特許第6030101号(P6030101)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アボツト・モレキユラー・インコーポレイテツドの特許一覧

特許6030101肺癌に対する素因をスクリーニングするための方法およびマーカーの組み合わせ
<>
  • 特許6030101-肺癌に対する素因をスクリーニングするための方法およびマーカーの組み合わせ 図000063
  • 特許6030101-肺癌に対する素因をスクリーニングするための方法およびマーカーの組み合わせ 図000064
  • 特許6030101-肺癌に対する素因をスクリーニングするための方法およびマーカーの組み合わせ 図000065
  • 特許6030101-肺癌に対する素因をスクリーニングするための方法およびマーカーの組み合わせ 図000066
  • 特許6030101-肺癌に対する素因をスクリーニングするための方法およびマーカーの組み合わせ 図000067
  • 特許6030101-肺癌に対する素因をスクリーニングするための方法およびマーカーの組み合わせ 図000068
  • 特許6030101-肺癌に対する素因をスクリーニングするための方法およびマーカーの組み合わせ 図000069
  • 特許6030101-肺癌に対する素因をスクリーニングするための方法およびマーカーの組み合わせ 図000070
  • 特許6030101-肺癌に対する素因をスクリーニングするための方法およびマーカーの組み合わせ 図000071
  • 特許6030101-肺癌に対する素因をスクリーニングするための方法およびマーカーの組み合わせ 図000072
  • 特許6030101-肺癌に対する素因をスクリーニングするための方法およびマーカーの組み合わせ 図000073
  • 特許6030101-肺癌に対する素因をスクリーニングするための方法およびマーカーの組み合わせ 図000074
  • 特許6030101-肺癌に対する素因をスクリーニングするための方法およびマーカーの組み合わせ 図000075
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6030101
(24)【登録日】2016年10月28日
(45)【発行日】2016年11月24日
(54)【発明の名称】肺癌に対する素因をスクリーニングするための方法およびマーカーの組み合わせ
(51)【国際特許分類】
   G01N 33/574 20060101AFI20161114BHJP
   C07K 14/705 20060101ALI20161114BHJP
   C07K 16/28 20060101ALI20161114BHJP
【FI】
   G01N33/574 AZNA
   C07K14/705
   C07K16/28
【請求項の数】9
【全頁数】123
(21)【出願番号】特願2014-177768(P2014-177768)
(22)【出願日】2014年9月2日
(62)【分割の表示】特願2010-515193(P2010-515193)の分割
【原出願日】2008年6月27日
(65)【公開番号】特開2015-7645(P2015-7645A)
(43)【公開日】2015年1月15日
【審査請求日】2014年10月1日
(31)【優先権主張番号】11/771,727
(32)【優先日】2007年6月29日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】507051972
【氏名又は名称】アボツト・モレキユラー・インコーポレイテツド
(74)【代理人】
【識別番号】110001173
【氏名又は名称】特許業務法人川口國際特許事務所
(72)【発明者】
【氏名】トレイシー・コルピツツ
(72)【発明者】
【氏名】エリツク・エル・ラツセル
(72)【発明者】
【氏名】ステイーブン・フロスト
(72)【発明者】
【氏名】ハビエル・ラミレス
(72)【発明者】
【氏名】バワーニ・シン
(72)【発明者】
【氏名】ジヨン・シー・ラツセル
【審査官】 草川 貴史
(56)【参考文献】
【文献】 国際公開第00/058728(WO,A1)
【文献】 特開2003−240774(JP,A)
【文献】 国際公開第2006/126008(WO,A2)
【文献】 特表2003−521669(JP,A)
【文献】 特表2008−542703(JP,A)
【文献】 英国特許出願公開第00510943(GB,A)
【文献】 特表2003−535309(JP,A)
【文献】 米国特許出願公開第2006/0003465(US,A1)
【文献】 Ji P、外13名,MALAT-1, a novel noncoding RNA, and thymosin bold italic beta4 predict metastasis and survival in early-stage non-small cell lung cancer,Oncogene.,2003年 9月11日,Vol.22,No.39,Page.8031-8041
【文献】 Hou P、外5名,The clinical significance of thymosin β4 expression in human non-small cell lung cancer,Zhongguo Fei Ai Za Zhi. ,中国,2004年12月20日,Vol.7,No.6,Page.483-487
【文献】 Cha HJ、外2名,Role of thymosin beta4 in tumor metastasis and angiogenesis.,J Natl Cancer Inst. ,2003年11月19日,Vol,95,No.22,Page.1674-1680
(58)【調査した分野】(Int.Cl.,DB名)
G01N 33/48−33/98
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
a.対象から得られた検査試料中において、パネル中の5つ又はそれ以上のバイオマーカーの量を定量する工程;
b.前記パネル中で定量された各バイオマーカーの量を前記バイオマーカーに対する所定のカットオフと比較し、該比較に基づいて、各バイオマーカーに対してスコアを割り当てる工程;
c.前記対象に対する合計スコアを得るために、工程bにおいて定量された各バイオマーカーに対して割り当てられたスコアを合算する工程;
d.工程cにおいて決定された合計スコアを所定の合計スコアと比較する工程;および
e.工程dにおける合計スコアの比較に基づいて、前記対象が肺癌のリスクを有するかどうかを決定する工程;
を含む、肺癌と疑われる対象の診断を補助する方法であって、
パネルが、少なくとも5つの抗原:サイトケラチン19、CEA、CA125、プロGRP、およびチモシンβ4を全て含む、前記方法。
【請求項2】
(i)パネルが、抗p53、抗TMP21、抗NY−ESO−1、抗HDJ1、抗NPC1L1Cドメイン、抗TMOD1、抗CAMK1、抗RGS1、抗PACSIN1、抗RCV1、抗MAPKAPK3および抗サイクリンE2からなる群から選択される少なくとも1つの抗体をさらに含む;
(ii)パネルがサイトケラチン8、サイトケラチン18、CA19−9、CA15−3、SCC、血清アミロイドA、α−1−アンチトリプシン、およびアポリポタンパク質CIIIからなる群から選択される少なくとも1つの抗原をさらに含む;または
(iii)パネルがAcn6399、Acn9459、Pub11597、Pub4789、TFA2759、TFA9133、Pub3743、Pub8606、Pub4487、Pub4861、Pub6798、Pub6453、Pub2951、Pub2433、Pub17338、TFA6453およびHIC3959からなる群から選択される少なくとも1つの関心領域をさらに含む、
請求項1の方法。
【請求項3】
工程bが、パネル中の各バイオマーカーの量を、前記バイオマーカーに対する多数の所定のカットオフと比較し、および該比較に基づいて各バイオマーカーに対してスコアを割り当てることを含み、工程cが、前記対象に対する合計スコアを得るために、工程bにおいて定量された各バイオマーカーに対する割り当てられたスコアを合算することを含み、工程dが、工程cにおいて決定された合計スコアを所定の合計スコアと比較することを含み、および工程eが、工程dにおける合計スコアの比較に基づいて、前記対象が肺癌を有するかどうかを決定することを含む、請求項1の方法。
【請求項4】
対象の少なくとも1つのバイオメトリックパラメータに対して値を取得すること;および
各前記バイオメトリックパラメータに対する所定のカットオフに対して、前記少なくとも1つのバイオメトリックパラメータの値を比較し、および該比較に基づいて各バイオメトリックパラメータに対してスコアを割り当てること;
をさらに含む、請求項1の方法。
【請求項5】
(i)パネルが、抗p53、抗TMP21、抗NY−ESO−1、抗HDJ1、抗NPC1L1Cドメイン、抗TMOD1、抗CAMK1、抗RGS1、抗PACSIN1、抗RCV1、抗MAPKAPK3および抗サイクリンE2からなる群から選択される少なくとも1つの抗体をさらに含む;
(ii)パネルがサイトケラチン8、サイトケラチン18、CA15−3、SCC、CA19−9、血清アミロイドA、α−1−アンチトリプシン、およびアポリポタンパク質CIIIからなる群から選択される少なくとも1つの抗原をさらに含む;
(iii)パネルがAcn6399、Acn9459、Pub11597、Pub4789、TFA2759、TFA9133、Pub3743、Pub8606、Pub4487、Pub4861、Pub6798、Pub6453、Pub2951、Pub2433、Pub17338、TFA6453およびHIC3959からなる群から選択される少なくとも1つの関心領域をさらに含む;または
(iv)バイオメトリックパラメータが対象の喫煙歴、年齢、発癌性物質への曝露および性別からなる群から選択される、
請求項4の方法。
【請求項6】
各バイオメトリックパラメータの値を、前記バイオメトリックパラメータに対する多数の所定のカットオフに対して比較し、該比較に基づいて各前記バイオメトリックパラメータに対して多数の可能なスコアの1つを割り当てることをさらに含み、工程bが、パネル中の各バイオマーカーの量を前記バイオマーカーに対する多数の所定のカットオフと比較し、および該比較に基づいて各バイオマーカーに対してスコアを割り当てることを含み、工程cが、前記対象に対する合計スコアを得るために、工程bにおいて定量された各バイオマーカーに対する割り当てられたスコアをバイオメトリックパラメータに対する割り当てられたスコアと合計することを含み、工程dが工程cにおいて決定された合計スコアを所定の合計スコアと比較することを含み、および工程eが、工程dにおける合計スコアの比較に基づいて、前記対象が肺癌を有するかどうかを決定することを含む、
請求項4の方法。
【請求項7】
a.検査試料中の5つの抗原を定量するための試薬(前記5つの抗原は、サイトケラチン19、CEA、CA125、プロGRP、およびチモシンβ4である。)、
b.検査試料中の少なくとも1つの抗体を定量するための1つ又はそれ以上の抗原を含有する試薬(前記抗体は、抗p53、抗TMP21、抗NPC1L1Cドメイン、抗TMOD1、抗NY−ESO−1、抗HDJ1、抗CAMK1、抗RGS1、抗PACSIN1、抗RCV1、抗MAPKAPK3および抗サイクリンE2である。);並びに、必要に応じて、
c.検査試料中の定量された各抗原および抗体の量を合算し、所定のカットオフに対して比較し、並びに該比較に基づいて、定量された各抗原および抗体に対するスコアを割り当て、合計スコアを得るために、定量された各抗原および抗体に対する割り当てられたスコアを合算し、合計スコアを所定の合計スコアと比較し、および対象が肺癌を有するかどうかを決定する上での補助として前記比較を使用するためのアルゴリズム;
を含む、キット。
【請求項8】
(i)ACN9459、Pub11597、Pub4789、TFA2759、TFA9133、Pub3743、Pub8606、Pub4487、Pub4861、Pub6798、Tfa6453およびHic3959からなる群から選択される1つ又はそれ以上の関心領域を定量するための試薬;及び/又は
(ii)検査試料中の少なくとも1つの抗原を定量するための1つ又はそれ以上の抗体を含有する試薬であって、前記抗原がサイトケラチン8、サイトケラチン18、CA15−3、SCC、CA19−9、血清アミロイドA、α−1−アンチトリプシン、またはアポリポタンパク質CIIIである前記試薬
をさらに含む、請求項7のキット。
【請求項9】
肺癌に関するバイオマーカーの理想からの距離(DFI)は0.4より小さく、DFIは[(1−感受性)+(1−特異性)1/2である、請求項1の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の情報
本願は、2005年12月22日に出願された米国特許出願60/753,331号の優先権を主張する2006年12月21日に出願された米国出願11/644,365号の一部継続出願である2007年6月29日に出願された米国出願11/771,727号の優先権を主張する(全ての内容が、参照により、本明細書中に組み込まれる。)。
【背景技術】
【0002】
肺癌は、米国において、男性および女性ともに二番目に多い癌であり、2005年の間に、172,500の新たな症例が診断されると推定されている(American Cancer Societyの統計)。肺癌は、両性における最も一般的な癌の死因であり、163,000を超える肺癌関連の死が2005年に予想されている。肺癌は、世界の他の地域でも大きな健康上の問題である。EUでは、約135,000の新たな症例が毎年発生している(Genesis Report,1995年2月)。男性の喫煙率が世界で最も高い中欧および東欧でも発症率が急速に増加している(T.Reynolds, J. Natl.Cancer Inst.87:1348−1349(1995)参照)。タバコ単独で、肺、気管および気管支の癌の全症例の90%超の原因となっている(CPMCnet, Guide to Clinical Preventive Services参照)。国際保健機構の国際癌研究機関は、2002年に世界で、1,352,000の肺癌症例が存在し、この疾患によって1,179,000が死亡したと推定した。
【0003】
初期の肺癌は、胸部レントゲンおよび痰の細胞学的検査によって検出することができるが、これらの手法は無症候の個体に対するスクリーニング検査として日常的に使用するのに十分な精度を有していない。胸部レントゲンの感度を制約し得る潜在的な技術的問題には、最適でない技量、不十分な露出並びに患者の配置および協力が含まれる(T.G. Tape, et al., Ann.Intern.Med.104:663−670 (1986)参照)。放射線医の胸部レントゲンに関する解釈はしばしば一致せず、これらの40%超が重要であり、又は重要な可能性がある(P.G. Herman, et al., Chest 68:278−282 (1975))参照)。偽陰性の解釈が多くの誤りの原因であり、確定的でない結果には、確定のための追跡検査が必要である(T.G.Tape et al.,上記参照)。
【0004】
痰の細胞学は、初期の肺癌を検出する上で、胸部レントゲンより感度が低い(The National Cancer Institute Cooperative Early Lung Cancer Detection Program, Am.Rev.Resp.Dis.130:565−567(1984)参照)。痰の細胞学が肺癌を診断する能力に影響を及ぼす要因には、患者が十分な痰を排出する能力、腫瘍の大きさ、主な気道への腫瘍の近接、腫瘍の組織学的種類並びに細胞病理学者の経験および訓練が含まれる(R.J.Ginsberg et al.In:Cancer:Principles and Practice of Oncology, Fourth Edition, pp.673−723, Philadelphia, PA:J/B.Lippincott Co.(1993)参照)。
【0005】
多くの新たな肺癌は、疾病が肺を超えて広がった時点で検出される。アメリカでは、5年生存率が49.7%で最高である局所的段階で、新たな非小細胞肺癌の16%が検出されるに過ぎない。これに対して、新たな症例の68%は、疾病が既に局所的に広がっているか、又は離れた部位に転移した時点で検出され、5年生存率は、それぞれ、18.5%および1.8%である。同様に、新たに検出される小細胞肺癌の80%は、局所的な浸潤又は遠隔転移を有することが発見され、5年生存率は、それぞれ、9.5%および1.7%である(Stat Bite, J. Natl.Cancer Inst.87:1662 (1995)参照)。これらの統計は、現行の手続きは、疾病の治療可能な初期段階で肺癌を検出することができないこと、並びに死亡率を低下させるために、改善された検出および治療法が必要とされていることを示している。
【0006】
一次療法後に肺癌患者をモニタリングするために最も頻繁に使用される方法は、通院、胸部X線、全血球算定、肝機能検査および胸部コンピュータ断層撮影法(CT)である。しかしながら、定期的なモニタリングによる再発の検出は治療様式および全体的な生存期間に大きく影響を及ぼすものではなく、現行のモニタリング法は費用対効果に優れていないと結論付けられる(K.S. Naunheim et al.,Ann.Thorac.Surg.60:1612−1616(1995);G.L.Walsh et al., Ann. Thorac. Surg. 60:1563−1572(1995))。
【0007】
より最近になって、肺癌に対して高いリスクを有する無症候性の者をスクリーニングするために、コンピュータ断層撮影法(CT)を使用することが再び調査されてきた。C.I.Henschkeら(Clin.Imaging28:317−321(2004))は、CTスキャンは、過度の偽陽性を生じることなく、無症候性の肺癌を検出できることを示唆する2つの研究を報告した。J.Gohganら(Chest 126:114−121(2004))は、胸部X線を低線量ら線形CTと比較する無作為研究のための試験プロトコールを評価し、肺癌をスクリーニングするための大規模な無作為臨床試験は実行可能であると結論付けた。しかしながら、臨床業務において実行されたとしても、CTスクリーニングの費用は高く、追加検査をもたらす偽陽性の数も高い。優れた特異性を有する低コスト血液検査は、癌の初期検出に関してCTを補完する。CTの有用性を改善するための別の戦略は、初期段階の肺癌に対する高感度血液検査を使用することである。CT又はX線の代用として、このような検査を患者に施すことができる。検査が陽性であれば、患者には画像診断が行われる。検査が陰性であれば、患者にはスキャンは行われないが、将来、再検査が行われ得る。血液検査が高い感受性若しくは高い特異性又は理想的には両方を与えるかどうかに関わらず、このような検査は、初期段階の肺癌を検出するために使用される現行のプロトコールに有用性を見出す。
【0008】
さらに、肺癌のリスクが高い個体を特定するためにパネルへと組み合わせた場合の腫瘍マーカーおよびその有用性について再検討が最近行われた。しかしながら、個々のマーカーの特徴となる感受性が欠如しているために、腫瘍マーカーのパネルは肺癌の初期検出に未だ有用でない。古典的な生化学的方法によって見出された腫瘍抗原には、αフェトプロテイン(AFP)、CA19−9、CA125、癌胎児性抗原(CEA)、サイトケラチン8、サイトケラチン18、サイトケラチン19断片(CYFRA21−1)、神経細胞特異的エノラーゼ(NSE)、プログラストリン放出ペプチド(proGRP)および扁平上皮細胞癌抗原(SCC)が含まれる。これらのマーカーは、診断が為された後に、肺癌患者の段階を決定し、分類し、転帰を予想し、およびモニタリングする上で有用であることが見出されている。しかしながら、これらのマーカーは、単独で又はパネルで、肺癌の初期検出のために有用であることは明らかとなっていない(S. Ando, et al., Anticancer Res.21 :3085−3092 (2001); U. S. Preventive Services Task Force, Annals of Internal Medicine 140:738−739 (2004)参照)。これに対して、公知のイムノアッセイマーカーのパネル、とりわけ、CEA、CYFRA21−1、SCC、NSEおよびProGRPは、生検試料の取得が困難な状況において、肺癌の組織学的診断を行う上で有用であることが知られている(C. Gruber et al., Tumor Biology 27(Supplement1):71(2006)およびP.Stieber et al., Tumor Biology.27(Supplement 2):S5−4(2006)参照)。
【0009】
正常な肺組織と比べて、肺腫瘍組織中で異なって発現されている細胞成分をまず特定することによって、肺癌に対する改善された腫瘍マーカーを発見する試みが為されてきた。ポリペプチド組成の定量的および定性的な差を特徴付けるために、二次元ポリアクリルアミドゲル電気泳動が使用されてきた(T.Hirano et al., Br. J. Cancer 72:840−848(1995);A. T. Endler et al., J.Clin.Chem Clin.Biochem.24:981−992(1986)参照)。しかしながら、二次元電気泳動工程のタンパク質分離の程度によって、およびゲル中でのタンパク質の染色に依存する検出工程によって、この技術の感度は制約を受ける。また、ポリペプチドの不安定性は、二次元パターンに人工的な誤差をもたらす。
【0010】
国際特許公開WO2005/098445A2中に記載されているものなど、肺癌の診断を補助する上で、バイオマーカーおよびその使用を特定する試みも為されてきた。WO2005/098445号に論述されているバイオマーカーは、表面増強レーザー脱離/イオン化質量分析法(SELDI)を用いて同定された。様々なマーカー、キット、方法および決定木解析法が開示されている。しかしながら、これらのマーカーおよび方法は何れの研究室においても再現されていないので、これらのマーカー、キットおよび方法は、日常的な業務で使用するために採用されていない。
【0011】
ヒトの免疫系は、癌の発達と調節に関与していることが以前から知られている(K. de Visser, et al., Nature Reviews Cancer, 6:24−37 (2006)参照)。従って、自然免疫応答および養子免疫応答を体現するタンパク質が肺癌に対する腫瘍マーカーとして探索されてきたことは驚くべきことではない。
【0012】
血清アミロイドA(SAA)、血清アミロイドP(SAP)およびC反応性タンパク質(CRP)、α−1−アンチキモトリプシン(α−1−ACT)、α−1−アンチトリプシン(α−1−AT)、α−2−マクログロブリン(α−2−M)、セルロプラスミン(Cp)、ハプトグロビン(Hp)およびトランスフェリン(Tf)などの、タンパク質の自然免疫ファミリーの一員である急性期タンパク質は、初期の切除可能な肺癌のバイオマーカーとして評価されてきた(M. Kasprzyk, et al., Przegl.Lek.63:936−940 (2006)参照)。フィブリノーゲンおよびCRPは、切除可能な肺癌に対する生物マーカーとして研究されてきた(J. Jones, et al.Lung Cancer, 53:97−101(2006)参照)。アポリポタンパク質CIII(アポCIII)は、肺癌の生物マーカーであると報告されていないが、膵臓癌と関連していると報告されている(J. Chen, et al., J. Chromatogr.A.(2007), doi:10.1016/j.chroma.2007.03.096参照)。急性期タンパク質と肺癌の関連は、20年以上にわたって知られているが(P. Weinstein, et al., Scand.J. Immunol.19:193−198 (1984)参照)、初期肺癌の診断において日常的に使用されている急性期タンパク質は存在しない。
