【実施例】
【0037】
実施例
実施例1:
ボールミル微粉砕を、焼入れステンレススチール製バイアルおよびボールを用いて、スペックス(SUPEX) 8000D装置内で行った。MoS
2(アルファエーサー(Alfa Aesar)製、純度:98%;平均粒径:700nm)およびカノーラオイル(クリスコ(Crisco)製)を、1部のMoS
2(10g)対2部(20g)のカノーラオイルなる比で、出発物質として使用した。ボール対粉末比は、2:1であった。換言すれば、該容器内のボールの質量は、2質量%であり、また該MoS
2サンプルの質量は、1質量%であった。MoS
2は、空気中で48時間ボールミル微粉砕処理し、次いでカノーラオイル中で、室温にて48時間、微粉砕処理した。得られたナノ粒子は、ボールミル微粉砕処理後、約50nmなる粒径のものであった。以下の表1に、微粉砕処理条件および得られた粒子の形態をまとめた。該ボールミル微粉砕されたナノ粒子の形状に及ぼす、微粉砕用媒体の強力な効果の存在が観測された。乾式微粉砕は、該粒子サイズが、ミクロンサイズからナノメータサイズに減じられた際に、面の挫屈および折畳みを示した。しかし、ここで使用した該乾式微粉砕条件は、数個のナノ粒子を埋設した微細クラスタを生成した。他方で、湿式微粉砕は、挫屈を示さなかったが、解凝集を示した。
【0038】
【表1】
【0039】
【表2】
【0040】
図3は、得られたままの(700nm)、空気中で微粉砕した、およびハイブリッド微粉砕(空気媒体中で48時間、次いでオイル媒体中で48時間)したMoS
2ナノ粒子の、TEM顕微鏡写真を示す。
図3(A)は、実施された、該得られたままのMoS
2サンプルの、ミクロンサイズの粒子チャンクを示す。これらの顕微鏡写真、特に
図3(B)は、該空気媒体中で微粉砕した際の、潤滑剤ナノ粒子の凝集塊を示す。
図3(B)は、空気媒体中で微粉砕されたMoS
2におけるサイズの減少を明確に立証している。より高い倍率(円形領域)は、該空気媒体中での微粉砕後の、ディスク形状のナノ粒子の形成を明らかにした。
図3(C)および(D)から、該粒径は、空気媒体中で微粉砕およびハイブリッド条件下で微粉砕した後に、30nm未満に減じられるものと結論付けることができる。時として観測されるクラスタとは無関係に、該クラスタの平均サイズは、200nmまたはそれ未満である。
【0041】
ハイブリッド微粉砕したサンプルは、パラフィン油(ウォルマート(Walmart)から入手)中に分散させたが、沈降することなしに、懸濁状態を維持した。しかし、この分散物は、数週間後には均質ではなかった。該分散物を安定化し、かつ耐磨耗特性を延長するために、リン脂質を添加した。約2質量%の大豆レシチンリン脂質(アメリカンレシチン(American Lecithin)から入手)を、該基剤オイルに添加した。
【0042】
図4および5は、夫々、ボールミル微粉砕前後の、MoS
2のXRDおよびXPSスペクトルを示す。XRDスペクトルは、微粉砕後の該MoS
2における、如何なる相変化並びに検知可能な無定形化を示さなかった。この観測は、微粉砕された材料に関するTEM分析において、該ナノ粒子マトリックス全体に渡り観測された、連続的な小板(platelet)と一致している。ピークのブロード化(FWHM)は、夫々空気媒体中およびハイブリッド媒体中でボールミル微粉砕された、MoS
2のXRDスペクトルにおいて観測された。このピークのブロード化は、粒径における減少に起因するものであり得る。見積もられたその粒径は、6nmである。このことは、ボールミル微粉砕の主題に従うものであり、ここでクラスタは、10nm程度の粒子および準-粒子からなっている。XPS分析を実施して、得られたままの、およびハイブリッド微粉砕したMoS
2ナノ粒子に関する表面化学を検討した。
図3に示したように、該MoS
