する。この場合、空間Sを直進する距離が長ければ長いほど、光軸方向に集光しやすくなる。従って、図3のFに示すように、45°<θ≦70°の範囲で出射した光束が空間Sを短い距離で通過して光学部材5に入射することにより、この領域の光束の配光を広くすることができる。
【0040】
半球状の透明封止体の表面と凹状の内側輪郭の表面との距離は、さらに具体的には、例えば、角度θにおける半球状の透明封止体の表面と凹状の内側輪郭の表面との基準線SD上における距離をD(θ)とした場合、D(θ)=Acos(Bθ)+C(式中、0≦θ≦70°、0≦A≦1、0≦B≦5、-1≦C≦1)で表され、θに対してD(θ)をプロットしたグラフにおいて、20<θ<45°の範囲に存在する変化点を境として、θが大きい側のA,B,Cそれぞれが、θが小さい側のA,B,Cそれぞれよりも小さくなることが好ましい。なお、図6のグラフにおいては、変化点Xはθ=28.9°に存在し、0<θ<28.9°において、D(θ)=0.3cos(3.8θ)+0.45、28.9°≦θ≦85°において、D(θ)=0.23cos(3.3θ)+0.37で表される。このような場合には、凹状の内側輪郭の傾きを表すθの微小変化量Δθに対するD(θ)の微小変化量ΔD(θ)の比をΔD(θ)/Δθとした場合、変化点Xよりも小さい範囲の角度範囲におけるΔD(θ)/Δθの最大値が、変化点Xよりも大きい範囲の角度範囲におけるΔD(θ)/Δθの最大値よりも大きくなる。
【0041】
このような変化点Xの存在により、θ>45°の角度θでその距離が最も短くなる。このような形状によれば、θ>45°の角度θで半球状の透明封止体1cの表面と光学部材5の凹状の内側輪郭5aの表面とが最近接する。この領域においては、図3のFに示すように、半球状の透明封止体1cから出射した光が光軸方向に屈折されて空間Sを進行するが、空間Sにおける光路が短いまま、凹状の内側輪郭5aの表面に入射して光軸に対して成す角度が大きくなる方向に光路が曲げられる。これにより角度θ近傍の角度で透明封止体1cから出射された光は、光軸に平行な方向への直進距離を最小限にして光学部材内に屈折により入射し、光学部材内を直進して外側輪郭5cの光軸からの距離が離れた位置に到達し、さらに光学部材5の出射面における屈折により光軸とのなす角をさらに大きくして出射する。すなわち、θ>45°で出射した集光方向に屈折された光を、集光方向にほとんど進行させないうちに、凹状の内側輪郭5aの界面で拡散方向に屈折させることができる。
【0042】
凹状の内側輪郭5aと透明封止体1cの外表面との間の距離は、透明封止体1cの大きさによって適宜調整されるが、具体的には、例えば、半球状封止体の底面の直径が2〜3mm程度であるとき、半球状の透明封止体1cの表面と凹状の内側輪郭5aとの間隔の最も短くなる角度θでの距離が、5〜1000μm、さらには10〜500μm、とくには、50〜300μm程度であることが好ましい。間隔の最も短くなる角度θでの距離が長すぎる場合には、光学部材5の全体形状も大きくなる傾向がある。
【0043】
また、半球状の透明封止体1cの表面と凹状の内側輪郭5aとの距離の最も長い部分であるθ=0°における距離Dも透明封止体1cの大きさによって適宜調整されるが、具体的には、例えば、半球状封止体の底面の直径が2〜3mm程度であるときは、400〜5000μm、さらには、400〜2000μmさらには、500〜1000μm程度であることが好ましい。θ=0°における距離が長すぎる場合には、光学部材5の高さが高くなる傾向がある。また、θ=0°における距離が短すぎる場合には、光軸に対して発光中心から45°以内の角度を成す領域の界面(II)の傾きが緩やかになり、その結果、界面(II)に対する光の入射角が小さくなる傾向がある。
【0044】
また、θ=0°における距離とθ=θにおける距離の比率も透明封止体1cの大きさによって適宜調整されるが、具体的には、例えば、半球状封止体の底面の直径が2〜3mm程度であるとき、D(0°)/D(θ)=1.1〜500、さらには、1.3〜20、さらには、2〜10程度であることが、光軸に対して45°以上の角度を成す領域における界面(II)の傾きを充分に大きくすることができるために、界面(II)に対する光の入射角が大きくできる点から好ましい。
【0045】