【0013】
急性期タンパク質であると一般的に考えられていないが、対象に対するストレスに応答して上昇するタンパク質が存在する。このようなタンパク質は、自然又は養子免疫タンパク質より広いカテゴリーである、宿主応答タンパク質と称することができる。1つのこのようなタンパク質は、創傷治癒に関与する44アミノ酸ペプチドであるチモシンβ−4(Tβ4)である。腫瘍組織中でのチモシンβ−4の発現は、浸潤性および転移性がより大きな腫瘍の表現型を予測すると考えられている。高いレベルでチモシンβ−4mRNAを発現する初期の肺癌患者は、より低い発現を有する患者より生存率が劣る(C. Muller−Tidow, et al., Lung Cancer 45:S 145−150 (2004)参照)。
【0014】
自己抗体(患者自身のタンパク質(自己抗原と称される。)と反応する免疫グロブリン)は、養子免疫系の作用を実行するタンパク質を含む。肺癌患者中の自己抗体の存在に関する科学的な文献は、40年前に遡る(G.Levine, et al.,J.Lab.Clin.Med.69:749−757(1967)参照)。時折、特に、小細胞肺癌において、腫瘍随伴症候群として特徴付けられる神経学的症候を呈する患者中に神経系成分に対する自己抗体が生じる(U.Seneviratne,et al.Postgrad.Med.J.75:516−520参照)。劇的ではあるが、腫瘍随伴症候群を呈する患者はほとんど存在しないので、腫瘍随伴症候群および神経細胞又はタンパク質に対する自己抗体は何れも、大規模な集団に対する診断においては有用でない。自己抗体の初期の文献は、循環抗p53抗体に数多く言及している。p53は腫瘍抑制タンパク質であり、多くの癌において変異により不活化されている。患者の抗p53抗体は固有のp53および変異を受けたp53の何れとも反応するが、変異を受けたp53の組織半減期はより長いので、肺癌患者の約30%にこの自己抗体が出現すると考えられている(R. Lubin, et al., Nat. Med.1 :701−702 (1995)参照)。癌において自己抗体を生ずる細胞機構の制御に関与している細胞内タンパク質の報告が存在する。ヒト熱ショックタンパク質40(Hsp40)に対する抗体が、肺癌患者の血清中に見出されることが報告されている(M. Oka, et al., Jpn.J.Cancer Res.92:316−320 (2001)参照)。このタンパク質は、DnaJB1又はhDJ1としても知られる。肺癌中に循環する自己抗体を生じさせる自己抗原になる多くのタンパク質が記載されているが、百万又はそれ以上のタンパク質がヒト対象中に存在すると考えられていることに鑑みれば、肺癌および他の慢性疾患を有する患者中に、診断的に有用な自己抗体を引き起こすことが証明され得る、さらに多くの公知および非公知のタンパク質が残存している。
【0015】
患者を分類し、又は診断を下すために、複数の自己抗体が使用される場合には、データ解析プロトコールが必要とされる。J. Koziolら(Clin.Cancer Res.9:5120−5126 (2003))は、様々な腫瘍の最適な診断のために自己抗体を選択するために再帰分割を使用した。J.Koziolらは、c−myc、サイクリンB1、IMP2、Koc、p53、p62およびサバイビンという7つの腫瘍関連抗原を使用し、肺癌患者の小さなグループ(56)に対して優れた結果を得た。
【0016】
診断的に有用な自己抗体を見出すための系統的アプローチには、反応性自己抗体に対して患者の血清および無疾病血清をスクリーニングするために、タンパク質アレイを使用することが含まれる。アレイは、腫瘍細胞可溶化液から構築され(J.Qui,et al., J. Proteome Res.3:261−267 (2004))、診断的に有用な自己抗体シグナチャーを患者の血清中に生じさせる新規自己抗原の探索のために使用されてきた。アレイは、組換え発現されたタンパク質からも構築することができる(D. Mattoon, et al., Expert.Rev.Proteomics 2:879−889 (2005)参照)。診断用自己抗体を発見するのに有用である可能性を有するアフィニティークロマトグラフィー法が記載されている((J.Sep.Sci.30:352−358(2007))。現在のところ、これらのアプローチは何れも、肺癌の初期検出のために有用な新規自己抗体をもたらしていない。
【0017】
診断的に有用な自己抗体を発見するための別の体系的アプローチは、いわゆるSEREX法である。SEREXは、Serological Analysis of Recombinant cDNA Expression Libraries(組換えcDNA発現ライブラリーの血清学的分析)を表し、様々な癌において異常発現されている新規精巣抗原を発見するために使用されてきた(Y. Chen, et al., Proc. Natl.Acad. Sci.U.S.A. 94:1914−1918 (1997)参照)。NY−ESO−1は約18kDのタンパク質であり、腫瘍自己抗体として広く研究されてきた。ELISAによって測定された場合に、非小細胞肺癌患者の約20%は、このタンパク質に対する循環抗体を有する(O. Tureci, et al., Cancer Lett.236:64−71 (2006)参照)。
【0018】
罹患個体および非罹患個体から得た血清を用いて、酵母又は細菌中で発現されたペプチドライブラリーを調査することによって、肺癌に特異的な免疫応答を発見するための試みが行われてきた。Hirschowitzの研究室から発表された文献(L. Zhong et al., Chest 125:105−106 (2004), L. Zhong et al., Am.J.Respir.Crit.Care Med.15:1308−1314 (2005)参照)は、肺癌患者に対する自己抗原であるタンパク質を発見するためにファージライブラリーを使用することを記載している。これらの著者は、対照化された研究において、症候性および無症候性肺癌患者の両方の特定に成功したことを報告している。しかしながら、症例および対照の数は限定されており(合計200人未満の被験者)、この方法は、より大きな集団で検証する必要がある。
【0019】
現在、肺癌のリスクを有する個体の特定は、主として、個体の喫煙歴に基づいている。アスベスト、粒状物などの他の環境的曝露も、肺癌発症リスクを増加させ得る。これらの公知のリスク因子は1つ又はそれ以上のアルゴリズム中に統合されており、肺癌に対する個体のリスクを評価するために、医療従事者および公衆の利用に供されている(P. B. Bach et al., J. Natl.Cancer Inst.95:470−478 (2003)参照)。残念なことに、このアルゴリズムは、初期段階の肺癌の検出に有用であるほど十分な感受性および特異性を有していない。実際、前記アルゴリズムに基づくと、著しい喫煙歴を有する個体は、肺癌の発症に関して、1/500から1/100の相対リスクを有している。このことは、Bachらの方法を用いた場合でさえ、500のCTスキャンのうち最大499は、肺癌の症例の発見に結び付かないことを意味している。
【先行技術文献】
【特許文献】
【0020】
【特許文献1】国際公開第2005/098445号
【非特許文献】
【0021】
【非特許文献1】Genesis Report,1995年2月
【非特許文献2】T.Reynolds, J. Natl.Cancer Inst.87、1995年、pp.1348−1349
【非特許文献3】CPMCnet, Guide to Clinical Preventive Services
【非特許文献4】T.G.Tape他、Ann.Intern.Med.104、1986年、pp.663−670
【非特許文献5】P.G.Herman他、Chest 68、1975年、pp.278−282
【非特許文献6】The National Cancer Institute Cooperative Early Lung Cancer Detection Program,Am.Rev.Resp.Dis.130、1984年、pp.565−567
【非特許文献7】R.J.Ginsberg et al.In:Cancer:Principles and Practice of Oncology, Fourth Edition, pp.673−723, Philadelphia, PA:J/B.Lippincott Co.(1993)
【非特許文献8】Stat Bite, J. Natl.Cancer Inst.87、1995年、pp.1662
【非特許文献9】K.S. Naunheim他、Ann.Thorac.Surg.60、1995年、pp.1612−1616
【非特許文献10】G.L.Walsh et al., Ann. Thorac. Surg. 60、1995年、pp.1563−1572
【非特許文献11】C.I.Henschke他、Clin.Imaging28、2004年、pp.317−321
【非特許文献12】S. Ando他、Anticancer Res.21、2001年、pp.3085−3092
【非特許文献13】U. S. Preventive Services Task Force, Annals of Internal Medicine 140、2004年、pp.738−739
【非特許文献14】C. Gruber他、Tumor Biology 27(Supplement1)、71、2006年
【非特許文献15】P.Stieber他、Tumor Biology.27(Supplement 2)、2006年、S5−4
【非特許文献16】T.Hirano他、Br. J. Cancer 72、1995年、pp.840−848
【非特許文献17】A. T. Endler他、J.Clin.Chem Clin.Biochem.24、1986年、pp.981−992
【非特許文献18】K. de Visser他、Nature Reviews Cancer, 6、2006年、pp.24−37
【非特許文献19】M. Kasprzyk他、Przegl.Lek.63、2006年、pp.936−940
【非特許文献20】J. Jones他、Lung Cancer,53、2006年、pp.97−101
【非特許文献21】J. Chen他、J. Chromatogr.A.(2007), doi:10.1016/j.chroma.2007.03.096
【非特許文献22】P. Weinstein他、Scand.J. Immunol.19、1984年、pp.193−198
【非特許文献23】C. Muller−Tidow他、Lung Cancer 45、2004年、S145−150
【非特許文献24】G.Levine他、J.Lab.Clin.Med.69、1967年、pp.749−757
【非特許文献25】U.Seneviratne他、Postgrad.Med.J.75、pp.516−520
【非特許文献26】R. Lubin他、Nat. Med.1、1995年、pp.701−702
【非特許文献27】M. Oka他、Jpn.J.Cancer Res.92、2001年、pp.316−320
【非特許文献28】J. Koziol他、Clin.Cancer Res.9、2003年、pp.5120−5126
【非特許文献29】J.Qui他、J. Proteome Res.3、2004年、pp.261−267
【非特許文献30】D. Mattoon他、Expert.Rev.Proteomics 2、2005年、pp.879−889
【非特許文献31】J.Sep.Sci.30、2007年、pp.352−358
【非特許文献32】Y. Chen他、Proc.Natl.Acad.Sci.U.S.A.94、1997年、pp.1914−1918
【非特許文献33】O. Tureci他、Cancer Lett.236、2006年、pp.64−71
【非特許文献34】L. Zhong他、Chest 125、2004年、pp.105−106
【非特許文献35】L. Zhong他、Am.J.Respir.Crit.Care Med.15、2005年、pp.1308−1314
【非特許文献36】P. B. Bach他、J. Natl.Cancer Inst.95、2003年、pp.470−478
【発明の概要】
【発明が解決しようとする課題】
【0022】
従って、実施が迅速、便利で、費用対効果に優れている、肺癌を検出するのに有用な方法およびマーカーが本分野でなお必要とされている。ある患者が肺癌を発症するリスクがあるか、又は肺癌を有しているかどうかを決定するために使用することができる特異的方法およびマーカーのある組み合わせを提供することも有利である。このような方法には、肺癌の指標となる1つ又はそれ以上のマーカーに対して試料を検査し、このようなマーカーを検出するための方法が含まれる。このような方法には、マーカーに関して生物学的試料の質量スペクトルを分析し、又は試料をアッセイした後、肺癌を発症するリスクとして、又は肺癌の指標としてマーカーを検出するための改善された方法が含まれ得る。
【課題を解決するための手段】
【0023】
(発明の要旨)
本発明は、肺癌を有することが疑われる対象中の肺癌の検出を補助するための迅速で感度が高い方法は、バイオマーカーのある種の組み合わせおよびバイオマーカー並びにバイオメトリックパラメータのある種の組み合わせに基づき得るという発見に部分的に基づくものである。
【0024】
一態様において、前記方法は、以下の工程を含むことができる。
【0025】
a.対象から得られた検査試料中において、パネル中の1つ又はそれ以上のバイオマーカーの量を定量すること;
b.前記パネル中の各バイオマーカーの量を前記バイオマーカーに対する所定のカットオフと比較し、該比較に基づいて、各バイオマーカーに対してスコアを割り当てること;
c.前記対象に対する合計スコアを得るために、工程bにおいて決定された各バイオマーカーに対して割り当てられたスコアを合計すること;
d.工程cにおいて決定された合計スコアを所定の合計スコアと比較すること;および
e.工程dにおける合計スコアの比較に基づいて、前記対象が肺癌のリスクを有するかどうかを決定すること。
【0026】
上記方法において、肺癌に関するバイオマーカーのDFIは、好ましくは、約0.4未満である。
【0027】
必要に応じて、上記方法は、少なくとも1つのバイオメトリックパラメータに対する値を対象から取得する工程をさらに含み得る。取得され得るバイオメトリックパラメータの例は、対象の喫煙歴である。上記方法が対象から得られた少なくとも1つのバイオメトリックパラメータに対して値を取得する工程をさらに含む場合には、前記方法は、各前記バイオメトリックパラメータに対する所定のカットオフに対して少なくとも1つのバイオメトリックパラメータの値を比較する工程と、および該比較に基づいて、各バイオメトリックパラメータに対してスコアを割り当てる工程と、工程cにおいて前記対象に対する合計スコアを得るために、各バイオメトリックパラメータに対する割り当てられたスコアを、工程bにおいて定量された各バイオマーカーに対する割り当てられたスコアと組み合わせる工程と、工程dにおいて前記合計スコアを所定の合計スコアと比較する工程と、および工程eにおいて、合計スコアに基づいて、前記対象が肺癌のリスクを有するかどうかを決定する工程をさらに含むことができる。
【0028】
上記方法において定量され得るバイオマーカーの例は、抗体、抗原、関心領域又はこれらのあらゆる組み合わせの群から選択される1つ又はそれ以上のバイオマーカーである。より具体的には、定量され得るバイオマーカーには、抗p53、抗TMP21、抗NYESO−1、抗HDJ1、抗ニーマンピックC1様タンパク質1、C末端ペプチドドメイン(抗NPC1L1Cドメイン)、抗TMOD1、抗CAMK1、抗RGS1、抗PACSIN1、抗RCV1、抗MAPKAPK3、抗サイクリンE2(すなわち、免疫反応性サイクリンE2に対する少なくとも1つの抗体)、サイトケラチン8、サイトケラチン19、サイトケラチン18、CEA、CA125、CA15−3、SCC、CA19−9、プロGRP、血清アミロイドA、α−1−アンチトリプシン、アポリポタンパク質CIIIおよびTβ4、Acn6399、Acn9459、Pub11597、Pub4789、TFA2759、TFA9133、Pub3743、Pub8606、Pub4487、Pub4861、Pub6798、Pub6453、Pub2951、Pub2433、Pub17338、TFA6453およびHIC3959の1つ又はそれ以上が含まれるが、これらに限定されない。
【0029】
必要に応じて、上記方法において使用されるパネルは、2つ若しくはそれ以上のバイオマーカー、3つ若しくはそれ以上のバイオマーカー、4つ若しくはそれ以上のバイオマーカー、5つ若しくはそれ以上のバイオマーカー、6つ若しくはそれ以上のバイオマーカー、7つ若しくはそれ以上のバイオマーカー、8つ若しくはそれ以上のバイオマーカー、9つ若しくはそれ以上のバイオマーカー、10若しくはそれ以上のバイオマーカー、11若しくはそれ以上のバイオマーカー、12若しくはそれ以上のバイオマーカー、13若しくはそれ以上のバイオマーカー、14若しくはそれ以上のバイオマーカー、15若しくはそれ以上のバイオマーカー、16若しくはそれ以上のバイオマーカー、17若しくはそれ以上のバイオマーカー、18若しくはそれ以上のバイオマーカー、19若しくはそれ以上のバイオマーカー又は20のバイオマーカー又はそれ以上などの量を定量することを含み得る。
【0030】
別の態様において、前記方法は、以下の工程を含むことができる。
【0031】
a.対象の少なくとも1つのバイオメトリックパラメータに対して値を取得すること;
b.各前記バイオメトリックパラメータに対する所定のカットオフに対して、前記少なくとも1つのバイオメトリックパラメータの値を比較し、該比較に基づいて各バイオメトリックパラメータに対してスコアを割り当てること;
c.対象から得られた検査試料中において、少なくとも1つの抗体と少なくとも1つの抗原を含むパネル中の2つ又はそれ以上のバイオマーカーの量を定量すること;
d.前記パネル中で定量された各バイオマーカーの量を前記バイオマーカーに対する所定のカットオフと比較し、該比較に基づいて、各バイオマーカーに対してスコアを割り当てること;
e.前記対象に対する合計スコアを得るために、工程dにおいて決定された各バイオマーカーに対して割り当てられたスコアを工程bにおいて決定された各バイオメトリックパラメータに対して割り当てられたスコアを合計すること;
f.工程eにおいて決定された合計スコアを所定の合計スコアと比較すること;および
g.工程fにおいて決定された合計スコアの比較に基づいて、前記対象が肺癌のリスクを有するかどうかを決定すること。
【0032】
上記方法において、肺癌に関するバイオマーカーのDFIは、好ましくは、約0.4未満である。
【0033】
上記方法において、前記パネルは、抗p53、抗TMP21、抗NY−ESO−1、抗HDJ1、抗NPC1L1Cドメイン、抗TMOD1、抗CAMK1、抗RGS1、抗PACSIN1、抗RCV1、抗MAPKAPK3および抗サイクリンE2からなる群から選択される少なくとも1つの抗体並びにサイトケラチン8、サイトケラチン19、サイトケラチン18、CEA、CA125、CA15−3、SCC、CA19−9、プロGRP、血清アミロイドA、α−1−アンチトリプシン、アポリポタンパク質CIIIおよびTβ4からなる群から選択される少なくとも1つの抗原を含み得る。
【0034】
上記方法において、対象から得られたバイオメトリックパラメータは、対象の喫煙歴、年齢、発癌性物質への曝露および性別からなる群から選択される。好ましくは、バイオメトリックパラメータは、対象の喫煙のパック・年である。
【0035】
必要に応じて、前記方法は、検査試料中の少なくとも1つの関心領域を定量することをさらに含み得る。検査試料中において、関心領域を定量すべき場合には、前記パネルは、Acn6399、Acn9459、Pub11597、Pub4789、TFA2759、TFA9133、Pub3743、Pub8606、Pub4487、Pub4861、Pub6798、Pub6453、Pub2951、Pub2433、Pub17338、TFA6453およびHIC3959からなる群から選択される少なくとも1つの関心領域をさらに含むことができる。
【0036】
必要に応じて、上記方法は、対象が肺癌を発症するリスクを有するかどうかを決定するために、重み付けされたスコアリング法も使用することができる。上記方法がこのような重み付けされたスコアリング法を使用する場合には、前記方法において、工程bは、少なくとも1つのバイオメトリックパラメータの値を、前記バイオメトリックパラメータに対する多数の所定のカットオフと比較し、該比較に基づいて各バイオメトリックパラメータに対してスコアを割り当てることを含み、工程dは、パネル中の各バイオマーカーの量を前記バイオマーカーに対する多数の所定のカットオフと比較し、該比較に基づいて各バイオマーカーに対してスコアを割り当てることを含み、工程eは、前記対象に対する合計スコアを得るために、工程bにおける各バイオメトリックパラメータに対する割り当てられたスコアを工程dにおける各バイオマーカーに対する割り当てられたスコアと合計することを含み、工程fは工程eにおいて決定された合計スコアを所定の合計スコアと比較することを含み、および工程gは、工程fにおいて決定された合計スコアの比較に基づいて、前記対象が肺癌を有するかどうかを決定することを含む。
【0037】
別の態様において、前記方法は、以下の工程を含むことができる。
【0038】
a.対象から得られた検査試料中において、少なくとも1つの抗体と少なくとも1つの抗原を含むパネル中の2つ又はそれ以上のバイオマーカーの量を定量すること;
b.前記パネル中の定量された各バイオマーカーの量を前記バイオマーカーに対する所定のカットオフと比較し、該比較に基づいて、各バイオマーカーに対してスコアを割り当てること;
c.前記対象に対する合計スコアを得るために、工程bにおいて定量された各バイオマーカーに対して割り当てられたスコアを合計すること;
d.工程cにおいて決定された合計スコアを所定の合計スコアと比較すること;および
e.工程dにおいて決定された合計スコアの比較に基づいて、前記対象が肺癌のリスクを有するかどうかを決定すること。
【0039】
上記方法において、肺癌に関するバイオマーカーのDFIは、好ましくは、約0.4未満である。
【0040】
上記方法において、前記パネルは、抗p53、抗TMP21、抗NY−ESO−1、抗HDJ1、抗NPC1L1Cドメイン、抗TMOD1、抗CAMK1、抗RGS1、抗PACSIN1、抗RCV1、抗MAPKAPK3および抗サイクリンE2からなる群から選択される少なくとも1つの抗体を含み得る。前記パネルは、サイトケラチン8、サイトケラチン19、サイトケラチン18、CEA、CA125、CA15−3、SCC、CA19−9、プロGRP、血清アミロイドA、α−1−アンチトリプシン、アポリポタンパク質CIIIおよびTβ4からなる群から選択される少なくとも1つの抗原を含み得る。
【0041】