2サンプルにおける、285eVにて観測される炭素(C)のピークは、286.7eVにシフトした。286eVおよび287.8eVなる結合エネルギーは、夫々C-OおよびC=O結合の形成に相当する。該観測された結合エネルギーレベルは、混合状態にあるC-OおよびC=O鎖を含む薄い層が、該MoS
2粒子を包み込んでいることを立証しているものと思われる。
【0043】
合成されたナノ粒子に関する、予備的な潤滑工学的なテストを、ASTM D4172に従って、フォーボール装置で行った。使用したボールは、AISI 52100ステンレススチール製であり、また高度に研磨したものであった。ASTM D4172に従って、フォーボールウエアスカー(Four Ball Wear Scar)測定を、以下のようなテスト条件下で行った:
【0044】
【表3】
【0045】
各静止ボールのウエアスカー(磨耗痕)径(WSD、mm)を、垂直並びに水平方向両者において定量化した。3回の独立なテストから求めたWSDの平均値は、±0.03mmなる精度の範囲内であることが報告された。
【0046】
ASTM D2783を利用した、フォーボール極圧測定を、以下の表に示す条件下で行った:
【0047】
【表4】
【0048】
3個の異なる粒子(w/w比で)を、パラフィンオイル中の添加剤としての、これらの対磨耗特性につき評価した。
図6(A)は、ナノ粒子添加なしの、パラフィンオイル、ミクロンサイズのMoS
2を含むパラフィンオイル、空気媒体中で48時間微粉砕したMoS
2を含むパラフィンオイル、および空気媒体中で48時間微粉砕し、次いでカノーラオイル中で48時間微粉砕したMoS
2を含むパラフィンオイルに関する、平均ウエアスカー(磨耗痕)測定値を示す。
図6(B)は、ナノ粒子添加なしの、パラフィンオイル、ミクロンサイズのMoS
2を含むパラフィンオイル、空気媒体中で48時間微粉砕したMoS
2を含むパラフィンオイル、および空気媒体中で48時間微粉砕し、次いでカノーラオイル中で48時間微粉砕したMoS
2を含むパラフィンオイルに関する、負荷磨耗指数を示す。
図6(C)は、ナノ粒子添加なしの、パラフィンオイル、ミクロンサイズのMoS
2を含むパラフィンオイル、空気媒体中で48時間微粉砕したMoS
2を含むパラフィンオイル、および空気媒体中で48時間微粉砕し、次いでカノーラオイル中で48時間微粉砕したMoS
2を含むパラフィンオイルに関する、COFを示す。
図6(D)は、ミクロンサイズのMoS
2を含むパラフィンオイル、空気媒体中で48時間微粉砕したMoS
2を含むパラフィンオイル、および空気媒体中で48時間微粉砕し、次いでカノーラオイル中で48時間微粉砕したMoS
2を含むパラフィンオイルに関する、極圧データを示す。各テストにおいて、該ナノ粒子添加剤は、1質量%なる量で存在した。
【0049】
基剤オイル中のナノ粒子組成物添加剤からのテストデータ
【表5】
【0050】
エネルギー分散x-線解析(EDS)を利用して研究した、該磨耗痕における転写フィルムは、モリブデンおよび硫黄に加えて、リン酸塩の特徴を同定した。
図9(a)は、ナノ粒子添加物を含まないパラフィンオイルの基本的な場合を描写したものである。
図9(b)は、モリブデンジスルフィドナノ粒子および乳化剤を含むパラフィンオイルを描写したものである。
これは、該磨耗跡におけるモリブデン(Mo)-硫黄(S)-リン(P)存在の初期の証拠を示す。鉄(Fe)が
図9(a)および9(b)に見られるが、これは、該フォー-ボールテストにおける該ボール(52100スチール)の材料であるからである。該モリブデンおよび硫黄のピークは、一致しており、識別不可能である。というのは、これらが同一の結合エネルギーを持つからである。元素マッピングも、同様な結果を示した。
予言的実施例:
【0051】
実施例2-23は、特に述べない限り、実施例1と同様な方法を用いて行う。
実施例2:
【0052】
MoS
2(アルファエーサー(Alfa Aesar)製、純度:98%;平均粒径:700nm)およびADMから入手したカノーラオイルを、出発物質として使用する。該MoS