上述のように光学部材付発光装置10においては、透明封止体1cの輪郭により形成される界面(I)、空間Sと光学部材5との界面(II)、光学部材5と外部との界面(III)、の合計3つの界面を相互に関連付けて配光調整されている。従って、光学部材5の高さが高くなることを抑制しながら、照射面における照度分布のバラつきを抑えて広い配光角度で配光することができる。具体的には、例えば、図2を参照して、LED素子1aの表面から透明封止体1cの最大高さをH1、LED素子1aの表面から光学部材5の最大高さをH2とした場合、H2/H1≦3、さらにはH2/H1≦2.5、のような透明封止体1cの高さに比べて光学部材5の高さがそれほど高くなくても、透明封止体1cから出射されるほぼすべての光が充分に制御される。
【0046】
また、光学部材5の高さが高くなることを抑制するために、光学部材5の光軸上における凹状の内側輪郭5aと外側輪郭5cとの距離、すなわち、光軸における光学部材の厚みをtとし、LED装置1の半球状透明封止体の底面の直径をWとしたとき、t/W≦0.13が成り立つよう調整することが好ましい。t/Wを0.13以下とすることで所望の外側輪郭形状を維持し、かつ、光学部材内を伝播する光の通過距離を最小限に抑えることができる。このため光学部材全体の厚みおよび直径の小型化を行なうことができる。
【0047】
なお、光学部材付発光装置10は、図1(b)に示すように、光軸近傍において、凹状の内側輪郭5aの曲率が半球状の透明封止体1cの曲率よりも大きくなるように形成されている。このように形成することにより、光軸近傍の光量をより光軸とのなす角が大きい方向へ拡散させることができる。
【0048】
透明封止体1c、凹状の内側輪郭5aと透明封止体1cの外表面との間の空間S、及び光学部材5の各屈折率は、要求される配光特性により適宜設定されるが、空間Sの屈折率が最も小さい。このような観点から空間Sとしては、空気層か低屈折率の透明材料層が選ばれる。さらに具体的には、空間Sの屈折率は、透明封止体1c及び光学部材5の屈折率に対して、0.2以上、さらには0.3以上小さいことが好ましい。
【0049】
図7に、光学部材付発光装置10の照射パターンの光強度分布図の一例を示す。なお、図7に示した照射パターンは、図8に示したような寸法の光学部材付発光装置10により得られた。
【0050】
すなわち、図8を参照して、光学部材5は上面視したときに略円状のレンズ形状であり、その直径は8.0mm、LED素子1aの上面を基準とした最大高さは2.4mm、底面の内径は3.5mmである。また、その外形は図4図6のグラフで特定され、(ψ/θ)maxになる角度θxは10°、変化点Xは28.9°に存在し、半球状の透明封止体の表面と凹状の内側輪郭との距離が最も短くなる角度θは55°であり、そのときの距離は0.14mmであった。また、凹状の内側輪郭の天面の曲率半径R1は0.654mmであった。さらに、光学部材5の屈折率は1.41であった。
【0051】
一方、LED装置1は、一辺1mmの正方形のLED素子を備え、半球状の透明封止体は高さ1.44mm、底面の直径は2.54mmであり、半球の曲率半径R2は1.25mmであり、光軸方向において、半球状の透明封止体の天面から凹状の内側輪郭までの距離は0.75mmであり、透明封止体の屈折率は1.52であった。
【0052】
図7に示すように、光学部材付発光装置10においては、光軸に対して、+65°及び−65°付近に最大相対光量が存在するように配光制御されている。そして、θ=0°における相対強度は、−65°付近の最大ピーク強度1に対して0.22程度になっている。また、±30°付近における相対強度は、0.3程度になっている。また、±80°付近で0.4程度、±50°付近で0.6程度になっており、広い範囲で比較的バラつきが小さい配光であることが示されている。これは、図13に示した半球状封止体を備えたLEDパッケージの配光と比べると、光学部材付発光装置10においては、明らかに光軸方向の集光が抑制され、広い配光域で照度が均一化されていることがわかる。
【0053】
なお、図7においては、+65°及び−65°付近に最大相対光量が存在するように配光制御されている。一例として、図6に示すように、光学部材付発光装置10においては、半球状透明封止体1cの表面と凹状の内側輪郭の表面5aとの距離が最も短くなるθyは55°である。このように、本実施形態の光学部材付発光装置10においては、最大相対光量を示す角度は、θy±15°、さらにはθy±10°の絶対値の角度付近に位置することが好ましい。このような場合には、配光バラつきを充分に低減することができる点からとくに好ましい。
【0054】