必要に応じて、前記方法は、検査試料中の少なくとも1つの関心領域を定量することをさらに含み得る。関心領域を定量すべき場合には、前記パネルは、Acn6399、Acn9459、Pub11597、Pub4789、TFA2759、TFA9133、Pub3743、Pub8606、Pub4487、Pub4861、Pub6798、Pub6453、Pub2951、Pub2433、Publ7338、TFA6453およびHIC3959からなる群から選択される少なくとも1つの関心領域をさらに含むことができる。
【0042】
必要に応じて、上記方法は、対象が肺癌を発症するリスクを有するかどうかを決定するために、重み付けされたスコアリング法も使用することができる。上記方法がこのような重み付けされたスコアリング法を使用する場合には、前記方法において、工程bは、パネル中の各バイオマーカーの量を、前記バイオマーカーに対する多数の所定のカットオフと比較し、該比較に基づいて各バイオマーカーに対してスコアを割り当てることを含み、工程cは、前記対象に対する合計スコアを得るために、工程bにおいて定量された各バイオマーカーに対する割り当てられたスコアを合計することを含み、工程dは、工程cにおいて決定された合計スコアを所定の合計スコアと比較することを含み、工程eは、工程dにおいて決定された合計スコアの比較に基づいて、前記対象が肺癌を有するかどうかを決定することを含む。
【0043】
別の態様において、前記方法は、以下の工程を含むことができる。
【0044】
a.少なくとも1つの抗サイクリンE2を含むパネル中の少なくとも1つのバイオマーカーの量を、対象から得られた検査試料中において定量すること;
b.前記パネル中で定量された各バイオマーカーの量を前記バイオマーカーに対する所定のカットオフと比較し、該比較に基づいて、各バイオマーカーに対してスコアを割り当てること;
c.前記対象に対する合計スコアを得るために、工程bにおいて定量された各バイオマーカーに対して割り当てられたスコアを合計すること;
d.工程cにおいて決定された合計スコアを所定の合計スコアと比較すること;および
e.工程dにおいて決定された合計スコアの比較に基づいて、前記対象が肺癌のリスクを有するかどうかを決定すること。
【0045】
上記方法において、肺癌に関するバイオマーカーのDFIは、好ましくは、約0.4未満である。
【0046】
必要に応じて、上記方法は、検査試料中の少なくとも1つの抗原を定量すること、検査試料中の少なくとも1つの抗体を定量すること、又は検査試料中の少なくとも1つの抗原と少なくとも1つの抗体の組み合わせを定量することをさらに含むことができる。従って、検査試料中の少なくとも1つの抗原、少なくとも1つの抗体又は少なくとも1つの抗原と少なくとも1つの抗体の組み合わせが定量されるべき場合には、前記パネルは、サイトケラチン8、サイトケラチン19、サイトケラチン18、CEA、CA125、CA15−3、SCC、CA19−9、プロGRP、血清アミロイドA、α−1−アンチトリプシン、アポリポタンパク質CIIIおよびTβ4からなる群から選択される少なくとも1つの抗原、抗p53、抗TMP21、抗NY−ESO−1、抗HDJ1、抗NPC1L1Cドメイン、抗TMOD1、抗CAMK1、抗RGS1、抗PACSIN1、抗RCV1、抗MAPKAPK3又はこれらのあらゆる組み合わせからなる群から選択される少なくとも1つの抗体をさらに含むことができる。
【0047】
必要に応じて、前記方法は、検査試料中の少なくとも1つの関心領域を定量することをさらに含み得る。関心領域を定量すべき場合には、前記パネルは、Acn6399、Acn9459、Pub11597、Pub4789、TFA2759、TFA9133、Pub3743、Pub8606、Pub4487、Pub4861、Pub6798、Pub6453、Pub2951、Pub2433、Pub17338、TFA6453およびHIC3959からなる群から選択される少なくとも1つの関心領域をさらに含むことができる。
【0048】
必要に応じて、上記方法は、対象が肺癌を発症するリスクを有するかどうかを決定するために、重み付けされたスコアリング方法も使用することができる。上記方法がこのような重み付けされたスコアリング方法を使用する場合には、前記方法において、工程bは、パネル中の各バイオマーカーの量を、前記バイオマーカーに対する多数の所定のカットオフと比較し、該比較に基づいて各バイオマーカーに対してスコアを割り当てることを含み、工程cは、前記対象に対する合計スコアを得るために、工程bにおいて定量された各バイオマーカーに対する割り当てられたスコアを合計することを含み、工程dは、工程cにおいて決定された合計スコアを所定の合計スコアと比較することを含み、および工程eは、工程dにおいて決定された合計スコアの比較に基づいて、前記対象が肺癌を有するかどうかを決定することを含む。
【0049】
必要に応じて、上記方法は、少なくとも1つのバイオメトリックパラメータに対する値を対象から取得する工程をさらに含み得る。対象から取得することが可能なバイオメトリックパラメータは、対象の喫煙歴、年齢、発癌性物質への曝露および性別からなる群から選択され得る。取得される好ましいバイオメトリックパラメータは、対象の喫煙のパック・年である。上記方法が対象から得られた少なくとも1つのバイオメトリックパラメータに対して値を取得する工程をさらに含む場合には、前記方法は、各前記バイオメトリックパラメータに対する所定のカットオフに対して少なくとも1つのバイオメトリックパラメータの値を比較する工程と、および該比較に基づいて、各バイオメトリックパラメータに対するスコアを割り当てる工程と、前記対象に対する合計スコアを得るために、各バイオメトリックパラメータに対する割り当てられたスコアを、工程bにおいて定量された各バイオマーカーに対する割り当てられたスコアと合計する工程と、工程cにおいて、前記合計スコアを所定の合計スコアと比較する工程と、および工程dにおける合計スコアの比較に基づいて、前記対象が肺癌のリスクを有するかどうかを決定する工程をさらに含むことができる。
【0050】
別の態様において、前記方法は、以下の工程を含むことができる。
【0051】
a.対象から得られた検査試料中において、サイトケラチン8、サイトケラチン19、サイトケラチン18、CEA、CA125、CA15−3、SCC、CA19−9、プロGRP、血清アミロイドA、α−1−アンチトリプシン、アポリポタンパク質CIIIおよびTβ4からなる群から選択される少なくとも1つのバイオマーカーを含むパネル中の少なくとも1つのバイオマーカーを定量すること;
b.前記パネル中の定量された各バイオマーカーの量を前記バイオマーカーに対する所定のカットオフと比較し、該比較に基づいて、各バイオマーカーに対してスコアを割り当てること;
c.前記対象に対する合計スコアを得るために、工程bにおいて定量された各バイオマーカーに対して割り当てられたスコアを合計すること;
d.工程cにおいて定量された合計スコアを所定の合計スコアと比較すること;および
e.工程dにおける合計スコアの比較に基づいて、前記対象が肺癌を有するかどうかを決定すること。
【0052】
上記方法において、肺癌に関するバイオマーカーのDFIは、好ましくは、約0.4未満である。
【0053】
必要に応じて、上記方法は、検査試料中の少なくとも1つの抗体を定量することをさらに含み得る。従って、前記パネルは、抗p53、抗TMP21、抗NY−ESO−1、抗HDJ1、抗NPC1L1Cドメイン、抗TMOD1、抗CAMK1、抗RGS1、抗PACSIN1、抗RCV1、抗MAPKAPK3および抗サイクリンE2又はこれらのあらゆる組み合わせからなる群から選択される少なくとも1つの抗体をさらに含み得る。
【0054】
必要に応じて、前記方法は、検査試料中の少なくとも1つの関心領域を定量することをさらに含み得る。関心領域を定量すべき場合には、前記パネルは、Acn6399、Acn9459、Pub11597、Pub4789、TFA2759、TFA9133、Pub3743、Pub8606、Pub4487、Pub4861、Pub6798、Pub6453、Pub2951、Pub2433、Pub17338、TFA6453およびHIC3959からなる群から選択される少なくとも1つの関心領域をさらに含むことができる。
【0055】
必要に応じて、上記方法は、対象が肺癌を発症するリスクを有するかどうかを決定するために、重み付けされたスコアリング法も使用することができる。上記方法がこのような重み付けされたスコアリング法を使用する場合には、前記方法において、工程bは、パネル中の各バイオマーカーの量を、前記バイオマーカーに対する多数の所定のカットオフと比較し、該比較に基づいて各バイオマーカーに対してスコアを割り当てることを含み、工程cは、前記対象に対する合計スコアを得るために、工程bにおいて定量された各バイオマーカーに対する割り当てられたスコアを合計することを含み、工程dは、工程cにおいて決定された合計スコアを所定の合計スコアと比較することを含み、工程eは、工程dにおいて決定された合計スコアの比較に基づいて、前記対象が肺癌を有するかどうかを決定することを含む。
【0056】
必要に応じて、上記方法は、少なくとも1つのバイオメトリックパラメータに対する値を対象から取得する工程をさらに含み得る。対象から取得することが可能なバイオメトリックパラメータは、対象の喫煙歴、年齢、発癌性物質への曝露および性別からなる群から選択され得る。取得される好ましいバイオメトリックパラメータは、対象の喫煙のパック・年である。上記方法が対象から得られた少なくとも1つのバイオメトリックパラメータに対して値を取得する工程をさらに含む場合には、前記方法は、各前記バイオメトリックパラメータに対する所定のカットオフに対して少なくとも1つのバイオメトリックパラメータの値を比較する工程と、および該比較に基づいて、各バイオメトリックパラメータに対するスコアを割り当てる工程と、前記対象に対する合計スコアを得るために、各バイオメトリックパラメータに対する割り当てられたスコアを、工程bにおいて定量された各バイオマーカーに対する割り当てられたスコアと合計する工程と、工程cにおいて、前記合計スコアを所定の合計スコアと比較する工程と、および工程dにおける合計スコアの比較に基づいて、前記対象が肺癌のリスクを有するかどうかを決定する工程をさらに含むことができる。
【0057】
別の態様において、前記方法は、以下の工程を含むことができる。
【0058】
a.対象から得られた検査試料中において、Acn6399、Acn9459、Pub11597、Pub4789、TFA2759、TFA9133、Pub3743、Pub8606、Pub4487、Pub4861、Pub6798、Pub6453、Pub2951、Pub2433、Pub17338、TFA6453およびHIC3959からなる群から選択される関心領域である少なくとも1つのバイオマーカーを含むパネル中の少なくとも1つのバイオマーカーを定量すること;
b.前記パネル中の定量された各バイオマーカーの量を前記バイオマーカーに対する所定のカットオフと比較し、該比較に基づいて、各バイオマーカーに対してスコアを割り当てること;
c.前記対象に対する合計スコアを得るために、工程bにおいて定量された各バイオマーカーに対して割り当てられたスコアを合計すること;
d.工程cにおいて定量された合計スコアを所定の合計スコアと比較すること;および
e.工程dにおいて決定された合計スコアの比較に基づいて、前記対象が肺癌を有するかどうかを決定すること。
【0059】
上記方法において、肺癌に関するバイオマーカーのDFIは、好ましくは、約0.4未満である。
【0060】
必要に応じて、上記方法は、検査試料中の少なくとも1つの抗原を定量すること、検査試料中の少なくとも1つの抗体を定量すること、又は検査試料中の少なくとも1つの抗原と少なくとも1つの抗体の組み合わせを定量することをさらに含むことができる。従って、検査試料中において、少なくとも1つの抗原、少なくとも1つの抗体又は少なくとも1つの抗原と抗体の組み合わせが定量されるべき場合には、前記パネルは、サイトケラチン8、サイトケラチン19、サイトケラチン18、CEA、CA125、CA15−3、SCC、CA19−9、プロGRP、血清アミロイドA、α−1−アンチトリプシン、アポリポタンパク質CIIIおよびTβ4からなる群から選択される少なくとも1つの抗原、抗p53、抗TMP21、抗NY−ESO−1、抗HDJ1、抗NPC1L1Cドメイン、抗TMOD1、抗CAMK1、抗RGS1、抗PACSIN1、抗RCV1、抗MAPKAPK3および抗サイクリンE2又はこれらのあらゆる組み合わせからなる群から選択される少なくとも1つの抗体をさらに含むことができる。
【0061】
必要に応じて、上記方法は、対象が肺癌を発症するリスクを有するかどうかを決定するために、重み付けされたスコアリング法も使用することができる。上記方法がこのような重み付けされたスコアリング法を使用する場合には、前記方法において、工程bは、パネル中の各バイオマーカーの量を、前記バイオマーカーに対する多数の所定のカットオフと比較し、該比較に基づいて各バイオマーカーに対してスコアを割り当てることを含み、工程cは、前記対象に対する合計スコアを得るために、工程bにおいて定量された各バイオマーカーに対する割り当てられたスコアを合計することを含み、工程dは、工程cにおいて決定された合計スコアを所定の合計スコアと比較することを含み、工程eは、工程dにおいて決定された合計スコアの比較に基づいて、前記対象が肺癌を有するかどうかを決定することを含む。
【0062】
必要に応じて、上記方法は、少なくとも1つのバイオメトリックパラメータに対する値を対象から取得する工程をさらに含み得る。対象から取得することが可能なバイオメトリックパラメータは、対象の喫煙歴、年齢、発癌性物質への曝露および性別からなる群から選択され得る。取得される好ましいバイオメトリックパラメータは、対象の喫煙のパック・年である。上記方法が対象から得られた少なくとも1つのバイオメトリックパラメータに対して値を取得する工程をさらに含む場合には、前記方法は、各前記バイオメトリックパラメータに対する所定のカットオフに対して少なくとも1つのバイオメトリックパラメータの値を比較する工程と、および該比較に基づいて、各バイオメトリックパラメータに対するスコアを割り当てる工程と、前記対象に対する合計スコアを得るために、各バイオメトリックパラメータに対する割り当てられたスコアを、工程bにおいて定量された各バイオマーカーに対する割り当てられたスコアと合計する工程と、工程cにおいて、前記合計スコアを所定の合計スコアと比較する工程と、および工程dにおける合計スコアの比較に基づいて、前記対象が肺癌のリスクを有するかどうかを決定する工程をさらに含むことができる。
【0063】
別の態様において、前記方法は、以下の工程を含むことができる。
【0064】
a.対象から得られた検査試料中において、サイトケラチン19、サイトケラチン18、CA19−9、CEA、CA15−3、CA125、SCC、プロGRP、ACN9459、Pub11597、Pub4789、TFA2759、TFA9133、Pub3743、Pub8606、Pub4487、Pub4861、Pub6798、Tfa6453およびHic3959の2つ又はそれ以上を含むパネル中の2つ又はそれ以上のバイオマーカーの量を定量すること;
b.前記パネル中の各バイオマーカーの量を前記バイオマーカーに対する所定のカットオフと比較し、該比較に基づいて、各バイオマーカーに対してスコアを割り当てること;
c.前記対象に対する合計スコアを得るために、工程bにおいて決定された各バイオマーカーに対して割り当てられたスコアを合計すること;
d.工程cにおいて決定された合計スコアを所定の合計スコアと比較すること;および
e.工程dにおいて決定された合計スコアの比較に基づいて、前記対象が肺癌のリスクを有するかどうかを決定すること。
【0065】
上記方法において、肺癌に関するバイオマーカーのDFIは、好ましくは、約0.4未満である。
【0066】
必要に応じて、上記方法中のパネルは、(1)サイトケラチン19、CEA、ACN9459、Pub11597、Pub4789およびTFA2759;(2)サイトケラチン19、CEA、ACN9459、Pub11597、Pub4789、TFA2759およびTFA9133;(3)サイトケラチン19、CA19−9、CEA、CA15−3、CA125、SCC、サイトケラチン18およびプロGRP;(4)Pub11597、Pub3743、Pub8606、Pub4487、Pub4861、Pub6798、Tfa6453およびHic3959又は(5)サイトケラチン19、CEA、CA125、SCC、サイトケラチン18、プロGRP、ACN9459、Pub11597、Pub4789、TFA2759、TFA9133を含むことができる。
【0067】
必要に応じて、上記方法は、対象が肺癌を発症するリスクを有するかどうかを決定するために、重み付けされたスコアリング法も使用することができる。上記方法がこのような重み付けされたスコアリング法を使用する場合には、前記方法において、工程bは、パネル中の各バイオマーカーの量を、前記バイオマーカーに対する多数の所定のカットオフと比較し、該比較に基づいて各バイオマーカーに対してスコアを割り当てることを含み、工程cは、前記対象に対する合計スコアを得るために、工程bにおいて定量された各バイオマーカーに対する割り当てられたスコアを合計することを含み、工程dは、工程cにおいて決定された合計スコアを所定の合計スコアと比較することを含み、工程eは、工程dにおいて決定された合計スコアの比較に基づいて、前記対象が肺癌を有するかどうかを決定することを含む。
【0068】
別の態様において、前記方法は、以下の工程を含むことができる。
【0069】
a.対象から得られた検査試料中において、抗p53、抗NY−ESO−1、抗MAPKAPK3、抗サイクリンE2、サイトケラチン19、CEA、CA125およびプロGRPを含むパネル中の2つ又はそれ以上のバイオマーカーの量を定量すること;
b.前記パネル中で定量された各バイオマーカーの量を前記バイオマーカーに対する所定のカットオフと比較し、該比較に基づいて、各バイオマーカーに対してスコアを割り当てること;
c.前記対象に対する合計スコアを得るために、工程bにおいて定量された各バイオマーカーに対して割り当てられたスコアを合計すること;
d.工程cにおいて決定された合計スコアを所定の合計スコアと比較すること;および
e.工程dにおいて決定された合計スコアの比較に基づいて、前記対象が肺癌のリスクを有するかどうかを決定すること。
【0070】
必要に応じて、パネルは、3つ若しくはそれ以上のバイオマーカー、4つ若しくはそれ以上のバイオマーカー、5つ若しくはそれ以上のバイオマーカー、6つ若しくはそれ以上のバイオマーカー、7つ若しくはそれ以上のバイオマーカー又は8つのバイオマーカーの量を定量することを含み得る。
【0071】
必要に応じて、上記方法において、抗サイクリンE2は、配列番号3、配列番号4又は配列番号5に対する抗体であり得る。
【0072】
必要に応じて、上記方法は、少なくとも1つのバイオメトリックパラメータに対する値を対象から取得する工程をさらに含み得る。対象から取得することが可能なバイオメトリックパラメータは、対象の喫煙歴、年齢、発癌性物質への曝露および性別からなる群から選択され得る。取得される好ましいバイオメトリックパラメータは、対象の喫煙のパック・年である。上記方法が対象から得られた少なくとも1つのバイオメトリックパラメータに対して値を取得する工程をさらに含む場合には、前記方法は、各前記バイオメトリックパラメータに対する所定のカットオフに対して少なくとも1つのバイオメトリックパラメータの値を比較する工程と、および該比較に基づいて、各バイオメトリックパラメータに対するスコアを割り当てる工程と、前記対象に対する合計スコアを得るために、各バイオメトリックパラメータに対する割り当てられたスコアを、工程bにおいて定量された各バイオマーカーに対する割り当てられたスコアと合計する工程と、工程dにおいて、前記合計スコアを所定の合計スコアと比較する工程と、工程eにおける合計スコアの比較に基づいて、前記対象が肺癌のリスクを有するかどうかを決定する工程をさらに含むことができる。
【0073】
必要に応じて、上記方法は、対象が肺癌を発症するリスクを有するかどうかを決定するために、重み付けされたスコアリング法も使用することができる。上記方法がこのような重み付けされたスコアリング法を使用する場合には、前記方法において、工程bは、パネル中の各バイオマーカーの量を、前記バイオマーカーに対する多数の所定のカットオフと比較し、該比較に基づいて各バイオマーカーに対してスコアを割り当てることを含み、工程cは、前記対象に対する合計スコアを得るために、工程bにおいて定量された各バイオマーカーに対する割り当てられたスコアを合計することを含み、工程dは、工程cにおいて決定された合計スコアを所定の合計スコアと比較することを含み、工程eは、工程dにおいて決定された合計スコアの比較に基づいて、前記対象が肺癌のリスクを有するかどうかを決定することを含む。
【0074】