2粉末を、様々な時間条件、変動するボール/粉末比、および様々な周囲条件下で、空気媒体、カノーラオイル媒体条件にて開始し、およびその後の空気媒体、次いでカノーラオイル媒体中での微粉砕の組合せにより、ボールミル微粉砕する。また、該粉末を、様々な型の有機媒体中でも微粉砕する。例えば、使用する一つの有機媒体は、カノーラオイルメチルエステルである。この粉末の該加工は、上記実施例と同一である。
【0053】
様々な型のボールミル微粉砕を利用することができる。例えば、第一段階において、空気中での低温ボールミル微粉砕、これに続く有機媒体中での高温ボールミル微粉砕を利用する。
【0054】
該ボールミル微粉砕後、得られる該活性EP-EA(極圧-環境上許容される)粒子を、パラフィンオイル等の基剤オイルと混合されている、リン脂質で処理する。
実施例3:
【0055】
モリブデンジスルフィドを、1部のホウ素に対して1部のモリブデンジスルフィドなる比を用いて、ホウ素と共にボールミル微粉砕する。次いで、この混合物を、1.5部のカノーラオイルに対して1部の固体潤滑剤ナノ粒子なる比を用いて、植物油(カノーラオイル)と共にボールミル微粉砕する。乳化剤を、1部の固体潤滑剤ナノ粒子組成物(MoS
2-ホウ素-カノーラオイル)対2部の乳化剤なる比にて、添加する。これを、基剤オイル(パラフィンオイル)に添加する。
実施例4:
【0056】
モリブデンジスルフィドを、1部の金属に対して1部のモリブデンジスルフィドなる比を用いて、銅と共にボールミル微粉砕する。次いで、この混合物を、1.5部のカノーラオイルに対して1部の固体潤滑剤ナノ粒子なる比を用いて、植物油(カノーラオイル)と共にボールミル微粉砕する。乳化剤を、1部の固体潤滑剤ナノ粒子組成物(MoS
2-銅-カノーラオイル)対2部の乳化剤なる比にて、添加する。これを、基剤オイル(パラフィンオイル)に添加する。
実施例5:
【0057】
1:1なる比率の、モリブデンジスルフィド/グラファイト(アルファエーサー(Alfa Aesar)社から得た)混合物を、ボールミル微粉砕する。次いで、この混合物を、1.5部のカノーラオイルに対して1部の固体潤滑剤ナノ粒子なる比を用いて、植物油(カノーラオイル)と共にボールミル微粉砕する。乳化剤を、1部の固体潤滑剤ナノ粒子組成物(MoS
2-グラファイト-カノーラオイル)対2部の乳化剤なる比にて、添加する。これを、基剤オイル(パラフィンオイル)に添加する。
実施例6:
【0058】
1:1なる比率の、モリブデンジスルフィド/窒化ホウ素(アルファエーサー(Alfa Aesar)社から得た)混合物を、ボールミル微粉砕する。次いで、この混合物を、1.5部のカノーラオイルに対して1部の固体潤滑剤ナノ粒子なる比を用いて、植物油(カノーラオイル)と共にボールミル微粉砕する。乳化剤を、1部の固体潤滑剤ナノ粒子組成物(MoS
2-窒化ホウ素-カノーラオイル)対2部の乳化剤なる比にて、添加する。これを、基剤オイル(パラフィンオイル)に添加する。
実施例7:
【0059】
1:1:1なる比率の、モリブデンジスルフィド/グラファイト/窒化ホウ素混合物を、ボールミル微粉砕する。次いで、この混合物を、1.5部のカノーラオイルに対して1部の固体潤滑剤ナノ粒子なる比にて、植物油(カノーラオイル)と共にボールミル微粉砕する。乳化剤を、1部の固体潤滑剤ナノ粒子組成物(MoS
2-グラファイト-窒化ホウ素-カノーラオイル)対2部の乳化剤なる比にて、添加する。これを、基剤オイル(パラフィンオイル)に添加する。
実施例8:
【0060】
1:1:1なる比率の、モリブデンジスルフィド/グラファイト混合物を、ボールミル微粉砕する。次いで、この混合物を、1.5部のカノーラオイルに対して1部の固体潤滑剤ナノ粒子なる比にて、植物油(カノーラオイル)と共にボールミル微粉砕する。乳化剤を、1部の固体潤滑剤ナノ粒子組成物(MoS
2-グラファイト-ホウ素-カノーラオイル)対2部の乳化剤なる比にて、添加する。これを、基剤オイル(パラフィンオイル)に添加する。