なお、光学部材5の底面輪郭5bを含む底面には反射膜を形成してもよい。このような反射膜を形成することにより、発光素子から生じた光軸に対して成す角度の大きいわずかな光や、光学部材5の内部で生じた迷光を出射面側に反射させて、光取り出し効率を向上させることができる。このような反射膜としては、白色フィラーを含有する樹脂組成物からなる白色反射膜や、金属反射膜が挙げられる。
【0055】
以上、本実施形態に係る光学部材付発光装置の基本構成及びその効果について説明した。本実施形態の光学部材付発光装置においては、LED装置等の半導体発光装置に光学部材を装着する方法は、特に限定されず、例えば、下記に説明するように、光学部材にサブマウント基板を固定するような嵌合形状を設けたり、接着剤で接着したり、スナップフィット形状等の係合部を設けるなど特に限定されない。また、半球状の透明封止体1cの表面と光学部材5との間の層が低屈折率の透明樹脂層である場合には、光学部材と低屈折率樹脂層を同時成形もしくはそれぞれ個別に成形したのち嵌合させ、更にその後LEDパッケージと接着剤を使用した接着を行なってもよく、また光学部材5とLEDパッケージ間を低屈折率かつ透明の接着剤で満たしても良い。
【0056】
光学部材にサブマウント基板を固定するような嵌合形状を設ける場合について、図9を参照してその一例を説明する。図9(a)は、本実施形態の光学部材の一例である光学部材25にLED装置1を装着する前の状態であり、図9(b)は装着後の状態である。本実施形態はサブマウント基板に発光素子が1つの場合を示すが、同一基板上に複数の発光素子が実装されている光源にも同様に適用できる。
【0057】
光学部材25は、その底面にLED装置1を支持するためのフランジ部分26を備える。図9(a)に示すように、フランジ部分26は、光学部材25の凹部にLED装置1の半球状の透明封止体1cを侵入させるように、該凹部に連接するような掘り込み溝26aが形成されている。掘り込み溝26aは、例えば、サブマウント基板1bが四角形の場合、サブマウント基板の4辺で基板を固定するような嵌合形状26bを有する。また、サブマウント基板1bに端子極性の方向を示すようなアノードマークやカソードマークの形状が形成されている場合、フランジ部分26の角部分に判別用の切り欠き形状を付与しても良い。このような形状によれば、LED装置1の端子極性の方向を容易に合わせることができる。
【0058】
また、半球状の透明封止体1cの表面と光学部材5との間の層が空気層である場合には、図9に示すように、掘り込み溝26aの一部として、光学部材25の凹部の内部を密閉せず、外部に連通するような通気孔26cを設けてもよい。半球状の透明封止体1cの表面と光学部材5との間の層が空気層である場合、光学部材付発光装置を回路基板に実装するときにリフロー工程を通過させる場合、リフロー時に掛かる熱により、空気が膨張する。空気層が密閉されている場合、膨張した空気により、LED装置1の半球状の透明封止体1cに対する光学部材2の位置が所定の位置からずれたり、また、光学部材25をLED装置1のサブマウント基板1bに接着している場合には、空気層の膨張により光学部材が剥離したりするおそれがある。上述したような通気孔26cを設けた場合には、膨張した空気を外部に逃がすことができるために、上述したような光学部材5の位置ズレや、剥離を抑制することができる。
【0059】
また、上記のような嵌合形状により、光学部材にサブマウント基板を固定する場合においては接着剤で固定してもよい。接着剤の種類は低屈折率の接着剤であれば特に限定されないが、例えば、シリコーン系接着剤等の耐熱性及び耐変色性を有するような透明接着剤であることが好ましい。なお、接着剤で固定する場合には、サブマウント基板の表面に接着部から溢れ出した接着剤が付着することを防ぐために、図9(a)に示すように掘り込み溝26aの一部として、溢れた接着剤を収容するための窪み26dを設けてもよい。
【符号の説明】
【0060】
1 LED装置
1a LED素子
1b サブマウント基板
1c 半球状透明封止体
5,25 光学部材
5a 内側輪郭
5b 底面輪郭
5c 外側輪郭
6 被照射面
10 光学部材付発光装置
26 フランジ部分
26a 掘り込み溝
26b 嵌合形状
26c 通気孔
26d 接着剤を収容するための窪み
A、B、C 交点
L 光軸
S 空間
SD 基準線
X 変化点
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15