本発明は、上記方法において使用することができる様々な異なるキットにも関する。一態様において、キットは、配列番号1、配列番号3、配列番号4、配列番号5又はこれらのあらゆる組み合わせからなる群から選択されるペプチドを含むことができる。別の態様において、キットは、免疫反応性サイクリンE2に対して反応性を有する少なくとも1つの抗原又はこれらのあらゆる組み合わせを含むことができる。別の態様において、キットは、免疫反応性サイクリンE2に対して反応性を有する少なくとも1つの抗原又はこれらのあらゆる組み合わせを含むことができる。さらなる態様において、キットは、(a)検査試料中の1つ又はそれ以上の抗原を定量するための少なくとも1つの抗体を含有する試薬(前記抗原は、サイトケラチン8、サイトケラチン19、サイトケラチン18、CEA、CA125、CA15−3、SCC、CA19−9、プロGRP、血清アミロイドA、α−1−アンチトリプシン、アポリポタンパク質CIIIおよびTβ4である。)、(b)検査試料中の少なくとも1つの抗体を定量するための1つ又はそれ以上の抗原を含有する試薬(前記抗体は、抗p53、抗TMP21、抗NY−ESO−1、抗HDJ1、抗NPC1L1Cドメイン、抗TMOD1、抗CAMK1、抗RGS1、抗PACSIN1、抗RCV1、抗MAPKAPK3および抗サイクリンE2である。);並びに(c)検査試料中の各抗原および抗体の量を合計し、所定のカットオフに対して比較し、並びに該比較に基づいて、各抗原および抗体に対するスコアを割り当て、合計スコアを得るために、各抗原および抗体に対する割り当てられたスコアを合計し、合計スコアを所定の合計スコアと比較し、および対象が肺癌を有するかどうかを決定する上での補助として前記比較を使用するための1つ又はそれ以上のアルゴリズムを含み得る。さらなる態様において、キットは、(a)検査試料中の1つ又はそれ以上の抗原を定量するための少なくとも1つの抗体を含有する試薬(前記抗原は、サイトケラチン8、サイトケラチン19、サイトケラチン18、CEA、CA125、CA15−3、SCC、CA19−9、プロGRP、血清アミロイドA、α−1−アンチトリプシン、アポリポタンパク質CIIIおよびTβ4である。)、(b)検査試料中の少なくとも1つの抗体を定量するための1つ又はそれ以上の抗原を含有する試薬(前記抗体は、抗p53、抗TMP21、抗NY−ESO−1、抗HDJ1、抗NPC1L1Cドメイン、抗TMOD1、抗CAMK1、抗RGS1、抗PACSIN1、抗RCV1、抗MAPKAPK3および抗サイクリンE2である。)、(c)ACN9459、Pub11597、Pub4789、TFA2759、TFA9133、Pub3743、Pub8606、Pub4487、Pub4861、Pub6798、Tfa6453およびHic3959からなる群から選択される1つ又はそれ以上の関心領域を定量するための試薬;並びに(d)検査試料中の定量された各抗原、抗体および関心領域の量を合計し、所定のカットオフに対して比較し、並びに該比較に基づいて定量された各抗原、抗体および関心領域に対するスコアを割り当て、合計スコアを得るために、定量された各抗原、抗体および関心領域に対する割り当てられたスコアを合計し、合計スコアを所定の合計スコアと比較し、および対象が肺癌を有するかどうかを決定する上での補助として前記比較を使用するための1つ又はそれ以上のアルゴリズムを含み得る。さらに別の態様において、キットは、(a)検査試料中の1つ又はそれ以上の抗原を定量するための少なくとも1つの抗体を含有する試薬(前記抗原は、サイトケラチン19、サイトケラチン18、CA19−9、CEA、CA−15−3、CA125、SCCおよびプロGRPである。)、(b)ACN9459、Pub11597、Pub4789、TFA2759、TFA9133、Pub3743、Pub8606、Pub4487、Pub4861、Pub6798、Tfa6453およびHic3959からなる群から選択される1つ又はそれ以上の関心領域を定量するための試薬;並びに(c)検査試料中の定量された各抗原および関心領域の量を合計し、所定のカットオフに対して比較し、該比較に基づいて、定量された各抗原およびバイオマーカーに対するスコアを割り当て、合計スコアを得るために、定量された各抗原および関心領域に対する割り当てられたスコアを合計し、合計スコアを所定の合計スコアと比較し、および対象が肺癌を有するかどうかを決定する上での補助として前記比較を使用するための1つ又はそれ以上のアルゴリズムを含み得る。定量可能な抗原および関心領域の例は、(a)サイトケラチン19およびCEAおよびAcn9459、Pub11597、Pub4789およびTfa2759;(b)サイトケラチン19およびCEAおよびAcn9459、Pub11597、Pub4789、Tfa2759およびTfa9133;並びに(c)サイトケラチン19、CEA、CA125、SCC、サイトケラチン18およびプロGRPおよびACN9459、Pub11597、Pub4789およびTfa2759である。別の態様において、キットは、(a)検査試料中の1つ又はそれ以上の抗原を定量するための少なくとも1つの抗体を含有する試薬(前記抗原は、サイトケラチン19、サイトケラチン18、CA19−9、CEA、CA15−3、CA125、SCCおよびプロGRPである。)、並びに(b)検査試料中の定量された各抗原の量を合計し、所定のカットオフに対して比較し、並びに該比較に基づいて、定量された各抗原に対するスコアを割り当て、合計スコアを得るために、定量された各抗原に対する割り当てられたスコアを合計し、合計スコアを所定の合計スコアと比較し、および対象が肺癌を有するかどうかを決定する上での補助として前記比較を使用するための1つ又はそれ以上のアルゴリズムを含み得る。キットを用いて定量することが可能な抗原の例は、サイトケラチン19、サイトケラチン18、CA19−9、CEA、CA15−3、CA125、SCCおよびプロGRPである。別の態様において、キットは、(a)1つ又はそれ以上のバイオマーカーを定量するための試薬(前記バイオマーカーは、ACN9459、Pub11597、Pub4789、TFA2759、TFA9133、Pub3743、Pub8606、Pub4487、Pub4861、Pub6798、Tfa6453およびHic3959からなる群から選択される関心領域である。)、並びに(b)検査試料中の定量された各バイオマーカーの量を合計し、所定のカットオフに対して比較し、並びに該比較に基づいて、定量された各バイオマーカーに対するスコアを割り当て、合計スコアを得るために、定量された各バイオマーカーに対する割り当てられたスコアを合計し、合計スコアを所定の合計スコアと比較し、および対象が肺癌を有するかどうかを決定する上での補助として前記比較を使用するための1つ又はそれ以上のアルゴリズムを含み得る。キットを用いて定量可能な関心領域の例は、Pub11597、Pub3743、Pub8606、Pub4487、Pub4861、Pub6798、Tfa6453およびHic3959からなる群から選択され得る。さらに別の態様において、キットは、(a)検査試料中の1つ又はそれ以上の抗原を定量するための少なくとも1つの抗体を含有する試薬(前記抗原は、サイトケラチン19、CEA、CA125およびプロGRPである。)、(b)検査試料中の少なくとも1つの抗体を定量するための1つ又はそれ以上の抗原を含有する試薬(前記抗体は、抗p53、抗NY−ESO−1、抗MAPKAPK3および抗サイクリンE2である。)並びに(c)検査試料中の定量された各抗原および抗体の量を合計し、所定のカットオフに対して比較し、並びに該比較に基づいて、定量された各抗原および抗体に対するスコアを割り当て、合計スコアを得るために、定量された各抗原および抗体に対する割り当てられたスコアを合計し、合計スコアを所定の合計スコアと比較し、および対象が肺癌を有するかどうかを決定する上での補助として前記比較を使用するための1つ又はそれ以上のアルゴリズムを含み得る。必要に応じて、キットは、検査試料中のサイトケラチン19、CEA、CA125およびプロGRPの各々を定量するための試薬、検査試料中の抗p53、抗NY−ESO−1、抗MAPKAPK3および抗サイクリンE2の各々を定量するための試薬又は検査試料中のサイトケラチン19、CEA、CA125、プロGRP、抗p53、抗NY−ESO−1、抗MAPKAPK3および抗サイクリンE2の各々を定量するための試薬を含み得る。
【0075】
本発明は、単離された又は精製されたポリペプチドにも関する。本発明によって想定される単離された又は精製されたポリペプチドは、以下のものである。(a)配列番号3および配列番号3のアミノ酸配列と60%の相同性を有するポリペプチドからなる群から選択されたアミノ酸配列を有する(含む)単離された又は精製されたポリペプチド;(b)配列番号3および配列番号3のアミノ酸配列と60%の相同性を有するポリペプチドからなる群から選択されたアミノ酸配列から実質的になる単離された又は精製されたポリペプチド;(c)配列番号3のアミノ酸からなる単離された又は精製されたポリペプチド;(d)配列番号4および配列番号4のアミノ酸配列と60%の相同性を有するポリペプチドからなる群から選択されたアミノ酸配列を有する単離された又は精製されたポリペプチド;(e)配列番号4および配列番号4のアミノ酸配列と60%の相同性を有するポリペプチドからなる群から選択されたアミノ酸配列から実質的になる単離された又は精製されたポリペプチド;(f)配列番号4のアミノ酸配列からなる単離された又は精製されたポリペプチド;(g)配列番号5および配列番号5のアミノ酸配列と60%の相同性を有するポリペプチドからなる群から選択されたアミノ酸配列を有する単離された又は精製されたポリペプチド;(h)配列番号5および配列番号5のアミノ酸配列と60%の相同性を有するポリペプチドからなる群から選択されたアミノ酸配列から実質的になる単離された又は精製されたポリペプチド;並びに(i)配列番号5のアミノ酸配列からなる単離された又は精製されたポリペプチド。
【0076】
本発明は、特有な重み付けされたスコアリング法にも関する。この方法は、対象から得られた1つ又はそれ以上のマーカーをスコアリングするために使用することができる。この方法は、以下の工程を含むことができる。
【0077】
a.対象の検査試料から得られたマーカーの量を定量すること;
b.定量された各マーカーの量を前記マーカーに対する多数の所定のカットオフと比較し、該比較に基づいて、各マーカーに対してスコアを割り当てること;および
c.前記対象に対する合計スコアを得るために、工程bにおいて定量された各マーカーに対して割り当てられたスコアを合計すること。
【0078】
上記方法において、所定のカットオフはROC曲線に基づき、各マーカーに対するスコアは、マーカーの特異性に基づいて計算される。さらに、上記方法中のマーカーは、バイオマーカー、バイオメトリックパラメータ又はバイオマーカーとバイオメトリックパラメータの組み合わせであり得る。
【0079】
さらに、本発明は、重み付けられたスコアリング法を用いて、医学的症状を発症する対象のリスクを測定する方法を提供する。この方法は、以下の工程を含むことができる。
【0080】
a.対象から得られた検査試料中において、少なくとも1つのマーカーの量を定量すること;
b.定量された各マーカーの量を前記マーカーに対する多数の所定のカットオフと比較し、該比較に基づいて、各マーカーに対してスコアを割り当てること;
c.前記対象に対する合計スコアを得るために、工程bにおいて定量された各マーカーに対して割り当てられたスコアを合計すること;
d.工程cにおいて決定された合計スコアを所定の合計スコアと比較すること;および
e.工程dにおいて決定された合計スコアの比較に基づいて、前記対象が医学的症状を発症するリスクを有するかどうかを決定すること。
【0081】
上記方法において、所定のカットオフはROC曲線に基づき、各マーカーに対するスコアは、マーカーの特異性に基づいて計算される。さらに、上記方法中のマーカーは、バイオマーカー、バイオメトリックパラメータ又はバイオマーカーとバイオメトリックパラメータの組み合わせであり得る。
【図面の簡単な説明】
【0082】
図1図1は、バイオインフォマティクス作業の流れの模式図である。具体的には、MSデータおよびIAデータを様々な統計的方法に供した。各マーカーに対して受信者動作特性(ROC)曲線を作成し、曲線下面積(AUC)を得るために、ロジスティック回帰を使用した。最高のAUCを有する最高のマーカーを候補マーカーとして選択した。判別分析(DA)、主成分分析(PCA)および決定木(DT)などの多変量解析(MVA)によって、モデルに入力するためのさらなるマーカーが同定された。バイオメトリックパラメータを含めることもできる。分離およびスコア法/アルゴリズム(SSM)によって、訓練セットの少なくとも50%に出現する頑強なマーカーが同定され、バイオマーカーの候補として選択される。最終予測モデルに対してマーカーの適切な数が得られるまで、この工程をn回繰り返す。
図2図2は、a)プールされたHPLC画分を濃縮した後、およびb)濃縮過程の前における、Pub11597バイオマーカー候補を示すMALDI−TOFMSプロファイルである。試料は、HPLC分画後でさえ、なお複雑な混合物である。
図3図3は、ゲル中に搭載された様々な試料の成分を示す染色されたゲルである。レーンa、fおよびgは、較正用の分子量既知の標準タンパク質の混合物を示している。さらに、レーンbおよびeは、市販されているヒト血清アミロイドA(HSAA)として知られる候補タンパク質の高度に精製された形態を示す。レーンcおよびdは、バイオマーカー候補を含有する分画された試料を示している。HSSA標準と同じ距離を移動する混合物中の成分が存在する。HSAAと同じ移動距離を有するバンドをゲルから切り出し、その正体を確認するために、ゲル内消化およびMS/MS分析に供した。
図4a図4aは、Pub11597のトリプシン消化物のLC/MS/MSである。パネルaからdは、4つの主要な前駆体イオンのMS/MSを示している。bおよびy生成物イオンには注釈が付されており、4つの前駆体イオンの各々に対して、誘導されたアミノ酸配列が与えられている。生成されたbおよびyイオンの分子量を用いたデータベース検索によって、源タンパク質はHSAAと同定された。観察された断片(MW=11526.51)の完全な配列は、配列番号6に与えられている。
図4b図4bは、Pub11597のトリプシン消化物のLC/MS/MSである。パネルaからdは、4つの主要な前駆体イオンのMS/MSを示している。bおよびy生成物イオンには注釈が付されており、4つの前駆体イオンの各々に対して、誘導されたアミノ酸配列が与えられている。生成されたbおよびyイオンの分子量を用いたデータベース検索によって、源タンパク質はHSAAと同定された。観察された断片(MW=11526.51)の完全な配列は、配列番号6に与えられている。
図4c図4cは、Pub11597のトリプシン消化物のLC/MS/MSである。パネルaからdは、4つの主要な前駆体イオンのMS/MSを示している。bおよびy生成物イオンには注釈が付されており、4つの前駆体イオンの各々に対して、誘導されたアミノ酸配列が与えられている。生成されたbおよびyイオンの分子量を用いたデータベース検索によって、源タンパク質はHSAAと同定された。観察された断片(MW=11526.51)の完全な配列は、配列番号6に与えられている。
図4d図4dは、Pub11597のトリプシン消化物のLC/MS/MSである。パネルaからdは、4つの主要な前駆体イオンのMS/MSを示している。bおよびy生成物イオンには注釈が付されており、4つの前駆体イオンの各々に対して、誘導されたアミノ酸配列が与えられている。生成されたbおよびyイオンの分子量を用いたデータベース検索によって、源タンパク質はHSAAと同定された。観察された断片(MW=11526.51)の完全な配列は、配列番号6に与えられている。
図5図5は、実施例1に記載されている751人の患者の試料に対して行われた8イムノアッセイバイオマーカーパネルから作成されたROC曲線を与える。影が付された菱形は、重み付けされたスコアリング法を用いて、合計スコアから作成されたROC曲線を表す。四角は、大きなコホート分離点(カットオフ)を使用する二分スコアリング法を用いて、合計スコアから作成されたROC曲線を表す。影が付された三角は、小さなコホート分離点(カットオフ)を使用する二分スコアリング法を用いて、合計スコアから作成されたROC曲線を表す。
図6図6は、肺癌、良性および正常対象に対して検査された7つの自己抗体パネルに対するAUC並びに中央値の倍数(MoM)法および分離およびスコアリング法(SSM)を用いて求められた全ての測定に対する値を与える。図6において、−白抜き菱形−は、最大精度を与える分離点に基づくSSMスコアであり、−黒塗り四角−は、98%特異性を与える分離点に基づくSSMスコアであり、および−黒丸−は、MoMスコアである。
図7図7は、高い喫煙歴(20パック・年超)を有する対象、低い喫煙歴又は無喫煙歴(20パック・年未満)を有する対象および喫煙歴が不明の対象に対して検査された4イムノアッセイおよび4自己抗原パネルに対するAUCを与える。図7において、−は、20パック年未満の喫煙であり、−白抜き四角−は20パック・年超であり、および−黒丸−は、パック・年不明である。
図8図8は、初期段階の肺癌および良性肺疾患を有する対象に対して検査された4イムノアッセイおよび4自己抗原パネルに対するAUCを与える。図8は、検査された各個別のバイオマーカーが正常な対象および良性肺疾患対象から初期および後期段階の肺癌を識別する能力を示している。図8において、−黒丸−は、初期対正常を示し、−白丸−は初期対良性を示し、−は後期対正常を示し、−−−−−は後期対良性を示す。
図9図9は、初期段階および後期段階の肺癌を良性肺疾患を識別する上での、4イムノアッセイ、4自己抗原、4イムノアッセイおよび1免疫応答マーカー(ハプトグロビン、血清アミロイドA、C反応性タンパク質およびアポリポタンパク質A)、4自己抗原および1免疫応答マーカー並びに4イムノアッセイ、4自己抗原および1免疫応答マーカーのパネルに対するAUCを与える。各バイオマーカーパネルに対して、4つのバーがプロットされている。第一のバーは良性肺疾患患者から初期段階の肺癌を識別するためのAUCを表し、第二のバーは正常から初期段階の肺癌を識別するためのAUCを表し、第三のバーは良性肺疾患患者から後期段階の肺癌を識別するためのAUCを表し、第四のバーは正常から後期段階の肺癌を識別するためのAUCを表す。
図10図10は、正常、良性および癌患者の試料を含有する合計118試料(肺癌44および非癌74)に対して実施されたTβ4アッセイに対するAUCを与える。AUC=0.8393。
【発明を実施するための形態】
【0083】
定義
本願において使用される場合、以下の用語は以下の意味を有する。他の全ての技術および科学用語は、当業者によって一般的に理解される意味を有する。
【0084】
「吸着物」という用語は、生物分子を蓄積(結合)することができるあらゆる物質を表す。吸着物は、典型的には、生物学的に活性な表面を被覆し、その物理的特性に基づいて、1つの生物分子又は様々な生物分子を結合することができる単一の物質又は複数の異なる物質から構成される。このような物質には、陰イオン交換材料、陽イオン交換材料、金属キレート物質、ポリヌクレオチド、オリゴヌクレオチド、ペプチド、抗体、ポリマー(合成又は天然)、紙などが含まれるが、これらに限定されない。
【0085】
本明細書において使用される「抗体」という用語は、免疫グロブリン分子又は免疫学的に活性を有するその部分、すなわち抗原結合部分を表す。免疫グロブリン分子の免疫学的に活性を有する部分の例には、抗体をペプシンなどの酵素で処理することによって作製することができるF(ab)およびF(ab’)断片が含まれる。抗体の例には、ポリクローナル抗体、モノクローナル抗体、キメラ抗体、ヒト抗体、ヒト化抗体、組換え抗体、一本鎖Fv(「scFv」)、アフィニティー成熟された抗体、一本鎖抗体、単一ドメイン抗体、F(ab)断片、F(ab’)断片、ジスルフィド結合されたFv(「sdFv」)および抗イディオタイプ(「抗Id」)抗体および上記の何れかの機能的に活性なエピトープ結合断片が含まれるが、これらに限定されない。本明細書において使用される「抗体」という用語には自己抗体が含まれる(自己抗体とは、p53、カルレチキュリン、α−エノラーゼおよびHOXB7などの(但し、これらに限定されない。)正常な自己タンパク質(又は自己抗原)に対して誘導された、対象又は患者が合成する抗体である。)。幅広い範囲の自己抗原に対する自己抗体は当業者に周知であり、とりわけ肺癌、乳癌、前立腺癌および膵臓癌を含む多くの悪性疾患において記載されている。抗体は、バイオマーカーの一種である。
【0086】
本明細書において使用される「抗原」という用語は、抗体によって結合されることができ、さらに、当該抗原の少なくとも1つのエピトープに結合することができる抗体を産生するように動物を誘導することができる分子を表す。さらに、関心領域は、抗原でもあり得る(換言すれば、関心領域は、最終的に、抗原であることが決定される場合があり得る。)。抗原は、バイオマーカーの一種である。
【0087】
「AUC」という用語は、ROC曲線の曲線下面積を表す。AUCは、所定の試料集団に対する検査に関する性能指数として使用され、完全な検査に対する1から当該検査が検査対象を分類する上で完全に無作為な応答を与える0.5までの値を与える。AUCの範囲は0.5から1.0に過ぎないので、AUCの小さな変化は、0から1又は0から100%の範囲を有する判定基準の同様の変化より大きな重要性を有する。AUCの%変化が与えられる場合、AUCの%変化は、判定基準の全範囲が0.5から1.0であるという事実に基づいて計算される。JMPTM統計パッケージは、作成された各ROC曲線に対するAUCを報告する。AUC手法は、全データ範囲にわたって分類アルゴリズムの精度を比較するための価値ある手段である。より大きなAUCを有する分類アルゴリズムは、定義上、未知のものを関心が持たれる2つの群(罹病および非罹病)の間に正確に分類する能力がより大きい。分類アルゴリズムは、単一分子の測定のように単純なものであり得、又は複数分子の測定および統合のように複雑なものであり得る。
【0088】
「良性肺疾患」又は「良性」という用語は、ある対象の肺系に伴う病状を表す。本発明において、良性肺疾患には、慢性閉塞性肺疾患(COPD)、急性又は慢性炎症、良性小結節、良性新生物、異形成、過形成、異型、気管支拡張症、ヒストプラズマ症、サルコイドーシス、繊維症、肉芽腫、血腫、肺気腫、無気肺、組織球増殖症および他の非癌性疾患が含まれるが、これらに限定されない。
【0089】
「生物学的に活性な表面」という用語は、当該材料の特異的生化学的特性および生物分子の生化学的特性のために、生物分子が結合し、又は相互作用することができる材料のあらゆる二次元又は三次元的広がりを表す。このような生化学的特性には、イオン特性(電荷)、疎水性又は親水性が含まれるが、これらに限定されない。
【0090】
「生物学的試料」および「検査試料」という用語は、ある対象から単離される全ての生物学的流体および排泄物を表す。本発明において、このような試料には、血液、血清、血漿、乳頭吸引液、尿、精液(semen)、精液(seminal fluid)、精漿、前立腺液、排泄物、涙、唾液、汗、生検、腹水、脳脊髄液、乳、リンパ、気管支および他の洗浄試料又は組織抽出試料が含まれるが、これらに限定されない。典型的には、血液、血清、血漿および気管支洗浄が、本発明において使用するための好ましい検査試料である。
【0091】
「バイオマーカー」という用語は、身体の状態と相関する生物分子(又は生物分子の断片)を表す。例えば、本発明のバイオマーカーは、癌、好ましくは、肺癌と相関し、肺癌の存在、不存在又はリスクを検出する上での補助として使用することができる。このようなバイオマーカーには、ヌクレオチド、アミノ酸、糖、脂肪酸、ステロイド、代謝物、ポリペプチド、タンパク質(抗原および抗体など(但し、これらに限定されない。))、炭水化物、脂質、ホルモン、抗体、生物分子の代理としての役割を果たす関心領域、これらの組み合わせ(例えば、糖タンパク質、リボ核タンパク質、リポタンパク質)を含む生物分子並びに抗原と該抗原上の利用可能なエピトープに結合する自己抗体との間で形成される複合体などの(但し、これに限定されない。)あらゆるこのような生物分子を含むあらゆる複合体が含まれるが、これらに限定されない。「バイオマーカー」という用語は、少なくとも5つの連続するアミノ酸残基、好ましくは、少なくとも10の連続するアミノ酸残基、より好ましくは、少なくとも15の連続するアミノ酸残を含み、親ポリペプチドの生物学的活性および/又は幾つかの機能的特徴(例えば、抗原性又は構造的ドメインの特徴)を保持するポリペプチド(親)配列の一部も表すことができる。
【0092】
「バイオメトリックパラメータ」という用語は、患者が十分に確定されたグループ又は集団に属することを一意的に特定するために使用される1つ又はそれ以上の内在的な身体的又は行動的形質を表す。本発明において、「バイオメトリックパラメータ」には、患者の身体的記述因子が含まれるが、これに限定されない。バイオメトリックパラメータの例には、患者の身長、患者の体重、患者の生物、喫煙歴、職業歴、発癌性物質への曝露、受動喫煙への曝露、肺癌の家族歴などが含まれるが、これらに限定されない。喫煙歴は、通常、パック・年(Pkyrs)の観点で定量化される。本明細書において使用される「パック・年」という用語は、一日当りに喫煙されたパックの平均数が乗じられた、ある者が喫煙していた年数を表す。平均して、1日にタバコ1パックを35年間喫煙していた者は、喫煙歴の35パック・年を有すると称される。バイオメトリックパラメータ情報は、定型的な患者質問票又は健康歴質問票などを使用することによって、対象自身からなど、本分野において公知の定型的技術を用いて対象から取得することができる。あるいは、バイオメトリックパラメータは、看護師、看護従事者、医師の補助者若しくは医師から、対象から得ることができる。
【0093】
「保存的アミノ酸置換」とは、アミノ酸残基が類似の側鎖を有するアミノ酸残基で置き換えられている置換である。類似の側鎖を有するアミノ酸残基のファミリーが、本分野において定義されている。これらのファミリーには、塩基性側鎖(例えば、リジン、アルギニン、ヒスチジン)、酸性側鎖(例えば、アスパラギン酸、グルタミン酸)、帯電していない極性側鎖(例えば、グリシン、アスパラギン、グルタミン、セリン、スレオニン、チロシン、システイン)、非極性側鎖(例えば、アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)、β分岐した側鎖(例えば、スレオニン、バリン、イソロイシン)および芳香族側鎖(例えば、チロシン、フェニルアラニン、トリプトファン、ヒスチジン)を有するアミノ酸が含まれる。従って、タンパク質中の予想される非必須アミノ酸残基は、好ましくは、同じ側鎖ファミリーから得られる別のアミノ酸残基で置換される。