実施例9:
【0061】
1:1なる比率の、モリブデンジスルフィド/グラファイト混合物を、1部の金属に対して1部のモリブデンジスルフィド/グラファイトなる比にて、銅と共にボールミル微粉砕する。次いで、この混合物を、1.5部のカノーラオイルに対して1部の固体潤滑剤ナノ粒子なる比を用いて、植物油(カノーラオイル)と共にボールミル微粉砕する。乳化剤を、1部の固体潤滑剤ナノ粒子組成物(MoS
2-グラファイト-銅-カノーラオイル)対2部の乳化剤なる比にて、添加する。これを、基剤オイル(パラフィンオイル)に添加する。
実施例10:
【0062】
1:1なる比率の、モリブデンジスルフィド/窒化ホウ素混合物を、1部の金属に対して1部のモリブデンジスルフィド/窒化ホウ素なる比にて、ホウ素と共にボールミル微粉砕する。次いで、この混合物を、1.5部のカノーラオイルに対して1部の固体潤滑剤ナノ粒子なる比を用いて、植物油(カノーラオイル)と共にボールミル微粉砕する。乳化剤を、1部の固体潤滑剤ナノ粒子組成物(MoS
2-窒化ホウ素-ホウ素-カノーラオイル)対2部の乳化剤なる比にて、添加する。これを、基剤オイル(パラフィンオイル)に添加する。
実施例11:
【0063】
1:1なる比率の、モリブデンジスルフィド/窒化ホウ素混合物を、1部の金属に対して1部のモリブデンジスルフィド/窒化ホウ素なる比を用いて、銅と共にボールミル微粉砕する。次いで、この混合物を、1.5部のカノーラオイルに対して1部の固体潤滑剤ナノ粒子なる比を用いて、植物油(カノーラオイル)と共にボールミル微粉砕する。乳化剤を、1部の固体潤滑剤ナノ粒子組成物(MoS
2-窒化ホウ素-銅-カノーラオイル)対2部の乳化剤なる比にて、添加する。これを、基剤オイル(パラフィンオイル)に添加する。
実施例12:
【0064】
1:1:1なる比率の、モリブデンジスルフィド/窒化ホウ素/グラファイト混合物を、1部の金属に対して1部のモリブデンジスルフィド/窒化ホウ素/グラファイトなる比を用いて、ホウ素と共にボールミル微粉砕する。次いで、この混合物を、1.5部のカノーラオイルに対して1部の固体潤滑剤ナノ粒子なる比にて、植物油(カノーラオイル)と共にボールミル微粉砕する。乳化剤を、1部の固体潤滑剤ナノ粒子組成物(MoS
2-窒化ホウ素-グラファイト-ホウ素-カノーラオイル)対2部の乳化剤なる比にて、添加する。これを、基剤オイル(パ
ラフィンオイル)に添加する。
実施例13:
【0065】
1:1:1なる比率の、モリブデンジスルフィド/窒化ホウ素/グラファイト混合物を、1部の金属に対して1部のモリブデンジスルフィド/窒化ホウ素/グラファイトなる比を用いて、銅と共にボールミル微粉砕する。次いで、この混合物を、1.5部のカノーラオイルに対して1部の固体潤滑剤ナノ粒子なる比にて、植物油(カノーラオイル)と共にボールミル微粉砕する。乳化剤を、1部の固体潤滑剤ナノ粒子組成物(MoS
2-窒化ホウ素-グラファイト-銅-カノーラオイル)対2部の乳化剤なる比にて、添加する。これを、基剤オイル(パラフィンオイル)に添加する。
実施例14:
【0066】
モリブデンジスルフィドを、1部のポリテトラフルオロエチレン[テフロン(Teflon
TM)]に対して1部のモリブデンジスルフィドなる比率にて、テフロン(Teflon
TM)と共にボールミル微粉砕する。次いで、この混合物を、リン脂質乳化剤(大豆レシチン)と共に、基剤オイル(パラフィンオイル)に添加する。
実施例15:
【0067】
モリブデンジスルフィドを、1部のポリテトラフルオロエチレン[テフロン(Teflon
TM)]に対して1部のモリブデンジスルフィドなる比率にて、テフロン(Teflon
TM)と共にボールミル微粉砕する。次いで、この混合物を、リン脂質乳化剤(大豆レシチン)と共に、基剤オイル(パラフィンオイル)に添加する。
実施例16:
【0068】