【0094】
「決定木分析」という用語は、一連の単純な二分法規則(又は症候)が、決定木を通じて、最終的な分類結果又は決定木の末端結節点までの誘導を与える古典的アプローチを表す。その本質的に単純且つ直感的な性質のために、再帰的な分割が診断プロセスにとって極めて適したものとなる。
【0095】
この方法には、因子変数(X)および応答変数(Y)という変数の2種類が必要とされる。実行される際に、変数Xは連続的であり、変数Yは分類的(名目的)である。このような場合には、JMP統計パッケージはカットオフ値を生成し、これによって結節点の純度を最大化するアルゴリズムを使用する。このカットオフ値の上および下にある値に基づいて、試料を枝又は結節点に分割する。
【0096】
分類的応答変数に関しては、この事例におけるように、適合された値は各応答レベルに対する推定確率となる。この場合には、分割は最大尤度比χ二乗統計(G)によって決定される。これは、分割の2つの分岐間で応答の差を最大化する効果を有する。この方法のより詳しい論述およびその実施は、「JMPstatistics and Graphics guide」中に見出すことができる。
【0097】
しかしながら、樹木の構築は、それに関連する独自の問題を有している。一般的な問題は、データを過剰適合することなく、最良の予測モデルを与える樹木の最適なサイズを決定することである。このことを念頭に置きながら、ROC曲線を構築するために、樹木の様々な結節点において抽出可能な情報を使用する方法が開発されてきた。実施される場合、この方法は、モデル化されているデータ群を確実に過剰適合する十分な結節点を有する参照樹を構築することを含む。続いて、樹木から不要な部分を取り除き、引き続き、結節点の最少数に到達するまで(2つの末端結節点)、各工程で最悪の結節点を除去する。これによって、複雑度が減少した(より少ない結節点)樹木の系列又はファミリーが作製される。
【0098】
再帰的分割プログラムは、純粋な末端結節点を作製することを試みる。すなわち、1つの分類種類の標本のみが含まれる。しかしながら、これは常に可能であるとは限らない。時には、末端結節点は混合された集団を有する。従って、各末端結節点は癌に対して異なる確率を有する。癌に対する純粋な末端結節点では、癌標本である可能性は100%であり、逆に、非癌に対する純粋な末端結節点に関しては、癌標本である可能性は0%である。各末端結節点での癌の確率は、各結節点において、(1−非癌の確率)に対してプロットされる。
【0099】
これらの値は、その木を代表するROC曲線を作成するためにプロットされる。各木に対する計算されたAUCは、木又はモデルの「良好度」を表す。あらゆる診断用途におけると同様、AUCが高いほど、アッセイ(又はこの事例では、モデル)はより優れている。樹木サイズ(結節の数)に対するAUCのプロットは、訓練セットに対する最良のモデルをその最大限として有する。結果を検証するために、別のより小さなデータのサブセットを用いて類似の操作が実施される。訓練セットと検証セットの両方で同様の成績を有するモデルが最適であると推定され、従って、さらなる分析および/又は検証のために選択される。
【0100】
「発展的データセット」又は「データセット」という用語は、一群の生物学的試料に対して収集された完全なバイオマーカー又はバイオマーカーとバイオメトリックパラメータデータを含む特徴(features)を表す。これらの試料自体は、公知の診断結果を有する患者から採取される。公知の患者の結果に相関する2つ又はそれ以上の異なる標本群(例えば、癌および非癌)へ試料を分類することを目的として、一つの特徴又は特徴の組を統計解析に供する。質量スペクトルを使用する場合、当該セット内の質量スペクトルは強度が異なり得るが、器具類の精度内で、見かけの分子量は異ならない。
【0101】
「分類器」という用語は、試料と関連する疾病を決定するために、試料の組に対して得られた特徴を使用するあらゆるアルゴリズムを表す。分類器の1つの種類は、訓練セットから得られたデータを用いてアルゴリズムを「訓練する」ことによって作製され、その成績は検査セットデータを用いて評価される。本発明とともに使用される分類器の例は、判別分析、決定木分析、受信者動作曲線又は分離およびスコア分析である。
【0102】
「決定木」という用語は、分類のために使用されるフローチャート様の樹状構造を有する分類器を表す。決定木は、データセットをサブセットへ繰り返し分離することからなる。各分離は、1つの変数に対して適用される単純なルールからなる。例えば、「‘変数1’が‘閾値1’より大きな値であれば、左に進み、そうでなければ右に進む。」従って、与えられた特徴空間は、各矩形が1つのクラスへ割り付けられた矩形の群へ分割される。
【0103】
「診断アッセイ」および「診断法」という用語は、病的状態の存在又は性質の検出を表す。診断アッセイは、感受性および特異性において異なる。肺癌に対して陽性の検査結果を示し、実際に罹病している対象は、「真正陽性」と考えられる。本発明において、診断アッセイの感受性は、罹病集団中の真正陽性のパーセントとして定義される。肺癌を有するが、診断アッセイによって検出されない対象は、「偽陰性」と考えられる。罹病しておらず、且つ診断アッセイにおいて陰性の検査結果を有する対象は、「真正陰性」と考えられる。本明細書において使用される診断アッセイの特異性という用語は、非罹病集団中の真正陰性のパーセントと定義される。
【0104】
「判別分析」という用語は、2つ又はそれ以上の天然に存在する群間を最適に判別する特徴を選択するために使用される一群の統計学的方法を表す。データセットに対して判別分析を適用することによって、使用者は、さらなる解析のために、最も判別力が高い特徴に対して焦点を当てることが可能となる。
【0105】
「理想からの距離」又は「DFI」という用語は、理想からの距離であるROC曲線から取られるパラメータを表し、これは感受性と特異性の両方を取り込み、[(1−感受性)+(1−特異性)1/2として定義される。100%の感受性と100%の特異性の成績を有するアッセイに対して、DFIは0であり、0%の感受性および0%の特異性を有するアッセイに対して、1.414まで増加する。決定のために完全なデータ範囲を使用するAUCとは異なり、DFIは、ROC曲線上の特定の点における検査の成績を測定する。より低いDFI値を有する検査は、より高いDFI値を有する検査より成績が優れている。DFIは、米国特許出願公開2006/0211019A1において詳しく論述されている。
【0106】
「アンサンブル」、「ツリーアンサンブル」又は「アンサンブル分類器」という用語は互換的に使用することができ、多くのより単純な初歩的分類器からなる分類器(例えば、決定木のアンサンブルは、決定木からなる分類器である。)を表す。アンサンブル分類器の結果は、その構成要素の分類器の結果を全て合算することによって、例えば、全ての構成要素の分類器を等しく重み付けする多数決投票によって得られる。構成要素の分類器が、次いで、その生成頻度によって自然に重み付けられる場合に、多数決投票は特に合理的である。
【0107】
「エピトープ」という用語は、抗体によって結合されることができ、その抗体によって認識されることもできる抗原の一部を表すものとする。エピトープ決定基は、アミノ酸又は糖側鎖などの分子の化学的に活性な表面基から通常なり、特異的な三次元構造特性および特異的な電荷特性を有する。
【0108】
「特徴」および「変数」という用語は互換的に使用され得、試料の特徴の指標値を表す。これらの指標は、試料の物理的、化学的又は生物学的特徴に由来し得る。指標の例には、質量スペクトルのピーク、質量スペクトルのシグナル、ROIの強度の関数が含まれるが、これらに限定されない。
【0109】
配列間の相同性又は配列同一性(これらの用語は、本明細書において互換的に使用される。)の計算は、以下のように行われる。
【0110】
2つのアミノ酸配列又は2つの核酸配列の%同一性を決定するために、最適な比較のために、配列を並置する(例えば、最適な並置のために、第一および第二のアミノ酸又は核酸配列の一方又は両方にギャップを導入することができ、非相同的な配列は、比較のために無視することができる。)。好ましい実施形態において、比較のために並置される基準配列の長さは少なくとも30%であり、基準配列アミノ酸残基の長さの好ましくは少なくとも40%、より好ましくは少なくとも50%、さらに好ましくは少なくとも60%、さらに好ましくは70%、80%、90%、95%、99%又は100%が並置される。次いで、対応するアミノ酸位置又はヌクレオチド位置のアミノ酸残基又はヌクレオチドを比較する。第一の配列中の位置が第二の配列中の対応する位置と同じアミノ酸残基又はヌクレオチドによって占められている場合には、これらの分子はその位置において同一である(本明細書において使用されるアミノ酸又は核酸の「同一性」は、アミノ酸又は核酸の「相同性」と等しい。)。2つの配列間の%同一性は、2つの配列の最適な並置のために導入することが必要なギャップの数および各ギャップの長さを考慮に入れて、配列によって共有される同一の位置の数の関数である。
【0111】
2つの配列間での配列の比較と%同一性の決定は、数学的アルゴリズムを用いて達成することができる。好ましい実施形態において、2つのアミノ酸配列間の%同一性は、Blossum62マトリックス又はPAM250マトリックスおよび16、14、12、10、8、6又は4のギャップウェイトおよび1、2、3、4、5又は6の長さウェイトを用いて、GCGソフトウェアパッケージ中のGAPプログラムに取り込まれたNeedlemanおよびWunsch(J.Mol.Biol.48:444−453(1970))のアルゴリズムを使用して決定される。さらに別の好ましい実施形態において、2つのヌクレオチド配列間の%同一性は、NWSgapdna、CMPマトリックスおよび40、50、60、70又は80のギャップウェイトおよび1、2、3、4、5又は6の長さウェイトを用いて、GCGソフトウェアパッケージ中のGAPプログラムを使用して決定される。パラメータの特に好ましい組(およびある分子が本発明の配列同一性又は相同性限界内にあるかどうかを決定するために、実施者がどのパラメータを適用すべきかについて不明である場合に、使用すべきもの)は、12のギャップオープンペナルティ、4のギャップ伸長ペナルティおよび5のフレムシフトギャップペナルティとともに、Blossum62スコアリングマトリックスを使用する。
【0112】
2つのアミノ酸又はヌクレオチド配列間の%同一性は、PAM120ウェイト残基表、12のギャップ長ペナルティおよび4のギャップペナルティを用いて、ALIGNプログラム(バージョン2.0)に取り込まれたE.MeyersおよびW.Miller(CABIOS.4:11−17 (1989))のアルゴリズムを使用して決定することができる。
【0113】
本明細書中に記載されている核酸およびタンパク質配列は、例えば、他のファミリーの一員又は関連配列を同定するために、公表されたデータベースに対する検索を行うための「照会配列」として使用することができる。このような検索は、「Altschul, et al., J. Mol.Biol.215:403−10(1990)」のNBLASTおよびXBLASTプログラム(バージョン2.0)を用いて行うことができる。BLASTタンパク質検索は、本発明の免疫反応性サイクリンE2タンパク質に対して相同的なアミノ酸配列を得るために、XBLASTプログラム、スコア=50、ワード長=3を用いて行うことができる。比較のためにギャップが介在する並置を得るために、「Altschul et al., Nucleic Acids Res.25(17):3389−3402 (1997)」中に記載されているように、GappedBLASTを使用することができる。BLASTおよびGappedBLASTプログラムを用いる場合、それぞれのプログラム(例えば、XBLASTおよびNBLAST)の初期設定パラメータを使用することができる。
【0114】
本明細書において使用される「免疫反応性サイクリンE2」という用語は、(1)配列番号1、配列番号3、配列番号4又は配列番号5の何れかのアミノ酸配列を有するポリペプチド、(2)配列番号1、配列番号3、配列番号4又は配列番号5の何れかのあらゆる組み合わせ、(3)配列番号1と少なくとも60%、好ましくは少なくとも70%、より好ましくは少なくとも75、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99%相同であるアミノ酸配列を有するポリペプチド、配列番号3と少なくとも60%、好ましくは少なくとも70%、より好ましくは少なくとも75、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99%相同であるアミノ酸配列を有するポリペプチド、配列番号4と少なくとも60%、好ましくは少なくとも70%、より好ましくは少なくとも75、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99%相同であるアミノ酸配列を有するポリペプチド、配列番号5と少なくとも60%、好ましくは少なくとも70%、より好ましくは少なくとも75、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99%相同であるアミノ酸配列を有するポリペプチド、およびこれらのあらゆる組み合わせ、(4)配列番号1、配列番号3、配列番号4又は配列番号5に対して類似の免疫反応性を示すサイクリンE2ポリペプチド並びに(5)配列番号1、配列番号3、配列番号4又は配列番号5に対して類似の免疫反応性を示すポリペプチドを表す。
【0115】
「単離された」又は「精製された」ポリペプチド又はタンパク質は、そのタンパク質が得られた細胞又は組織源に由来する細胞性物質若しくは他のきょう雑タンパク質を実質的に含まず、又は化学的に合成された場合、化学的前駆体若しくは他の化学物質を実質的に含まない。タンパク質又は生物学的に活性なその一部が組換え的に産生される場合、タンパク質又は生物学的に活性なその一部は、好ましくは、培地を実質的に含まない。すなわち、培地は、タンパク質調製物の容量の約20%未満、より好ましくは約10%未満および最も好ましくは、約5%未満を占める。
【0116】
本明細書において使用される「線形判別分析」という用語は、試料を正しく分類する上で最も優れた変数又は特徴を特定するためのツールを与え、例えば、JMPTM統計パッケージによって実装され得る解析の種類を表す。ソフトウェアの段階的な特徴を使用して、全ての試料を正しく分類するまで、変数がモデルに付加され得る。一般に、このようにして選択された変数の組は、データセット中の変数の元の数より大幅に小さい。特徴の数のこの減少は、その後のあらゆる解析、例えば、樹状木、人工的なニューラルネットワークなどを用いたより一般的な分類エンジンの開発を簡略化する。
【0117】
「肺癌」という用語は、ある対象の肺系統と関連する癌状態を表す。本発明において、肺癌には、腺癌、類上皮癌、扁平上皮細胞癌、大細胞癌、小細胞癌、非小細胞癌および気管支肺胞癌が含まれるが、これらに限定されない。本発明において、肺癌は異なる段階および等級の異なる度数であり得る。肺癌の段階又はその等級の度数を決定するための方法は、当業者に周知である。
【0118】
「質量分析」という用語は、表面上に試料から気相イオンを生成させるためにイオン化源を使用し、質量分析装置を用いて気相イオンを検出することを表す。「レーザー脱離質量分析」という用語は、表面上に試料から気相イオンを生成させるためにイオン化源としてレーザーを使用し、質量分析装置を用いて気相イオンを検出することを表す。生物分子に対する質量分析の好ましい方法は、マトリックス支援レーザー脱離/イオン化質量分析又はMALDIである。MALDIにおいて、分析物は、乾燥したときに、分析物と共結晶化するマトリックス材料と典型的に混合される。マトリックス材料は、吸収がなければ分解されやすい生物分子又は分析物を断片化するエネルギーをエネルギー源から吸収する。別の好ましい方法は、表面増強レーザー脱離/イオン化質量分析又はSELDIである。SELDIでは、分析物がその上に適用された表面が分析物の捕捉および/又は脱離において積極的な役割を果たしている。本発明において、試料は、クロマトグラフィー又は他の化学的加工を行い得る生物学的試料および適切なマトリックス基材を含む。
【0119】
質量分析において、「見かけの分子量」とは、検出されたイオンの(ダルトンの)分子量対電荷値m/zを表す。見かけの分子量を導出する方法は、使用される質量分析装置の種類に依存する。飛行時間質量分析装置では、見かけの質量はイオン化から検出までの時間の関数である。
【0120】
「マトリックス」という用語は、質量分析装置中で適切な光源(例えば、UV/Vis又はIRレーザー)からの光子としてエネルギーを吸収することにより、表面からの生物分子の脱離を可能とする分子を表す。α−シアノ桂皮酸、シナピン酸およびジヒドロキシ安息香酸を含む桂皮酸誘導体は、生物分子のレーザー脱離において、エネルギー吸収分子としてしばしば使用される。エネルギー吸収分子は、米国特許第5,719,060号に記載されている。
【0121】
「正常化」という用語およびその派生表現は、質量スペクトルとともに使用された場合、主として装置のパラメータに起因する、スペクトルの全体的強度の差を除去又は最少化するために、一群の質量スペクトルに適用される数学的方法を表す。
【0122】
「関心領域」又は「ROI(region of interest)」という用語は、質量スペクトルのサブセットの統計的な適合を表す。ROIは、連続するシグナルの固定された最少長さを有する。連続するシグナルは、ROIがどのようにして選択されるかに応じて、固定された最大長のギャップを含有し得る。関心領域は、バイオマーカーに関連しており、バイオマーカーに対する代用物としての役割を果たし得る。関心領域は、その後、タンパク質、ポリペプチド、抗原、抗体、脂質、ホルモン、炭水化物などを代表することが決定され得る。
【0123】
「受信者動作特性曲線」又は「ROC曲線」という用語は、その最も簡易な用法において、2つの集団、例えば、ケース(すなわち、肺癌に罹患している対象)およびコントロール(すなわち、肺癌に関して正常な又は良性な対象)間で区別する上で特定の特徴(例えば、バイオマーカー又はバイオメトリックパラメータ)の成績のプロットを表す。集団全体(すなわち、ケースおよびコントロール)にわたる特徴データは、単一の特徴の値に基づいて、昇順に並べ替えられる。次いで、その特徴の各値に関して、データに対する真正陽性および偽陽性率が計算される。真正陽性率は、検討されている特長に対する値を上回るケースの数を計数した後、ケースの総数で除することによって求められる。偽陽性率は、検討されている特徴に対する値を上回るコントロールの数を計数した後、コントロールの総数で除することによって求められる。この定義は、コントロールと比較してケースにおいてある特徴が上昇している状況を記載しているが、この定義は、コントロールと比較してケースにおいてある特徴が低下している状況も包含する。この状況では、検討されている特徴に対する値を下回る試料が計数される。
【0124】
ROC曲線は、単一の特長に対して、および他の単一の出力に対して作製することが可能であり、例えば、2つ又はそれ以上の特徴の組み合わせを数学的に合算して(加算、減算、乗算など)、単一の合計値を得、この単一の合計値をROC曲線中にプロットすることができる。さらに、単一の出力値を導出する複数の特徴のあらゆる組み合わせをROC曲線中にプロットすることができる。特徴のこれらの組み合わせは、検査を含み得る。ROC曲線は、検査の偽陽性率(1−特異性)に対する検査の真正陽性率(感受性)のプロットである。ROC曲線下の面積は、ある標本集団に関する、その特徴に対しての性能指数であり、完全な検査に対する1から当該検査が検査対象を分類する上で完全に無作為な応答を与える0.5までの値を与える。ROC曲線は、データセットを迅速にスクリーニングするための別の手段を提供する。巨大な特徴空間のサイズを低下させるために、診断的であると思われる特徴を優先的に使用することが可能である。
【0125】
「スクリーニング」という用語は、肺癌に対する患者の素因に関する診断的決定を表す。患者は、陽性の「スクリーニング検査」によって、肺癌の高いリスクを有すると決定される。その結果、その患者には、さらなる検査、例えば、画像診断、喀痰検査、肺機能検査、気管支鏡検査法および/又は生検法および最終の診断を施すことができる。
【0126】
「シグナル」という用語は、調査されている生物分子によって生じたあらゆる応答を表す。例えば、シグナルという用語は、質量分析装置の検出器に衝突する生物分子によって生じた応答を表す。シグナル強度は、生物分子の量又は濃度と相関する。シグナルは、記載されているとおり、2つの値、すなわち、見かけの分子量値および生成された強度の値によって規定される。質量の値は生物分子の基本的な特徴であるのに対して、強度の値は対応する見掛けの分子量値を有する生物分子のある量又は濃度と一致する。従って、「シグナル」は、生物分子の特性を常に表す。
【0127】
「分離およびスコア法」という用語は、「Mor et al., PNAS.102(21):7677−7682 (2005)」から適切に改変された方法を表す。この方法では、全ての試料に対して、複数の測定が行われる。カットオフ値は、各測定に対して決定される。このカットオフ値は、関心がもたれる群(例えば、罹病および非罹病)間での正しい分類の精度を最大化するように設定され得、又は1つの群の感受性若しくは特異性を最大化するように設定され得る。各測定に対して、関心がもたれる群(例えば、罹病)がカットオフの上又はカットオフ値の下に位置するかどうかが決定される。各測定に関して、その測定の値がカットオフ値の罹病側に位置することが見出される場合には常に、スコアがその試料に割り当てられる。1つの試料に対して、全ての測定を行った後、測定のパネルに対する合計スコアを得るためにスコアを合計する。10の測定のパネルが10の最大スコア(各測定は、1又は0の何れかのスコアを有する。)および0の最低スコアを有し得るように、全ての測定を等しく重み付けることが一般的である。しかしながら、より重要な指標に対しては、より高い個別スコアで測定を不均等に重み付けすることに価値がある場合があり得る。
【0128】
合計スコアが決定された後、再度、測定のパネルに基づいて、罹病を非罹病試料から分離するためにカットオフが決定される。ここでも同じく、10の最大スコアおよび0の最少スコアを有する測定のパネルに対して、感受性を最大化するために(カットオフとして0のスコア)又は特異性を最大化するために(カットオフとして10のスコア)又は分類の精度を最大化するために(カットオフとして、0から10の間のスコア)カットオフが選択され得る。
【0129】
本明細書において使用される「重み付けられたスコアリング法」という用語は、検査試料中に同定および定量された1つの生物マーカー又はバイオメトリックパラメータ(本明細書において、「マーカー」と総称される。)の測定を多くの潜在スコアの1つへ変換させることを含む方法を表す。スコアは、以下の式を用いて得られる。
【0130】
スコア=AUC*係数/(1−特異性)(「係数」は、(0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25などの)整数であり、「特異性」は1以下の選択された値である。「係数」の大きさは、より高いAUC値、相対的に小さな標準偏差、高い特異性若しくは感受性又は低いDFIなどの(但し、これらに限定されない。)、改善された臨床成績を有するマーカーに対して増加する。従って、1つのマーカーの測定は、所望される限り最も多くの又は少ないスコアへ変換され得る。この方法は、関心が持たれる集団中のマーカー/検査成績を反映する受信者動作特性曲線に基づく。ROC曲線は、検査の偽陽性率(1−特異性)に対する検査の真正陽性率(感受性)のプロットである。曲線上の各点は、測定されている特徴/検査(マーカー)の単一の値に相当する。従って、幾つかの値は関心が持たれる集団(すなわち、肺癌を発症するリスクを有する対象)中で低い偽陽性率を有するのに対して、特徴の他の値はその集団中で高い偽陽性率を有する。この方法は、関心が持たれる対象の集団に対して低い偽陽性率を有する(従って、高い特異性を有する)特徴の値(すなわち、バイオマーカー又はバイオメトリックパラメータ)に対してより高いスコアを与える。この方法は、それ以下において検査が増加したスコアをもたらす偽陽性率(1−特異性)の所望されるレベルを選択することを含む。換言すれば、高度に特異的であるマーカーには、より低い特異性のマーカーより大きなスコア又はより大きなスコアの範囲が与えられる。
【0131】
本明細書において使用される「対象」という用語は、動物、好ましくは、ヒト又は非ヒトを含む哺乳動物を表す。患者および対象という用語は、本明細書において、互換的に使用され得る。
【0132】
「DTモデルの10倍検証」という用語は、優れた分析手技はモデルの予測値を評価するために新たな集団に対してモデルを検証することを必要とするという事実を表す。新たな集団に代えて、独立の訓練セットおよび検証セットへデータを分割することができる。検証セットとして使用するために、10個の無作為なサブセットが作製される。各検証セットに対して、試料を共通して有さない対応する独立の訓練セットが存在する。10のDTモデルは、上述のように10の訓練セットから作製され、検証セットともに調査される。
【0133】
「検査セット」又は「未知」又は「検証セット」という用語は、訓練セット中に含まれないエントリーからなる利用可能なデータセット全体のサブセットを表す。検査セットは、分類器の成績を評価するために適用される。
【0134】
「訓練セット」又は「既知のセット」又は「参照セット」という用語は、利用可能なそれぞれの全データセットのサブセットを表す。このサブセットは、通例、無作為に選択され、専ら、分類器を構築する目的で使用される。
【0135】
「変換されたロジスティック回帰モデル」という用語は、JMPTM統計パッケージ中にも実装されている、特徴の数を合算し、ROC曲線解析を可能とする手段を提供するモデルを表す。このアプローチは、特徴相互の関係に対する単純なモデルを採用しているので、特徴の減少したセットに対して適用されるのが最良である。陽性結果は、より洗練された分類法が成功を収めるはずであることを示唆する。陰性結果は、落胆すべき結果であるが、他の方法が失敗することを必ずしも示唆するとは限らない。
【0136】
サイクリンE2ポリペプチド
一実施形態において、本発明は、本明細書中に記載されている方法において使用することができる抗体を産生し、又は検査する(又はより一般的には、結合する)ための免疫原又は抗原として使用することができる、単離された又は精製された免疫反応性サイクリンE2ポリペプチド又は生物学的に活性なその断片に関する。本発明の免疫反応性サイクリンE2ポリペプチドは、標準的なタンパク質精製技術を用いて、細胞又は組織源から単離することができる。あるいは、単離された又は精製された免疫反応性サイクリンE2ポリペプチドおよび生物学的に活性なその断片は、組換えDNA技術によって作製することが可能であり、又は化学的に合成することが可能である。本発明の単離された又は精製された免疫反応性サイクリンE2ポリペプチドは、配列番号1、配列番号3、配列番号4および配列番号5に示されているアミノ酸配列を有する。配列番号1は、ヒトサイクリンE2のcDNA発現された形態のアミノ酸配列である(Genbank受付番号BC007015.1)。配列番号3は、BC007015.1のC末端に1つのアミノ酸(システイン)が加わった38アミノ酸配列であり、本明細書において「E2−1」とも称される。配列番号4は37アミノ酸長であり、配列番号4が配列番号3の最も最初のシステインをそのアミノ酸末端に含有しないことを除き、配列番号3と同じである。配列番号5は、BC007015.1のC末端を含む19アミノ酸配列であり、本明細書において、「E2−2」と称される。実施例中により詳しく記載されているように、配列番号1の免疫反応性は配列番号2の免疫反応性と比較された。配列番号2は、ヒトサイクリンE2の別のcDNA発現された形態である(Genbank受付番号BC020729.1)。配列番号1は、癌試料の幾つかのプールと強い免疫反応性を示すことが見出され、良性および正常な(非癌)プールとずっと低い反応性を示した。これに対して、配列番号2は、あらゆる癌又は非癌のプールされた試料とほとんど反応性を示さなかった。配列番号1の免疫反応性は、配列番号2には存在しない配列番号1のC末端に存在する最初の37アミノ酸の結果であることが決定された。配列番号3および5(何れも、配列番号1のC末端に由来する。)は、癌又は非癌プールの間で強い免疫反応性を示すことが見出された。従って、配列番号1、配列番号3、配列番号4および配列番号5又はこれらの配列のあらゆる組み合わせに対して作製された抗体(配列番号1および配列番号3に対して作製された抗体、配列番号1および配列番号4に対して作製された抗体、配列番号1および配列番号5に対して作製された抗体、配列番号1、配列番号3および配列番号4に対して作製された抗体、配列番号1、配列番号3および配列番号5に対して作製された抗体、配列番号1、配列番号4および配列番号5に対して作製された抗体、配列番号1、配列番号3、配列番号4および配列番号5に対して作製された抗体、配列番号3および配列番号4に対して作製された抗体、配列番号3および配列番号5に対して作製された抗体、配列番号3、配列番号4および配列番号5に対して作製された抗体、配列番号4および配列番号5に対して作製された抗体(本発明において、全て「抗サイクリンE2」と総称される。)など)を、本明細書に記載されている方法において使用することができる。例えば、このような抗体は、配列番号1、配列番号3、配列番号4および配列番号5の何れか又はこれらの配列のあらゆる組み合わせに対して作製された主題抗体であり得る。このような抗体は、本明細書中に記載されている本発明の方法において使用するために1つ又はそれ以上のキット中に含めることができる。
【0137】
本発明は、本明細書中に記載されているポリペプチド(すなわち、配列番号1、配列番号3、配列番号4および配列番号5)と1つ又はそれ以上の保存的アミノ酸置換だけ異なるポリペプチドも包含する。さらに、本発明は、配列番号1、配列番号3、配列番号4および配列番号5のアミノ酸配列を有するポリペプチドと、少なくとも60%、好ましくは70%、より好ましくは少なくとも75、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99%又はそれ以上の全体的配列類似性(同一性)又は相同性を有するポリペプチドも包含する。
【0138】
肺癌の存在又はリスクを検出する上でのバイオマーカーおよびバイオメトリックパラメータの使用
別の実施形態において、本発明は、正常な対象と癌を有する対象又は医学的症状を発症するリスクを有する対象との識別を効果的に補助する方法に関する。医学的症状は、好ましくは癌、さらに好ましくは肺癌である。正常な対象は、何れかの医学的症状(癌など)を有すると診断されていない対象、より好ましくは肺癌を有すると診断されていない対象であると考えられる。
【0139】
本発明は、医学的症状、好ましくは癌、さらに好ましくは肺癌の診断を補助するための迅速で、感度が高く、使いやすい方法を有利に提供する。さらに、本発明は、医学的症状を発症するリスクを有する個体を特定するために、医学的症状に対してリスクを有する対象をスクリーニングするために、および医学的症状を有すると診断され、又は医学的症状に対して治療されている患者をモニターするために使用することができる。本発明は、医学的症状に対して治療されている患者の治療の有効性をモニターするためにも使用することができる。好ましくは、医学的症状は癌であり、より好ましくは肺癌である。特に本明細書に記載されている方法に関して本明細書を通じて使用される、関心が持たれる医学的症状を有する対象(肺癌を有する対象など)は、関心が持たれる医学的症状の高いリスクを有する対象(肺癌の高いリスクを有する対象など)と同じであると考えられる。
【0140】
一般に、本発明の方法は、対象から検査試料を取得することを含む。典型的には、検査試料は、対象から取得され、当業者に公知の標準的方法を用いて処理される。血液試料および血液試料から得られる血清又は血漿に関しては、試料は、静脈穿刺によって肘正中静脈(antecubetal vein)から、又はより小さい容量が必要とされる場合には、掌での採血によって都合よく取得することができる。何れの場合にも、形成された要素および血餅は遠心によって除去される。尿又は便は、患者から直接収集することが可能であるが、但し、迅速に処理され、又は直ちに処理を実施できない場合には、防腐剤で安定化される。気管支洗浄液又は胸膜液などのより特殊化された試料は、気管支鏡検査法の間に又は経皮若しくは開放生検によって収集し、遠心によって粒状物が除去されたら、血清又は血漿と同様に処理することができる。
【0141】
処理後に、肺癌の診断と相関し得る1つ又はそれ以上のバイオマーカーの存在および量に関して、対象から得られた検査試料を調べる。具体的には、出願人は、1つ若しくはそれ以上のバイオマーカー又はバイオマーカーとバイオメトリックパラメータの組み合わせ(少なくとも1つのバイオマーカー、少なくとも1つのバイオマーカーと少なくとも1つのバイオメトリックパラメータ、少なくとも2つのバイオマーカー、少なくとも2つのバイオマーカーと1つのバイオメトリックパラメータ、少なくとも1つのバイオマーカーと少なくとも2つのバイオメトリックパラメータ、少なくとも2つのバイオマーカーと少なくとも2つのバイオメトリックパラメータ、少なくとも3つのバイオマーカーなど)の検出および定量が、患者中の肺癌を診断する上での補助として有用であることを見出した。本明細書中に記載されている方法において同定および定量された1つ又はそれ以上のバイオマーカーが、1つ又はそれ以上のパネル中に含有され得る。パネルを含むバイオマーカーの数には、1つのバイオマーカー、2つのバイオマーカー、3つのバイオマーカー、4つのバイオマーカー、5つのバイオマーカー、6つのバイオマーカー、7つのバイオマーカー、8つのバイオマーカー、9つのバイオマーカー、10のバイオマーカー、11のバイオマーカー、12のバイオマーカー、13のバイオマーカー、14のバイオマーカー、15のバイオマーカー、16のバイオマーカー、17のバイオマーカー、18のバイオマーカー、19のバイオマーカー、20のバイオマーカーなどが含まれ得る。しかしながら、パネル中に含めるためのバイオマーカーを選択する場合には、選択されたバイオマーカーの組み合わせが、個別の組み合わせより優れた性能(AUC、DFI感受性および特異性又はAUC、DFI感受性および特異性のあらゆる組み合わせに関して)を与えるように、このようなバイオマーカーを相補性に関して選択すべきである。
【0142】
上述されているように、検査試料を取得した後、本発明の方法は、検査試料中の1つ又はそれ以上のバイオマーカーの存在を特定し、次いで定量することを含む。肺癌のリスクを有すると疑われる患者の診断を補助するのに有用である又は有用であると考えられるあらゆるマーカーを本明細書中に記載されている方法において定量することが可能であり、1つ又はそれ以上のパネル中に含めることができる。従って、一態様において、パネルは、1つ又はそれ以上のバイオマーカーを含むことができる。パネル中に含めることができるバイオマーカーの例には、抗p53、抗TMP21、抗NY−ESO−1、抗HDJ1、抗ニーマンピックC1様タンパク質1、C末端ペプチドドメイン(抗NPC1L1Cドメイン)、抗TMOD1、抗CAMK1、抗RGS1、抗PACSIN1、抗RCV1、抗MAPKAPK3、抗サイクリンE2(すなわち、配列番号1、配列番号3、配列番号4、配列番号5又はこれらのあらゆる組み合わせに対する少なくとも1つの免疫反応性抗体)、癌胎児性抗原(CEA)、癌抗原125(CA125)、癌抗原(CA15−3)、プロガストリン放出ペプチド(プロGRP)、扁平上皮細胞抗原(SCC)、サイトケラチン8、サイトケラチン19ペプチド又はタンパク質(本明細書において、単に、「CK−19、CYFRA21−1、Cyfra」とも称される。)およびサイトケラチン18ペプチド又はタンパク質(CK−18、TPS)などの抗原(但し、これらに限定されない。)、付加されたシアル酸残基を有するルイスA血液群である癌抗原19−9(CA19−9)、血清アミロイドA、α−1−アンチトリプシン、アポリポタンパク質CIIIおよびチモシンβ4(Tβ4)などの炭水化物抗原、Acn6399、Acn9459、Pub11597、Pub4789、TFA2759、TFA9133、Pub3743、Pub8606、Pub4487、Pub4861、Pub6798、Pub6453、Pub2951、Pub2433、Pub17338、TFA6453およびHIC3959などの関心領域(但し、これらに限定されない。)およびこれらのあらゆる組み合わせが含まれるが、これらに限定されない。必要に応じて、上記方法において使用されるパネルは、2つ若しくはそれ以上のバイオマーカー、3つ若しくはそれ以上のバイオマーカー、4つ若しくはそれ以上のバイオマーカー、5つ若しくはそれ以上のバイオマーカー、6つ若しくはそれ以上のバイオマーカー、7つ若しくはそれ以上のバイオマーカー、8つのバイオマーカー、9つ若しくはそれ以上のバイオマーカー、10若しくはそれ以上のバイオマーカー、11若しくはそれ以上のバイオマーカー、12若しくはそれ以上のバイオマーカー、13若しくはそれ以上のバイオマーカー、14若しくはそれ以上のバイオマーカー、15若しくはそれ以上のバイオマーカー、16若しくはそれ以上のバイオマーカー、17若しくはそれ以上のバイオマーカー、18若しくはそれ以上のバイオマーカー、19若しくはそれ以上のバイオマーカー又は20のバイオマーカー又はそれ以上などの量を定量することを含み得る。
【0143】
別の態様において、パネルは、少なくとも1つの抗体、少なくとも1つの抗原、少なくとも1つの関心領域、少なくとも1つの抗原と少なくとも1つの抗体、少なくとも1つの抗原と少なくとも1つの関心領域および少なくとも1つの抗体と少なくとも1つの関心領域を含有することができる。パネル中に含まれ得る少なくとも1つの抗体の例には、抗p53、抗TMP21、抗NY−ESO−1、抗HDJ1、抗NPC1L1C、抗TMOD1、抗CAMK1、抗RGS1、抗PACSIN1、抗RCV1、抗MAPKAPK3又は抗サイクリンE2が含まれるが、これらに限定されない。パネル中に含まれ得る少なくとも1つの抗原の例には、サイトケラチン8、サイトケラチン19、サイトケラチン18、CEA、CA125、SCC、CA19−9、プロGRP、血清アミロイドA、α−1−アンチトリプシン、アポリポタンパク質CIIIおよびTβ4がであるが、これらに限定されない。パネル中に含まれ得る少なくとも1つの関心領域の例には、Acn6399、Acn9459、Pub11597、Pub4789、TFA2759、TFA9133、Pub3743、Pub8606、Pub4487、Pub4861、Pub6798、Pub6453、Pub2951、Pub2433、Pub17338、TFA6453およびHIC3959が含まれるが、これらに限定されない。さらに、ある種の関心領域は、他のある種の関心領域と高度に相関しており(これらの関心領域は、互いに高い相関係数を有することを意味する。)、従って、本発明において互いに置換され得ることが見出された。具体的には、これらの高度に相関する関心領域は、ある種の相関ファミリー又は「グループ」へまとめられている。これらの「グループ」内に含まれる関心領域は、本発明の方法およびキットにおいて、互いに置換することができる。関心領域のこれらの相関ファミリー又は「グループ」が、以下に記載されている。
【0144】
グループA:関心領域:Pub3448およびPub3493。
【0145】
グループB:関心領域:Pub4487およびPub4682。
【0146】
グループC:関心領域:Pub8766、Pub8930、Pub9142、Pub9216、Pub9363、Pub9433、Pub9495、Pub9648およびPub9722。
【0147】
グループD:関心領域:Pub5036、Pub5139、Pub5264、Pub5357、Pub5483、Pub5573、Pub5593、Pub5615、Pub6702、Pub6718、Pub10759、Pub11066、Pub12193、Pub13412、Acn10679およびAcn10877。
【0148】
グループE:関心領域:Pub6391、Pub6533、Pub6587、Pub6798、Pub9317およびPub13571。
【0149】
グループF:関心領域:Pub7218、Pub7255、Pub7317、Pub7413、Pub7499、Pub7711、Pub14430およびPub15599。
【0150】
グループG:関心領域:Pub8496、Pub8546、Pub8606、Pub8662、Pub8734、Pub17121およびPub17338。
【0151】
グループH:関心領域:Pub6249、Pub12501およびPub12717。
【0152】
グループI:関心領域:Pub5662、Pub5777、Pub5898、Pub11597およびAcn11559。
【0153】
グループJ:関心領域:Pub7775、Pub7944、Pub7980、Pub8002およびPub15895。
【0154】
グループK:関心領域:Pub17858、Pub18422、Pub18766およびPub18986。
【0155】
グループL:関心領域:Pub3018、Pub3640、Pub3658、Pub3682、Pub3705、Pub3839、Hic2451、Hic2646、Hic3035、Tfa3016、Tfa3635およびTfa4321。
【0156】
グループM:関心領域:Pub2331およびTfa2331。
【0157】
グループN:関心領域:Pub4557およびPub4592。
【0158】
グループO:関心領域:Acn4631、Acn5082、Acn5262、Acn5355、Acn5449およびAcn5455。
【0159】
グループP:関心領域:Acn6399、Acn6592、Acn8871、Acn9080、Acn9371およびAcn9662。
【0160】
グループQ:関心領域:Acn9459およびAcn9471。
【0161】
グループR:関心領域:Hic2506、Hic2980、Hic3176およびTfa2984。
【0162】
グループS:関心領域:Hic2728およびHic3276。
【0163】
グループT:関心領域:Hic6381、Hic6387、Hic6450、Hic6649、Hic6816およびHic6823。
【0164】
グループU:関心領域:Hic8791およびHic8897。
【0165】
グループV:関心領域:Tfa6453およびTfa6652。
【0166】
グループW:関心領域:Hic6005およびHic5376。
【0167】
グループX:関心領域:Pub4713、Pub4750およびPub4861。
【0168】
本発明の方法において使用することができる好ましいパネルには、以下のものが含まれるが、これらに限定されない。
【0169】
1.少なくとも2つのバイオマーカーを含み、該バイオマーカーが少なくとも1つの抗体および少なくとも1つの抗原であるパネル。このパネルは、少なくとも1つの関心領域などのさらなるバイオマーカーをさらに含むこともできる。
【0170】
2.少なくとも1つのバイオマーカーを含み、該バイオマーカーが抗サイクリンE2を含むパネル。さらに、前記パネルは、(a)少なくとも1つの抗原;(b)少なくとも1つの抗体;(c)少なくとも1つの抗原および少なくとも1つの抗体;(d)少なくとも1つの関心領域;(e)少なくとも1つの抗原と少なくとも1つの関心領域;(f)少なくとも1つの抗体と少なくとも1つの関心領域;又は(g)少なくとも1つの抗原、少なくとも1つの抗体および少なくとも1つの関心領域などのさらなるバイオマーカーを必要に応じてさらに含むこともできる。
【0171】
3.少なくとも1つのバイオマーカーを含み、該バイオマーカーがサイトケラチン8、サイトケラチン19、サイトケラチン18、CEA、CA125、SCC、プロGRP、血清アミロイドA、α−1−アンチトリプシンおよびアポリポタンパク質CIIIからなる群から選択されるパネル。前記パネルは、検査試料中に少なくとも1つの抗体、少なくとも1つの関心領域、並びに少なくとも1つの関心領域および少なくとも1つの抗体などのさらなるバイオマーカーを必要に応じてさらに含むことができる。
【0172】
4.少なくとも1つのバイオマーカーを含み、該バイオマーカーがAcn6399、Acn9459、Pub11597、Pub4789、TFA2759、TFA9133、Pub3743、Pub8606、Pub4487、Pub4861、Pub6798、Pub6453、Pub2951、Pub2433、Pub17338、TFA6453およびHIC3959からなる群から選択される少なくとも1つの関心領域であるパネル。前記パネルは、検査試料中に少なくとも1つの抗原、少なくとも1つの抗体並びに少なくとも1つの抗原および少なくとも1つの抗体などのさらなるバイオマーカーを必要に応じてさらに含むこともできる。
【0173】
5.パネル中に少なくとも1つのバイオマーカーを含み、少なくとも1つの該バイオマーカーがサイトケラチン8、サイトケラチン19、サイトケラチン18、CEA、CA125、SCC、プロGRP、血清アミロイドA、α−1−アンチトリプシン、アポリポタンパク質CIII、Acn6399、Acn9459、Pub11597、Pub4789、TFA2759、TFA9133、Pub3743、Pub8606、Pub4487、Pub4861、Pub6798、Pub6453、Pub2951、Pub2433、Pub17338、TFA6453およびHIC3959からなる群から選択されるパネル。前記パネルは、少なくとも1つの抗体などのさらなるバイオマーカーを必要に応じてさらに含むこともできる。好ましいパネルは、(a)サイトケラチン19、CEA、ACN9459、Pub11597、Pub4789およびTFA2759;(b)サイトケラチン19、CEA、ACN9459、Pub11597、Pub4789、TFA2759およびTFA9133;(c)サイトケラチン19、CA19−9、CEA、CA15−3、CA125、SCC、サイトケラチン18およびProGRP;(d)Pub11597、Pub3743、Pub8606、Pub4487、Pub4861、Pub6798、Tfa6453およびHic3959;および(e)サイトケラチン19、CEA、CA125、SCC、サイトケラチン18、プロGRP、ACN9459、Pub11597、Pub4789、TFA2759、TFA9133を含むパネルである。
【0174】