モリブデンジスルフィドを、銅、銀、鉛等の金属添加剤と共に、1部の金属添加剤に対して1部のモリブデンジスルフィドなる比率にて、ボールミル微粉砕する。次いで、この混合物を、更に植物油を主成分とするエステル(カノーラオイルのメチルエステル)中で、1.5部のエステルに対して1部の固体潤滑剤ナノ粒子なる比にて、ボールミル微粉砕する。
乳化剤を、1部の固体潤滑剤ナノ粒子組成物(MoS
2-エステル)対2部のリン脂質乳化剤なる比にて、添加する。これを、基剤オイル(パラフィンオイル)に添加する。
実施例17:
【0069】
モリブデンジスルフィドを、銅、銀、鉛等の金属添加剤と共に、1部の金属添加剤に対して1部のモリブデンジスルフィドなる比率にて、ボールミル微粉砕する。次いで、この混合物を、更に植物油を主成分とするエステル(カノーラオイルのメチルエステル)中で、1.5部のエステルに対して1部の固体潤滑剤ナノ粒子なる比にて、ボールミル微粉砕する。
これを、基剤オイル(パラフィンオイル)に添加する。
実施例18:
【0070】
モリブデンジスルフィドをボールミル微粉砕する。得られるこの固体潤滑剤ナノ粒子を、更に植物油を主成分とするエステル(カノーラオイルのメチルエステル)中で、1.5部のエステルに対して1部の固体潤滑剤ナノ粒子なる比にて、ボールミル微粉砕する。乳化剤を、1部の固体潤滑剤ナノ粒子組成物(MoS
2-エステル)対2部のリン脂質乳化剤なる比にて、添加する。これを、基剤オイル(パラフィンオイル)に添加する。
実施例19:
【0071】
モリブデンジスルフィドをボールミル微粉砕する。得られるこの固体潤滑剤ナノ粒子を、更に植物油を主成分とするエステル(カノーラオイルのメチルエステル)中で、1.5部のエステルに対して1部の固体潤滑剤ナノ粒子なる比にて、ボールミル微粉砕する。これを、基剤オイル(パラフィンオイル)に添加する。
実施例20:
【0072】
モリブデンジスルフィドを、銅、銀、鉛等の金属添加剤と共に、1部の金属添加剤に対して1部のモリブデンジスルフィドなる比率にて、ボールミル微粉砕する。この混合物を、更に脂肪酸(オレイン酸)中で、1.5部の脂肪酸に対して1部の固体潤滑剤ナノ粒子なる比にて、ボールミル微粉砕する。乳化剤を、1部の固体潤滑剤ナノ粒子組成物(MoS
2-オレイン酸)対2部のリン脂質乳化剤なる比にて、添加する。これを、基剤オイル(パラフィンオイル)に添加する。
実施例21:
【0073】
モリブデンジスルフィドを、銅、銀、鉛等の金属添加剤と共に、1部の金属添加剤に対して1部のモリブデンジスルフィドなる比率にて、ボールミル微粉砕する。この混合物を、更に脂肪酸(オレイン酸)中で、1.5部の脂肪酸に対して1部の固体潤滑剤ナノ粒子なる比にて、ボールミル微粉砕する。これを、基剤オイル(パラフィンオイル)に添加する。
実施例22:
【0074】
モリブデンジスルフィドをボールミル微粉砕する。得られるこの固体潤滑剤ナノ粒子を、更に脂肪酸(オレイン酸)中で、1.5部の脂肪酸に対して1部の固体潤滑剤ナノ粒子なる比にて、ボールミル微粉砕する。乳化剤を、1部の固体潤滑剤ナノ粒子組成物(MoS
2-オレイン酸)対2部のリン脂質乳化剤なる比にて、添加する。これを、基剤オイル(パラフィンオイル)に添加する。
実施例23:
【0075】
モリブデンジスルフィドを、ボールミル微粉砕する。得られるこの固体潤滑剤ナノ粒子を、更に脂肪酸(オレイン酸)中で、1.5部の脂肪酸に対して1部の固体潤滑剤ナノ粒子なる比にて、ボールミル微粉砕する。これを、基剤オイル(パラフィンオイル)に添加する。
【0076】
本発明は以下に関するものである。
1.固体潤滑剤ナノ粒子と;
有機媒体と、
を含むことを特徴とする、組成物。
2.前記固体潤滑剤ナノ粒子が、ボールミルで微粉砕されたナノ粒子、化学機械的に微粉砕されたナノ粒子、またはこれらの組合せを含む、前記1記載の組成物。
3.前記組成物が、ナノ粒子を主成分とする潤滑剤である、前記1記載の組成物。