6.パネル中の少なくとも2つのバイオマーカーを含み、該少なくとも2つのバイオマーカーが抗p53、抗NY−ESO−1、抗MAPKAPK3、免疫反応性サイクリンE2、サイトケラチン19、CEA、CA125およびプロGRPに対する1つ又はそれ以上の抗体からなる群から選択されるパネル。前記パネルは、上記群から選択される少なくとも3つのバイオマーカー、上記群から選択される少なくとも4つのバイオマーカー、上記群から選択される少なくとも5つのバイオマーカー、上記群から選択される少なくとも6つのバイオマーカー、上記群から選択される少なくとも7つのバイオマーカー又は上記バイオマーカーの8つ全て(すなわち、抗p53、抗NY−ESO−1、抗MAPKAPK3、免疫反応性サイクリンE2、サイトケラチン19、CEA、CA125およびプロGRPに対する1つ又はそれ以上の抗体の各々)を含むこともできる。好ましくは、パネルは、上記バイオマーカーの8つ全てを含む。
【0175】
検査試料中の1つ又はそれ以上のバイオマーカーの存在および量は、当業者に公知の定型的な技術を用いて取得し、定量することができる。例えば、検査試料中の抗原又は抗体を定量するための方法は、当業者に周知である。例えば、検査試料中の1つ又はそれ以上の抗原又は抗体の存在および定量は、本分野において公知である1つ又はそれ以上のイムノアッセイを用いて決定することができる。イムノアッセイは、典型的には、以下のことを含む。(a)バイオマーカー(すなわち、抗原又は抗体)に特異的に結合する抗体(又は抗原)を準備すること;(b)検査試料を抗体又は抗原と接触させること;および(c)検査試料中の抗原に結合した抗体の複合体の存在又は検査試料中の抗体に結合された抗原の複合体の存在を検出すること。
【0176】
抗原に特異的に結合する抗体を調製するために、精製された抗原又はその核酸配列を使用することができる。抗原に対する核酸およびアミノ酸配列は、これらの抗原のさらなる性質決定によって取得することができる。例えば、抗原は多数の酵素(例えば、トリプシン、V8プロテアーゼなど)を用いてペプチドマッピングを行うことができる。各抗原から得られた消化断片の分子量は、様々な酵素によって作製された消化断片の分子量に合致する配列に対して、SwissProtデータベースなどのデータベースを検索するために使用することができる。この方法を用いて、これらの抗原がデータベース中の公知のタンパク質であれば、他の抗原の核酸およびアミノ酸配列を同定することができる。
【0177】
あるいは、タンパク質ラダー配列決定を用いてタンパク質配列を配列決定することができる。タンパク質ラダーは、例えば、分子を断片化し、酵素消化又は断片の末端から単一のアミノ酸を順次除去するその他の方法へ断片を供することによって作製することができる。タンパク質ラダーを調製する方法は、例えば、国際公開WO93/24834号および米国特許第5,792,664号中に記載されている。次いで、質量分析法によってラダーを分析する。ラダー断片の質量の差によって、分子の末端から除去されたアミノ酸を特定する。
【0178】
抗原がデータベース中の公知のタンパク質でなければ、核酸およびアミノ酸配列は抗原のアミノ酸配列の一部の知識を用いて決定することができる。例えば、抗原のN末端アミノ酸配列に基づいて、縮重プローブを作製することができる。次いで、抗原が最初にそこから検出された試料から作製されたゲノム又はcDNAライブラリーをスクリーニングするために、これらのプローブを使用することができる。陽性クローンは、同定し、増幅することができ、周知の技術を用いて、組換えDNA配列をサブクローニングすることができる。例えば、「Current Protocols for Molecular Biology (Ausubel et al., Green Publishing Assoc, and Wiley−Interscience 1989) and Molecular Cloning:A Laboratory Manual, 2nd Ed. (Sambrook et al., Cold Spring Harbor Laboratory, NY 1989)」を参照されたい。
【0179】
精製された抗原又はその核酸配列を用いて、抗原へ特異的に結合する抗体は、本分野において公知のあらゆる適切な方法を用いて調製することができる(例えば、Coligan, Current Protocols in Immunology (1991);Harlow & Lane, Antibodies:A Laboratory Manual(1988);Goding, Monoclonal Antibodies:Principles and Practice (2d ed. 1986);およびKohler & Milstein, Nature 256:495−497(1975)を参照されたい。)。このような技術には、ファージ又は類似のベクター中の組換え抗体のライブラリーから抗体を選択することによる抗体調製並びにウサギ又はマウスを免疫化することによってポリクローナルおよびモノクローナル抗体の調製が含まれるが、これらに限定されない(例えば、Huse et al.,Science 246:1275−1281(1989); Ward et al.,Nature 341:544−546(1989)を参照されたい。)。
【0180】
抗体が提供された後、抗原は、十分に認知された多数の免疫学的結合アッセイの何れを用いても検出および/又は定量することができる(例えば、米国特許第4,366,241号、同第4,376,110号、同第4,517,288号、同第4,837,168号を参照されたい。)。本発明において使用することができるアッセイには、例えば、酵素結合免疫吸着検定法(ELISA)(「サンドイッチアッセイ」としても知られる。)、酵素イムノアッセイ(EIA)、ラジオイムノアッセイ(RIA)、蛍光イムノアッセイ(FIA)、化学発光イムノアッセイ(CLIA)、計数イムノアッセイ(CIA;counting immunoassay)、ろ材酵素イムノアッセイ(MEIA;filter media enzyme immunoassay)、蛍光結合免疫吸着検定法(FLISA)、膠着イムノアッセイおよび多重蛍光イムノアッセイ(LuminexTMLabMAPなど)などが含まれる。一般的なイムノアッセイの総説に関しては、「Methods in Cell Biology:Antibodies in Cell Biology, volume 37 (Asai, ed. 1993); Basic and Clinical Immunology (Stites & Terr, eds., 7th ed.1991)」も参照されたい。
【0181】
一般に、対象から得られた検査試料は、抗原を特異的に結合する抗体と接触させることができる。必要に応じて、複合体の洗浄およびその後の単離を容易にするために、抗体を検査試料と接触させる前に、抗体を固体支持体に固定することができる。固体支持体の例には、例えば、ミクロタイタープレート、ガラス顕微鏡スライド又はカバーガラス、棒、ビーズ又はミクロビーズの形態のガラス又はプラスチックが含まれる。プローブ基材又は上述されているProteinChipTMアレイに抗体を付着させることもできる(例えば、Xiao et al., Cancer Research 62:6029−6033(2001)を参照されたい。)。
【0182】
試料を抗体とともに温置した後、混合物を洗浄し、形成された抗体−抗原複合体を検出することができる。これは、洗浄された混合物を検出試薬とともに温置することによって達成することができる。この検出試薬は、例えば、検出可能な標識で標識された第二の抗体であり得る。検出可能な標識に関しては、本分野において公知のあらゆる検出可能な標識を使用することが可能である。例えば、検出可能な標識は、放射線標識(例えば、H、125I、35S、14C、32Pおよび33Pなど)、酵素標識(例えば、西洋ワサビペルオキシダーゼ、アルカリホスファターゼ、グルコース6−リン酸脱水素酵素など)、化学発光標識(例えば、アクリジニウムエステル、アクリジニウムチオエステル、アクリジニウムスルホンアミド、フェナントリジニウムエステル、ルミナール、イソルミノールなど)、蛍光標識(例えば、(例えば、5−フルオレセイン、6−カルボキシフルオレセイン、3,6−カルボキシフルオレセイン、5(6)−カルボキシフルオレセイン、6−ヘキサクロロ−フルオレセイン、6−テトラクロロフルオレセイン、フルオレセインイソチオシアナートなどの)フルオレセイン)、ローダミン、フィコビリタンパク質、R−フィコエリトリン、量子ドット(例えば、硫化亜鉛がキャップされたセレン化カドミウム)、温度測定標識又は免疫ポリメラーゼ連鎖反応標識であり得る。標識への導入、標識化の手順および標識の検出は、Molecular Probes, Inc., Eugene, Oregonによって発行されたハンドブック兼カタログである「Polak and Van Noorden, Introduction to Immunocytochemistry, 2nd ed., Springer Verlag, N.Y.(1997)」および「Haugland, Handbook of Fluorescent Probes and Research Chemicals (1996)」中に見出される。あるいは、試料中のマーカーは、例えば、結合されたマーカー特異的抗体を検出するために第二の標識された抗体が使用される間接的アッセイを用いて、および/又は例えば、抗原の異なるエピトープに結合するモノクローナル抗体が混合物とともに同時に温置される競合又は阻害アッセイにおいて検出することができる。
【0183】
アッセイを通じて、試薬の各組み合わせの後に、温置および/又は洗浄工程が必要とされ得る。温置工程は、約5秒から数時間まで、好ましくは約5分から約24時間までを変動することができる。しかしながら、温置時間は、アッセイのフォーマット、バイオマーカー(抗原)、溶液の容量、濃度などに依存する。通常、アッセイは周囲温度で実施されるが、10℃から40℃などの温度の範囲にわたって実施することが可能である。
【0184】
イムノアッセイ技術は本分野において周知であり、適用可能な技術の一般的な概要は、Harlow&Lane、上記に見出すことができる。
【0185】
対象から得た試料中の抗原の検査量を測定するために、イムノアッセイを使用することができる。第一に、上記イムノアッセイ法を用いて、試料中の抗原の検査量を検出することができる。抗原が試料中に存在する場合には、抗原は、上記の適切な温置条件下で、該抗原を特異的に結合する抗体とともに抗体−抗原複合体を形成する。抗体−抗原複合体の量は、標準に比較することによって決定することができる。次いで、抗原に対するAUCは、ROC分析などの(但し、これらに限定されない。)公知の技術を用いて計算することができる。あるいは、DFIを計算することができる。AUCが約0.5より大きく又はDFIが約0.5より小さい場合には、疾病又は疾病のリスク(癌、好ましくは肺癌など)を有する対象を正常な(又は良性の)対象から識別するために、イムノアッセイを使用することができる。
【0186】
多数の抗原に対するイムノアッセイキットが市販されている。例えば、サイトケラチン19を定量するためのキットは、F. Hoffmann−La Roche Ltd.(Basel, Switzerland)およびBrahms Aktiengescellschaft (Hennigsdorf, Germany)から入手可能であり、サイトケラチン18を定量するためのキットは、IDL Biotech AD(Bromma, Sweden)およびDiagnostic Products Corporation(Los Angeles, CA)から入手可能であり、CA125、CEASCCおよびCA19−9を定量するためのキットは、それぞれ、Abbott Diagnostics(Abbott Park, IL)およびF. Hoffman−La Roche Ltd.から入手可能であり、血清アミロイドAおよびアポリポタンパク質CIIIを定量するためのキットは、Linco Research, Inc.(St. Charles, MO)から入手可能であり、プロGRPを定量するためのキットは、Advanced Life Science Institute, Inc.(Wako, Japan)およびIBL Immuno−Biological Laboratories(Hamburg, Germany)から入手可能であり、α1アンチトリプシンを定量するためのキットは、Autoimmune Diagnostica GMBH (Strassberg, Germany)およびGenWay Biotech, Inc.(San Diego, CA)から入手可能であり、並びにTβ4を定量するためのキットは、ALPCO (Salem, NH)から入手可能である。
【0187】
検査試料中の1つ又はそれ以上の抗体の存在又は定量は、上述されているものと類似のイムノアッセイを用いて決定することができる。このようなイムノアッセイは、上記されているアッセイにおいて抗体および抗原の役割が逆転しているという事実を除き、上記イムノアッセイと類似の様式で実施される。例えば、実施可能なイムノアッセイの1つの種類は、自己抗体ビーズアッセイである。このアッセイでは、市販の抗原p53(BioMolInternational L.P., Plymouth Landing, Pennsylvaniaから購入可能)のような抗原は、本分野において公知の定型的な技術を用いて又は本明細書中の実施例3に記載されている技術および方法を用いて、固体支持体、例えば、ビーズ、プラスチックマイクロプレート、ガラス顕微鏡スライド又はカバーガラス又はタンパク質抗原を結合するニトロセルロースなどの素材から作製された膜へ固定することができる。あるいは、抗原が市販されていない場合には、抗原は、癌細胞株(好ましくは、肺癌細胞株)若しくは対象自身の癌組織(好ましくは、肺癌組織)(S−H Hong, et al., Cancer Research 64:5504−5510(2004)を参照されたい。)から精製され得、又はcDNAクローンから発現され得る(Y−L Lee, et al., Clin.Chim.Acta349:87−96 (2004)参照)。次いで、抗原を含有するビーズを検査試料と接触させる。結合された抗原を含有するビーズとともに検査試料を温置した後、ビーズを洗浄し、形成されたあらゆる抗体−抗原複合体を検出する。この検出は上述のように、すなわち、洗浄されたビーズを検出試薬とともに温置することによって実施することができる。この検出試薬は、例えば、検出可能な標識で標識された第二の抗体(抗ヒト免疫グロブリンG(IgG)、抗ヒト免疫グロブリンA(IgA)、抗ヒト免疫グロブリンM(IgM)など(但し、これらに限定されない。))であり得る。検出後、抗体−抗原複合体の量は、上述されているように、シグナルを標準によって生成されたものと比較することによって測定することができる。あるいは、抗体−抗原複合体は、免疫グロブリンの多価の性質を活用することによって検出することができる。抗体−抗原複合体を抗ヒト抗体と反応させることとは逆に、固相に付着された抗原と同じエピトープを含有する検出可能な標識で標識された可溶性抗原へ、抗体−抗原複合体を曝露させることができる。全ての占拠されていない抗体結合部位が、(検出可能な標識で標識された)可溶性抗原に結合する。洗浄後、当業者に公知の定型的な技術を用いて、検出可能な標識が検出される。上記方法の何れかもが、検査試料中の特異的抗体の高感度で、特異的な定量を可能とする。次いで、ROC分析などの(但し、これに限定されない。)当業者に公知の定型的な技術を用いて、抗体に対するAUC(従って、対象中の肺癌を検出するための抗体(自己抗体など)の使用)を計算することができる。あるいは、DFIを計算することができる。AUCが約0.5より大きく又はDFIが約0.5より小さい場合には、疾病又は疾病のリスク(癌、好ましくは肺癌など)を有する対象を正常な(又は良性の)対象から識別するために、イムノアッセイを使用することができる。
【0188】
関心領域の存在および量は、質量分析技術を用いて測定することができる。質量分析法を用いて、出願人は、検査試料中の肺癌の診断およびスクリーニングの補助として有用な212の関心領域を見出した。具体的には、検査試料中の1つ又はそれ以上のバイオマーカーを検出および定量するために、質量分析技術が使用される場合には、まず、質量分析のために検査試料を調製しなければならない。試料の調製は、様々な方法で行うことができるが、最も一般的に使用されているのは、固相に付着された1つ又はそれ以上の吸着物質に試料を接触させることを含む。吸着物質は、陰イオン又は陽イオン性の基、疎水性基、金属リガンドあり又はなしの金属キレート基、抗体(ポリクローナル又はモノクローナルの何れか)又は同族抗体を結合するのに適した抗原であり得る。固相は、金属、ガラス又はプラスチックから作製された平面であり得る。固相は、表面積を増加させるために、微小粒状物(マイクロビーズ、非晶質粒状物の何れか)又は不溶性ポリマーの性質とすることもできる。さらに、微小粒状材料は、操作を容易にするために磁性であり得る。関心が持たれるバイオマーカーは固相に吸着され、バルク分子は洗浄によって除去される。質量分析のために、関心が持たれるバイオマーカーは、吸着物質に対するバイオマーカーの親和性を低下させる溶媒を用いて固相から溶出される。次いで、分析のために、バイオマーカーを質量分析装置中に導入する。好ましくは、上に重なっているスペクトルを同定し、スペクトルを評価する上では無視する。さらに、上述されているようなイムノアッセイを使用することもできる。イムノアッセイが完了したら、免疫学的表面から分析物を溶出し、分析のために質量分析装置中に導入することができる。
【0189】
検査試料が一旦調製されたら、検査試料を質量分析装置中に導入する。レーザー脱離イオン化(例えば、MALDI又はSELDI)は、固体形態で与えられる試料に対する一般的な技術である。この技術では、レーザーエネルギーを吸収し、試料に転移させる上で効率的なマトリックスとともに、標的プレート上で試料を共結晶化させる。生成されたイオンを分離し、計数し、公知の質量および電荷のイオンに対して較正する。何れかの試料に対して収集された質量データは、特異的な質量/電荷(m/z)比でのイオンカウントである。異なる質量調製法および異なるイオン化技術は異なるスペクトルを与えることが予想される。
【0190】
質量スペクトルデータに対する認定検査は、元のデータの事前加工を最小限にした外れ値分析の厳格なプロセスを典型的に含む。外れ値を同定する方法は、原スペクトルの総イオン電流(TIC)の計算から始まる。TIC計算の前に、原スペクトルに対して、円滑化又はベースライン補正アルゴリズムが適用されない。TICは、検出された質量(m/z)範囲にわたり、各m/z値における強度を加算することによって計算される。これは、装置の不具合、試料のスポッティングの問題および他の類似の欠陥をスクリーニングする。TICの他に、各試料に関して、スペクトル全体にわたる平均%CV(%変動計数)が計算される。各試料に対する反復測定の数を用いて、検出された質量範囲にわたる全てのm/z値において、%CVを計算する。次いで、その試料の代表となる平均%CVを得るために、これらの%CVを一緒に平均する。平均%CVは、外れ値を同定するための最初のフィルター工程として使用してよく、又は使用しなくてもよい。一般に、高い平均%CV(30%超又は他のあらゆる許容可能な値)での反復は、乏しい再現性を示す。
【0191】
上述されているように、各スペクトルの計算されたTICおよび平均%CVは、スペクトルの再現性および「良好度」を認定するための予測因子として使用することができる。しかしながら、これらの測定はスペクトルの全体特性に対する優れた記述子を与えるが、各m/z値での個別の強度など、スペクトルの顕著な特徴の再現性に関する情報を一切与えない。このハードルは、「Wan他(J. Am. Soc. Mass Spectrom. 2002. 13, 85−88)」によって報告されたスペクトルコントラスト角(SCA)計算の改変によって克服された。SCA計算において、スペクトル全体は、その成分が各m/zの値であるベクターとして処理される。この解釈を用いて、2つのベクター間の角度シータ(θ)は、標準的な数学式によって与えられる。
【0192】
【数1】
【0193】
類似のスペクトルに対して、θは小さく、ゼロに近い。
【0194】
使用に際して、計算および比較の総数は、試料の反復に対して又は特定の群(例えば、癌)内の全試料に対して平均スペクトルをまず計算することによって低下する。次に、各スペクトルと計算された平均スペクトルとの間のSCAを計算する。平均スペクトルと大幅に異なるスペクトルは、下記の基準を満たす限り、外れ値と考える。
【0195】
1つの予測因子は質量スペクトルを完全に記述するのに十分でないので、外れ値を選択するために2以上の予想因子を使用することが好ましい。多変量外れ値解析は、複数の予想因子を用いて実施することができる。これらの予想因子は、TIC、平均%CVおよびSCAであり得るが、これらに限定されない。JMPTM統計パッケージ(SAS Institute Inc., Cary, NC)を用いて、群(例えば、癌)中の各反復測定に対して、マハラノビス距離を計算する。観察の約95%がこの値を下回るように、臨界値(信頼限界ではない。)を計算することができる。臨界値を上回る残りの5%は外れ値と考え、さらなる分析から除外される。
【0196】
質量スペクトルデータの認定後、データセット中の全てのスペクトルに対してTICが同一であるように強度を拡大し、又は全てのスペクトル中の1つのピークに対して強度を拡大して、通常、スペクトルは標準化される。
【0197】
標準化後、質量スペクトルは一群の強度特性まで低減される。他の用途では、これらは、生物分子と関連するm/z値でスペクトル強度のリストまで低減する。好ましくは、特徴の別の種類、関心領域又はROIが使用される。
【0198】
関心領域は、2つ又はそれ以上の関心対象のデータセット間での比較によって得られる。これらのデータセットは、関心対象の群(例えば、罹病および非罹病)に相当する。各m/zにおける、全ての試料にわたる強度値に対して、t検定を行う。操作者によって指定された閾値を下回るt検定p値を有するm/zの値を特定する。特定されたm/z値のうち、連続するm/z値を一緒のグループに入れ、関心領域と定義される。ROIおよびその連続する群内に何れかの許容されるギャップを形成するために必要とされる連続するm/z値の最少数は、使用者によって定義され得る。ROIに対する別の限定子は、2つの群の平均の比の対数の絶対値である。この値が何らかの閾値カットオフ値(すなわち、10を底とする対数が使用される場合には0.6)より大きいときには、質量対電荷位置はROI中に含める候補となる。ROI法を使用する利点は、2つのクラスのスペクトル間の高い強度のパターンの差の印になるのみならず、肩のようなより微弱な差およびピーク発見法によって見逃される極めて低い強度を発見することである。
【0199】
一旦、関心領域が決定されたら、ROIの範囲の平均又は中央m/z値が、しばしば、領域に対する識別子として使用される。各領域は、データセットを識別するマーカーの候補である。様々なパラメータ(例えば、全強度、最大強度、中央値強度又は平均強度)を標本データから抽出し、ROIと関連付けることができる。従って、何千ものm/z、強度対から212のROIおよびそれらの識別子、強度関数対まで各標本スペクトルが低下する。これらの記述子は、データ解析技術のための入力変数として使用される。
【0200】