4.前記有機媒体が、オイル系媒体、グリース系媒体、アルコール系媒体、またはこれらの組み合わせを含む、前記1記載の組成物。
5.前記有機媒体が、複合オイル、カノーラオイル、植物油、大豆油、コーン油、菜種油のエチルおよびメチルエステル、蒸留モノグリセライド、モノグリセライド、ジグリセライド、モノグリセライドの酢酸エステル、モノグリセライドの有機酸エステル、ソルビタン、脂肪酸のソルビタンエステル、脂肪酸のプロピレングリコールエステル、脂肪酸のポリグリセロールエステル、炭化水素油、n-ヘキサデカン、リン脂質、またはこれらの組合せを含む、前記1記載の組成物。
6.前記有機媒体が、複合油を含む、前記1記載の組成物。
7.前記ナノ粒子が、モリブデンジスルフィド、タングステンジスルフィド、グラファイト、ポリテトラフルオロエチレン、フッ化セリウム、酸化亜鉛、窒化ホウ素、六方晶系窒化ホウ素、硫酸銀、ヨウ化カドミウム、ヨウ化鉛、フッ化バリウム、硫化錫、リン酸亜鉛、銀、鉛、ニッケル、硫化亜鉛、マイカ、硝酸ホウ素、ホウ砂、フッ化炭素、挿入グラファイト、リン化亜鉛、銅、ホウ素、またはこれらの組合せを含む、前記1記載の組成物。
8.更に、ミクロンサイズの粒子をも含む、前記1記載の組成物。
9.更に、乳化剤をも含む、前記1記載の組成物。
10.前記乳化剤が、約2〜約7なる範囲の親水-親油バランス値を持つ、前記9記載の組成物。
【0077】
11.前記乳化剤が、レシチン、リン脂質レシチン、大豆レシチン、洗浄剤、蒸留モノグリセライド、モノグリセライド、ジグリセライド、モノグリセライドの酢酸エステル、モノグリセライドの有機酸エステル、脂肪酸のソルビタンエステル、脂肪酸のプロピレングリコールエステル、脂肪酸のポリグリセロールエステル、またはこれらの組合せを含む、前記9記載の組成物。
12.更に、基剤をも含む、前記1記載の組成物。
13.前記基剤が、オイル、グリース、スプレイ、プラスチック、ゲル、またはこれらの組合せを含む、前記12記載の組成物。
14.前記基剤が、炭化水素油、植物油、コーン油、ピーナッツ油、カノーラオイル、大豆油、鉱油、パラフィンオイル、合成油、石油ゲル、石油グリース、炭化水素ゲル、炭化水素グリース、リチウムを主成分とするグリース、フルオロエーテルを主成分とするグリース、エチレンビステアラミド、ワックス、シリコーン、またはこれらの組合せを含む、前記12記載の組成物。
15.質量基準で、約1部またはそれ未満の乳化剤に対して、約1部の有機媒体を有する、前記1記載の組成物。
16.質量基準で、約0.4部またはそれ未満の乳化剤に対して、約1部の有機媒体を有する、前記1記載の組成物。
17.約3部の有機媒体に対して、約1部の固体潤滑剤ナノ粒子を有する、前記1記載の組成物。
18.約4部の有機媒体に対して、約1部の固体潤滑剤ナノ粒子を有する、前記1記載の組成物。
19.約8部の有機媒体に対して、約3部の固体潤滑剤ナノ粒子を有する、前記1記載の組成物。
20.約4部の有機媒体に対して、約2部の固体潤滑剤ナノ粒子を有する、前記1記載の組成物。
【0078】
21.約2部の有機媒体に対して、約1部の固体潤滑剤ナノ粒子を有する、前記1記載の組成物。
22.前記固体潤滑剤ナノ粒子が、閉鎖型構成体を含む、前記1記載の組成物。
23.前記固体潤滑剤ナノ粒子が、開放型構成体を含む、前記1記載の組成物。
24.最終用途の部品としての対象を、前記1記載の組成物で潤滑処理または被覆する工程を含むことを特徴とする、該対象を潤滑処理または被覆する方法。
25.前記対象が、境界潤滑レジームを含む、前記24記載の方法。
26.前記方法を、機械的用途、製造用途、鉱業的用途、航空宇宙産業用途、および自動車産業用途を含む用途において使用する、前記24記載の方法。
27.前記方法を、薬学的用途、医学的用途、歯科学的用途、化粧学的用途、食物製品用途、栄養学的用途、健康関連用途、バイオ-燃料用途、およびこれらの組合せを含む用途において利用する、前記24記載の方法。
28.前記対象が、機械器具、軸受、ギア、カムシャフト、ポンプ、トランスミッション、ピストンリング、エンジン、発電機、ピン-ジョイント、航空宇宙学的システム、採掘装置、製造装置、無機-有機資材、またはこれらの組合せを含む、前記24記載の方法。
29.前記組成物を、潤滑剤、グリース、ゲル、スプレイ、配合プラスチック部品、ペースト、粉末、エマルション、分散物、またはこれらの組合せに添加する、前記24記載の方法。
30.前記対象の潤滑処理が、固体潤滑剤ナノ粒子および有機媒体を含む前記組成物を、送出メカニズムとして使用することを含む、前記24記載の方法。
【0079】
31.前記方法を、薬学的用途、医学的用途、歯科学的用途、化粧学的用途、食物製品用途、栄養学的用途、健康関連用途、バイオ-燃料用途、およびこれらの組合せにおいて利用する、前記30記載の方法。
32.前記方法を、無機-有機資材用途を包含する用途において利用する、前記30記載の方法。
33.前記無機-有機資材用途が光学、エレクトロニクス、イオニックス、メカニックス、エネルギー、環境、生物学、医薬、知能膜、分離デバイス、機能性知能被膜、光起電力電池および燃料電池、光触媒、ニュー触媒、センサ、知能マイクロエレクトロニクス、マイクロ-オプティカルおよびフォトニック部品およびナノフォトニックス用のシステム、革新的化粧料、活性分子のターゲティング、撮像、これを用いた治療、およびその制御放出を組合わせた、インテリジェント治療媒介体、および自動車または包装産業用の、ナノセラミック-ポリマー複合体を包含する、前記32記載の方法。
34.層状に形成された材料を含むことを特徴とする、ナノ粒子。
35.前記層状に形成された材料が、カルコゲナイドを含む、前記34記載の組成物。
36.前記層状に形成された材料が、モリブデンジスルフィド、タングステンジスルフィド、グラファイト、挿入グラファイト、またはこれらの組合せを含む、前記34記載の組成物。
37.更に、ポリテトラフルオロエチレン、窒化ホウ素、六方晶系窒化ホウ素、またはこれらの組合せをも含む、前記34記載の組成物。
38.更に、軟質金属、銀、鉛、ニッケル、銅、フッ化セリウム、酸化亜鉛、硫酸銀、ヨウ化カドミウム、ヨウ化鉛、フッ化バリウム、硫化錫、リン酸亜鉛、硫化亜鉛、マイカ、硝酸ホウ素、ホウ砂、フッ素化炭素、リン化亜鉛、ホウ素、またはこれらの組合せをも含む、前記37記載の組成物。
39.層状に形成された材料を、微粉砕する工程を含むことを特徴とする、ナノ粒子の製造方法。
40.前記微粉砕工程が、ボールミル微粉砕、化学機械的微粉砕、またはこれらの組合せを含む、前記39記載の方法。
【0080】
41.前記粒子が、約500nmまたはそれ未満の平均サイズにまで微粉砕される、前記39記載の方法。
42.前記粒子が、約100nmまたはそれ未満の平均サイズにまで微粉砕される、前記39記載の方法。
43.前記層状に形成された材料が、カルコゲナイドを含む、前記39記載の方法。
44.前記層状に形成された材料が、モリブデンジスルフィド、タングステンジスルフィド、グラファイト、挿入グラファイト、またはこれらの組合せを含む、前記39記載の方法。
45.更に、ポリテトラフルオロエチレン、窒化ホウ素、六方晶系窒化ホウ素、またはこれらの組合せと共に、前記層状に形成された材料を、微粉砕する工程を含む、前記39記載の方法。
46.更に、軟質金属、銀、鉛、ニッケル、銅、フッ化セリウム、酸化亜鉛、硫酸銀、ヨウ化カドミウム、ヨウ化鉛、フッ化バリウム、硫化錫、リン酸亜鉛、硫化亜鉛、マイカ、硝酸ホウ素、ホウ砂、フッ化炭素、リン化亜鉛、ホウ素、またはこれらの組合せと共に、前記層状に形成された材料を微粉砕する工程を含む、前記45記載の方法。
47.前記ボールミル微粉砕が、高エネルギーボールミル微粉砕、中エネルギーボールミル微粉砕、またはこれらの組合せを含む、前記40記載の方法。
48.前記ボールミル微粉砕が、前記層状に形成された材料を、真空中で、ガス中で、液体中で、第二の固体の存在下で、またはこれらの組合せで微粉砕する工程を含む、前記40記載の方法。
49.前記ボールミル微粉砕が、前記の層状に形成された材料を、空気中で、アルコール中で、オイル中で、またはこれらの組合せの下で微粉砕する工程を含む、前記48記載の方法。
50.前記ボールミル微粉砕が、第一ボールミル微粉砕、および少なくとも1回の、更なるその後のボールミル微粉砕処理を含む、前記40記載の方法。
【0081】
51.前記第一ボールミル微粉砕が、乾式微粉砕を含み、かつ該少なくとも1回の更なるその後のボールミル微粉砕処理が、湿式微粉砕処理を含む、前記50記載の方法。
52.前記ボールミル微粉砕が、空気中でのおよびその後の有機媒体中での微粉砕である、前記51記載の方法。
53.前記有機媒体が、アルコール、オイル、またはこれらの組合せを含む、前記52記載の方法。
54.前記有機媒体が、複合油、カノーラオイル、植物油、大豆油、コーン油、菜種油のエチルおよびメチルエステル、蒸留モノグリセライド、モノグリセライド、ジグリセライド、モノグリセライドの酢酸エステル、モノグリセライド有機酸エステル、ソルビタン、脂肪酸のソルビタンエステル、脂肪酸のプロピレングリコールエステル、脂肪酸のポリグリセロールエステル、炭化水素油、n-ヘキサデカン、またはこれらの組合せを含む、前記52記載の方法。
55.前記有機媒体が、複合油を含む、前記52記載の方法。
56.前記ボールミル微粉砕工程を約12〜約50時間に渡り行う、前記40記載の方法。
57.前記微粉砕工程が、酸化防止剤と共に、前記層状に形成された材料を微粉砕する工程を含む、前記39記載の方法。
58.前記微粉砕工程が、耐蝕性物質と共に、前記層状に形成された材料を微粉砕する工程を含む、前記39記載の方法。
59.前記酸化防止剤が、ヒンダードフェノール、アルキル化フェノール、アルキルアミン、アリールアミン、2,6-ジ-tert-ブチル-4-メチルフェノール、4,4'-ジ- tert-オクチルジフェニルアミン、tert-ブチルヒドロキノン、トリス(2,4-ジ-tert-ブチルフェニル)ホスフェート、ホスフィット、チオエステル、またはこれらの組合せを含む、前記57記載の方法。
60.前記耐蝕剤が、アルカリ土類金属ビスアルキルフェノールスルホネート、ジチオホスフェート、アルケニル琥珀酸半-アミド、またはこれらの組合せを含む、前記58記載の方法。
【0082】
61.潤滑剤の製造方法であって、該方法が、層状に形成された材料を微粉砕してナノ粒子を形成する工程および得られる該ナノ粒子を、基剤中に組み込んで、潤滑剤を生成する工程を含むことを特徴とする、前記方法。
62.更に、ポリテトラフルオロエチレン、窒化ホウ素、六方晶系窒化ホウ素、またはこれらの組合せと共に、前記層状に形成された材料を、微粉砕する工程をも含む、前記61記載の方法。
63.更に、軟質金属、銀、鉛、ニッケル、銅、フッ化セリウム、酸化亜鉛、硫酸銀、ヨウ化カドミウム、ヨウ化鉛、フッ化バリウム、硫化錫、リン酸亜鉛、硫化亜鉛、マイカ、硝酸ホウ素、ホウ砂、フッ化炭素、リン化亜鉛、ホウ素、またはこれらの組合せと共に、前記層状に形成された材料を微粉砕する工程をも含む、前記62記載の方法。
64.前記基剤と乳化剤とを混合する、前記61記載の方法。
65.前記乳化剤を、前記ナノ粒子を添加する前に、前記基剤と混合する、前記64記載の方法。
66.前記混合処理が、超音波処理を含む、前記64記載の方法。
67.約0.5〜約2質量%なる範囲の量の前記ナノ粒子を、前記基剤中で超音波処理し、あるいはそこに分散させる、前記61記載の方法。
68.約0.25〜約5質量%なる範囲の量の前記ナノ粒子を、前記基剤中で超音波処理し、あるいはそこに分散させる、前記61記載の方法。
69.約0.75〜約2.25質量%なる範囲の量の前記乳化剤を、前記基剤中で超音波処理し、あるいはそこに分散させる、前記64記載の方法。
70.約0.5〜約10質量%なる範囲の量の前記乳化剤を、前記基剤中で超音波処理し、あるいはそこに分散させる、前記64記載の方法。