必要に応じて、検査試料を得る前に又は検査試料を得た後に並びに検査試料中の1つ若しくはそれ以上のバイオマーカーを同定および定量する前に又は検査試料中の1つ若しくはそれ以上のバイオマーカーを同定および定量した後に、本発明の方法は、対象から少なくとも1つのバイオメトリックパラメータの値を得る工程を含むことができる。例えば、1、2、3、4、5、6、7、8、9、10などのバイオメトリックパラメータを対象から取得することができる。あるいは、本発明の方法は、対象から得た何れかのバイオメトリックパラメータに対して何れかの値を得る工程を含む必要はない。対象から得られた好ましいバイオメトリックパラメータは、対象の喫煙歴、具体的には、対象の喫煙のパック・年である。対象から取得することができる他のバイオメトリックパラメータには、年齢、発癌性物質への曝露、性別、喫煙の家族歴などが含まれるが、これらに限定されない。
【0201】
上述されているように、本発明の方法において、パネル中に含有される1つ又はそれ以上のバイオマーカーの存在を決定するために、検査試料が分析される。検査試料中にバイオマーカーが存在することが決定された場合には、検出されたこのような各バイオマーカーの量を(本明細書中に前述されている技術を用いて)定量する。検査試料中の各バイオマーカーの量が定量されたら、定量された各バイオマーカーの量を、その特定のバイオマーカーに対する所定のカットオフ(通例、整数などの値又は数字であり、本明細書において、「カットオフ」又は「分離点」とも別称される。)と比較する。本発明の方法において使用される所定のカットオフは、多変量解析(図1参照)、変形ロジスティック回帰、分離およびスコア法又はこれらのあらゆる組み合わせなどの(但し、これらに限定されない。)本分野において公知の定型的技術を用いて決定することができる。例えば、分離およびスコア法が使用される場合、所定のカットオフの値又は数は達成されるべき所望の結果に依存する。達成されるべき所望の結果が、関心対象の群中の各マーカーの正しい分類の精度を最大化すること(すなわち、肺癌を発症するリスクを有する対象および肺癌を発症するリスクを有さない対象を正しく同定すること)であれば、所望されるその結果に基づいて、そのバイオマーカーに対する所定のカットオフに対して、特定の値又は数が選択される。これに対して、所望される結果は各マーカーの感度を最大化することであれば、その所望される結果に基づいて、そのバイオマーカーに対して、所定のカットオフに対する異なる値又は数を選択し得る。同様に、所望される結果が各マーカーの特異性を最大化することであれば、その所望される結果に基づいて、そのバイオマーカーに対して、所定のカットオフに対する異なる値を選択し得る。検査試料中に存在するあらゆるバイオマーカーの量が定量されたら、所望される結果に応じて、ROC曲線、AUCおよび各バイオマーカーに対する適切な所定のカットオフを決定するために、定型的な技術を用いて、当業者によって使用することができる他の情報を作製するために、この情報を使用することができる。各バイオマーカーの量を所定のカットオフと比較した後に、次いで、比較に基づいて、各バイオマーカーにスコア(すなわち、0から100までなどのあらゆる整数であり得る数)を割り当てる。さらに、1つ又はそれ以上のバイオマーカーのほかに、1つ又はそれ以上のバイオメトリックパラメータの値が対象に対して取得される場合には、各バイオメトリックパラメータの値を前記パラメータに対する所定のカットオフに対して比較する。何れのバイオメトリックパラメータに対する所定のカットオフも、1つ又はそれ以上のバイオマーカーに対する所定のカットオフを決定することに関して、本明細書に記載されている同じ技術を用いて決定することができる。バイオマーカーの比較と同様に、次いで、前記比較に基づいて、そのバイオメトリックパラメータに対して、スコア(すなわち、0から100などのあらゆる整数であり得る数)を割り当てる。
【0202】
あるいは、上記スコアリング法を使用することに代えて、重み付けされたスコアリング法を使用することができる。重み付けされたスコアリング法が使用されるのであれば、検査試料中の各バイオマーカーの量が定量されたら、次いで、検査試料中の検出された各バイオマーカーの量を、その特異的バイオマーカーに対する多数の所定のカットオフと比較する。利用可能な異なる所定のカットオフの全てから、次いで、単一のスコア(すなわち、0から100などのあらゆる整数であり得る数)がそのバイオマーカーに割り当てられる。この重み付けされたスコアリング法は、1つ又はそれ以上のバイオメトリックパラメータとともに使用することもできる。
【0203】
定量されたバイオマーカーの各々に対して、および必要に応じて、対象から得られた何れかのバイオメトリックに対してスコアが割り当てられたら、対象に対する合計スコアを得るために、各バイオマーカー又は各バイオマーカーと各バイオメトリックパラメータに対するスコアを合わせる。次いで、この合計スコアを所定の合計スコアと比較する。この比較に基づいて、対象が肺癌のリスクを有するか否かの決定を行うことができる。対象が肺癌を発症するリスクを有するかどうかという決定は、合計スコアが所定の合計スコアより高い又はより低いか否かを基礎とし得る。例えば、所定の合計スコアに対して割り当てられた値に応じて、所定の合計スコアより高い合計スコアを有する対象はより高いリスクを有すると考えることができ、従って、さらなる検査又は追跡手続きを受け得る。この方法において使用されるべき所定の合計スコア(あるいは、本明細書において「閾値」と称される。)は、バイオマーカーに対する所定のスコアに関して上述されている同じ技術を用いて決定することができる。例えば、図5は、3つのROC曲線を与える。これらのROC曲線の各々は組み合わされたマーカーの単一の出力を表すが、単一のマーカーは類似のROC曲線を与える。ROC曲線は、一方の末端における低い感受性および低い偽陽性率(1−特異性)から他方の末端における高い感受性および高い偽陽性率まで広がる。これら2つの末端の間の曲線の形状は、著しく変動し得る。方法が少なくとも90%の感受性を有することが必要とされるのであれば、図5に示されているROC曲線に基づいて、選択された曲線に応じて、偽陽性率は60から70%である。前記方法がせいぜい10%の偽陽性率を有することが必要とされるのであれば、選択された曲線に応じて、感受性は、40から55%である。これらの方法の何れもがマーカーの同一パネルから得られるものであるが、異なる臨床成績特性を与えるために、パネルの閾値(又は所定の合計スコア)は変更されている。計算のために、ROC曲線上の各点の下に位置するのは、データ範囲の一方末端からデータ範囲の他方末端までを移動する閾値(又は所定の合計スコア)である。閾値(又は所定の合計スコア)がデータ範囲の小さい末端に位置する場合には、全ての試料は陽性であり、これは、高い感受性と高い偽陽性率を有する点をROC曲線上に与える。閾値(又は所定の合計スコア)がデータ範囲の高い末端に位置する場合には、全ての試料は陰性であり、これは、低い感受性と低い偽陽性率を有する点をROC曲線上に与える。しばしば、方法は、感受性の最低レベル(すなわち、90%)、特異性の最低レベル(すなわち、90%)又は両方などの所望の臨床特性を有することが必要とされる。マーカーの閾値(又は所定の合計スコア)を変化させることは、所望の臨床的特性を達成させるのに役立ち得る。
【0204】
(a)パネル中の各バイオマーカーの量を所定のカットオフ(又は重み付けされたスコアリング法が使用される場合には、多数の所定のカットオフ)と比較し、該比較に基づいて各バイオマーカーに対してスコア(又は重み付けされたスコアリング法が使用される場合には、多数の可能なスコアのうちの1つから得たスコア)を割り当て、対象に対する合計スコアを得るために、パネル中の各バイオメトリックパラメータに対する割り当てられたスコアを合わせ、合計スコアを所定の合計スコアと比較し、および所定のスコアとの合計スコアの比較に基づいて、対象が肺癌のリスクを有するかどうかを決定する上記の工程、又は(b)少なくとも1つのバイオメトリックパラメータの値を各バイオメトリックパラメータに対する所定のカットオフ(重み付けされたスコアリング法が使用される場合には、多数の所定のカットオフ)に対して比較し、該比較に基づいて各バイオメトリックパラメータに対してスコア(又は重み付けされたスコアリング法が使用される場合には、多数の可能なスコアのうちの1つから得たスコア)を割り当て、パネル中の各バイオマーカーの量を所定のカットオフと比較し、該比較に基づいて、各バイオマーカーに対してスコアを割り当て、対象に対して合計スコアを得るために、各バイオメトリックパラメータに対する割り当てられたスコアを定量された各バイオマーカーに対する割り当てられたスコアと合算すること、合計スコアを所定の合計スコアと比較し、所定のスコアとの合計スコアの比較に基づいて、対象が肺癌のリスクを有するかどうかを決定する上記工程は、ヒトによるなど手動で実施することができ、又は入力、記憶、演算処理、ディスプレイおよび出力装置などの必要なハードウェアと一緒に、完全に若しくは部分的に、コンピュータプログラム又はアルゴリズムによって実施することができる。
【0205】
単なる例示として、本発明の方法をどのようにして実施できるかという例をここに記載する。この例において、8つのバイオマーカーを含むパネルと分離およびスコア法を用いて、患者が肺癌を有する確率を決定するために、患者を検査する。パネル中のバイオマーカーは、サイトケラチン19、CEA、CA125、CA15−3、CA19−9、SCC、プロGRPおよびサイトケラチン18である。このパネルに対する所定の合計スコア(又は閾値)は3である。検査試料を患者から得た後、患者の検査試料中の8つのバイオマーカー(サイトケラチン19、CEA、CA125、CA15−3、CA19−9、SCC、プロGRPおよびサイトケラチン18)の各々の量を定量する。この実施例において、検査試料中の8つのバイオマーカーの各々の量は、サイトケラチン19:1.95、CEA:2.75、CA125:15.26、CA15−3:11.92、CA19−9:9.24、SCC:1.06、プロGRP:25.29およびサイトケラチン18:61.13であると測定される。次いで、これらのバイオマーカーの各々の量を対応する所定のカットオフ(又は分離点)と比較する。バイオマーカーの各々に対する所定のカットオフは、サイトケラチン19:1.89、CEA:4.82、CA125:13.65、CA15−3:13.07、CA19−9:10.81、SCC:0.92、プロGRP:14.62およびサイトケラチン18:57.37である。その対応する所定のカットオフ(分離点)より高い量を有する各バイオマーカーに対して、1のスコアを与え得る。その対応する所定のカットオフ以下の量を有する各バイオマーカーに対して、0のスコアを与え得る。従って、前記比較に基づき、各バイオマーカーには、以下のようなスコアが割り振られる。サイトケラチン19:1、CEA:0、CA125:1、CA15−3:0、CA19−9:0、SCC:1、プロGRP:1およびサイトケラチン18:1。次いで、患者に対する合計スコアを得るために、8つのバイオマーカーの各々に対するスコアを(すなわち、バイオマーカーのスコアの各々を一緒に加算することによって)数学的に合算する。患者に対する合計スコアは5である(合計スコアは、以下のように1+0+1+0+0+1+1+1=5として計算される。)。患者に対する合計スコアを所定の合計スコア(3である。)と比較する。3の所定の合計スコアより大きい合計スコアは、患者に対する陽性の結果を示唆する。3以下の合計スコアは、患者に対する陰性の結果を示唆する。この例では、患者の合計スコアが3より大きいので、患者は陽性結果を有すると考えられ、従って、肺癌の兆候又は疑いに対するさらなる検査を受ける。これに対して、仮に患者の合計スコアが2であるとすると、患者は陰性結果を有すると考えられ、さらなる検査を一切受けない。
【0206】
さらなる例では、上記8バイオマーカーパネルが再び使用されるが、この例では、重み付けられたスコアリング法を使用する。この例では、パネルに対する所定の合計スコア(又は閾値)は11.2であり、検査試料中の定量されるバイオマーカーの量は上記と同じである。次いで、バイオマーカーの各々の量をバイオマーカーの各々に対する3つの異なる所定のカットオフと比較する。例えば、バイオマーカーの各々に対する所定のカットオフが、以下の表A中に挙げられている。
【0207】
【表1】
【0208】
従って、4つの可能なスコアが、各バイオマーカーに対して付与され得る。定量された各バイオマーカーの量を、上記表Aに挙げられている所定のカットオフ(分離点)と比較する。例えば、CEAに関しては、検査試料中の定量されるCEAの量が2.75であったので、表A中の50%特異性に対する2.02および75%特異性に対する3.3の所定のカットオフの間にある。従って、CEAには、2.68のスコアが割り当てられる。同様に評価される残りのバイオマーカーに対してこれを反復し、それぞれに、以下のスコアが割り当てられる。サイトケラチン18:2.6、プロGRP:4.96、CA15−3:0、CA125:0、SCC:2.48、サイトケラチン19:8.4およびCA19−9:0。次いで、患者に対する合計スコアを得るために、8つのバイオマーカーの各々に対するスコアを(すなわち、バイオマーカーのスコアの各々を一緒に加算することによって)数学的に合算する。患者に対する合計スコアは21.12である(合計スコアは、以下のように2.68+2.6+4.96+0+0+2.48+8.4+0=21.12として計算される。)。患者に対する合計スコアを所定の合計スコア(11.2である。)と比較する。11.2の所定の合計スコアより大きい合計スコアは、患者に対する陽性の結果を示唆する。11.2以下の合計スコアは、患者に対する陰性の結果を示唆する。この例では、患者の合計スコアが11.2より大きかったので、患者は陽性結果を有すると考えられ、従って、肺癌の兆候又は疑いに対するさらなる検査を受ける。
【0209】
さらに、別の実施形態において、本明細書中に記載されている重み付けされたスコアリング法は、対象から得られた1つ又はそれ以上のマーカーにスコア付けするために使用することもできる。好ましくは、1つ若しくはそれ以上のバイオマーカー、1つ若しくはそれ以上のバイオメトリックパラメータ又はバイオマーカーとバイオメトリックパラメータの組み合わせであるかどうかを問わず、このようなマーカーは、対象が癌又は他の何らかの疾病などの医学的症状を発症するリスクを有するかどうかを診断又は評価する上での補助として使用することができる。重み付けされたスコアリング法は、対象がこのような医学的症状に対するリスクを有するかどうかを評価するために、マーカーが使用され又は使用されることができるあらゆる医学的症状に関して広く使用することができる。このような方法は、以下の工程を含むことができる。
【0210】
a.対象から得られた検査試料中において、少なくとも1つのマーカーの量を定量すること;
b.定量された各マーカーの量を前記マーカーに対する多数の所定のカットオフと比較し、該比較に基づいて、各マーカーに対してスコアを割り当てること;および
c.前記対象に対する合計スコアを得るために、工程bにおいて定量された各マーカーに対して割り当てられたスコアを合算すること。
【0211】
好ましくは、前記方法は、以下の工程を含む。
【0212】
a.対象から得られた検査試料中において、少なくともマーカーの量を定量すること;
b.定量された各マーカーの量を前記マーカーに対する多数の所定のカットオフと比較し、該比較に基づいて、各マーカーに対してスコアを割り当てること;
c.前記対象に対する合計スコアを得るために、工程bにおいて定量された各マーカーに対して割り当てられたスコアを合算すること;
d.工程cにおいて決定された合計スコアを所定の合計スコアと比較すること;および
e.工程dにおいて決定された合計スコアの比較に基づいて、前記対象が医学的症状を発症するリスクを有するかどうかを決定すること。
【0213】
DFI
本明細書中に前述されているように、出願人は、1つ若しくはそれ以上のバイオマーカー又はバイオマーカーとバイオメトリックパラメータの組み合わせの検出および定量が患者中の肺癌を診断する上での補助として有用であることを見出した。さらに、出願人は、本明細書中に記載されている1つ又はそれ以上のバイオマーカーおよび1つ又はそれ以上のバイオマーカーと1つ又はそれ以上のバイオメトリックパラメータの組み合わせが、肺癌に対して、約0.5未満、好ましくは約0.4未満、より好ましくは約0.3未満、さらに好ましくは約0.2未満のDFIを有する。表25から29は、約0.5未満、約0.4未満、約0.3未満および約0.2未満であるDFIを示す様々なバイオマーカー又はバイオマーカーとバイオメトリックパラメータの組み合わせを含有するパネルの例を与える。
【0214】
キット
1つ又はそれ以上のバイオマーカー、免疫反応性サイクリンE2ポリペプチドの1つ又はそれ以上、バイオメトリックパラメータおよびこれらのあらゆる組み合わせが、本発明の方法を実施する上で使用するためのキット(パネルなど)の形成に適している。一態様において、キットは、配列番号1、配列番号3、配列番号4、配列番号5又はこれらの組み合わせからなる群から選択されるペプチドを含むことができる。
【0215】
別の態様において、キットは、抗サイクリンE2又はそのあらゆる組み合わせを含むことができる。
【0216】
さらなる態様において、キットは、(a)検査試料中の1つ又はそれ以上の抗原を定量するための少なくとも1つの抗体を含有する試薬(前記抗原は、サイトケラチン8、サイトケラチン19、サイトケラチン18、CEA、CA125、CA15−3、SCC、CA19−9、プロGRP、血清アミロイドA、α−1−アンチトリプシン、アポリポタンパク質CIIIおよびTβ4である。)、(b)検査試料中の少なくとも1つの抗体を定量するための1つ又はそれ以上の抗原を含有する試薬(前記抗体は、抗p53、抗TMP21、抗NY−ESO−1、抗HDJ1、抗NPC1L1Cドメイン、抗TMOD1、抗CAMK1、抗RGS1、抗PACSIN1、抗RCV1、抗MAPKAPK3および抗サイクリンE2である。)、並びに必要に応じて、(c)検査試料中の定量された各抗原および抗体の量を合計し、所定のカットオフに対して(又は多数の所定のカットオフに対して)比較すること、並びに該比較に基づいて、各抗原および抗体に対するスコア(又は可能な多数のスコアの1つから得られたスコア)を割り当てる工程、合計スコアを得るために、定量された各抗原および抗体に対する割り当てられたスコアを合算する工程、合計スコアを所定の合計スコアと比較する工程および対象が肺癌を有するかどうかを決定する上での補助として前記比較を使用する工程を実施するための1つ又はそれ以上のアルゴリズム又はコンピュータプログラムを含み得る。あるいは、1つ又はそれ以上のアルゴリズム又はコンピュータプログラムに代えて、ヒトが手動で上記工程を実施するための1つ又はそれ以上の指示書を提供することができる。
【0217】
さらに別の態様において、キットは、(a)検査試料中の1つ又はそれ以上の抗原を定量するための少なくとも1つの抗体を含有する試薬(前記抗原は、サイトケラチン8、サイトケラチン19、サイトケラチン18、CEA、CA125、CA15−3、SCC、CA19−9、プロGRP、血清アミロイドA、α−1−アンチトリプシン、アポリポタンパク質CIIIおよびTβ4である。)、(b)検査試料中の少なくとも1つの抗体を定量するための1つ又はそれ以上の抗原を含有する試薬(前記抗体は、抗p53、抗TMP21、抗NY−ESO−1、抗HDJ1、抗NPC1L1Cドメイン、抗TMOD1、抗CAMK1、抗RGS1、抗PACSIN1、抗RCV1、抗MAPKAPK3および抗サイクリンE2である。)、(c)ACN9459、Pub11597、Pub4789、TFA2759、TFA9133、Pub3743、Pub8606、Pub4487、Pub4861、Pub6798、Tfa6453およびHic3959からなる群から選択される1つ又はそれ以上の関心領域を定量するための試薬;並びに、必要に応じて、(d)検査試料中の定量された各抗原、抗体および関心領域の量を合算し、所定のカットオフに対して(又は多数の所定のカットオフに対して)比較すること、並びに該比較に基づいて、定量された各抗原、抗体および関心領域に対するスコア(又は可能な多数のスコアの1つから得られたスコア)を割り当てる工程、合計スコアを得るために、定量された各抗原、抗体および関心領域に対する割り当てられたスコアを合算する工程、合計スコアを所定の合計スコアと比較する工程および対象が肺癌を有するかどうかを決定する上での補助として前記比較を使用する工程を実施するための1つ又はそれ以上のアルゴリズム又はコンピュータプログラムを含み得る。あるいは、1つ又はそれ以上のアルゴリズム又はコンピュータプログラムに代えて、ヒトが手動で上記工程を実施するための1つ又はそれ以上の指示書を提供することができる。1つ又はそれ以上の関心領域を定量するためのキット中に含まれる試薬には、パネル中に含有される少なくとも1つの関心領域を結合および保持する吸着物質、該吸着物質と一緒に使用される固体支持体(ビーズなど)、1つ又はそれ以上の検出可能な標識などが含まれ得る。吸着物質は、金属キレート、陽イオン性の基、陰イオン性の基、疎水性の基、抗原および抗体などの分析的化学および免疫化学において使用される多くの吸着物質の何れでもあり得る。さらに別の態様において、キットは、(a)検査試料中の1つ又はそれ以上の抗原を定量するための少なくとも1つの抗体を含有する試薬(前記抗原は、サイトケラチン19、サイトケラチン18、CA19−9、CEA、CA15−3、CA125、SCCおよびプロGRPである。)、(b)ACN9459、Pub11597、Pub4789、TFA2759、TFA9133、Pub3743、Pub8606、Pub4487、Pub4861、Pub6798、Tfa6453およびHic3959からなる群から選択される1つ又はそれ以上の関心領域を定量するための試薬;並びに、必要に応じて、(c)検査試料中の定量された各抗原および関心領域の量を合算し、所定のカットオフに対して(又は多数の所定のカットオフに対して)比較すること、並びに該比較に基づいて、定量された各抗原および関心領域に対するスコア(又は可能な多数のスコアの1つから得られたスコア)を割り当てる工程、合計スコアを得るために、定量された各抗原および関心領域に対する割り当てられたスコアを合算する工程、合計スコアを所定の合計スコアと比較する工程および対象が肺癌を有するかどうかを決定する上での補助として前記比較を使用する工程を実施するための1つ又はそれ以上のアルゴリズム又はコンピュータプログラムを含み得る。あるいは、1つ又はそれ以上のアルゴリズム又はコンピュータプログラムに代えて、ヒトが手動で上記工程を実施するための1つ又はそれ以上の指示書を提供することができる。1つ又はそれ以上の関心領域を定量するためのキット中に含まれる試薬には、パネル中に含有される少なくとも1つの関心領域を結合および保持する吸着物質、該吸着物質と一緒に使用される固体支持体(ビーズなど)、1つ又はそれ以上の検出可能な標識などが含まれ得る。好ましくは、キットは、以下の抗原および関心領域を定量するための必要な試薬を含有する。(a)サイトケラチン19およびCEAおよびAcn9459、Pub11597、Pub4789およびTfa2759;(b)サイトケラチン19およびCEAおよびAcn9459、Pub11597、Pub4789、Tfa2759およびTfa9133;並びに(c)サイトケラチン19、CEA、CA125、SCC、サイトケラチン18およびプロGRPおよびACN9459、Pub11597、Pub4789およびTfa2759を含有する。
【0218】
別の態様において、キットは、(a)検査試料中の1つ又はそれ以上の抗原を定量するための少なくとも1つの抗体を含有する試薬(前記抗原は、サイトケラチン19、サイトケラチン18、CA19−9、CEA、CA15−3、CA125、SCCおよびプロGRPである。)、並びに必要に応じて、(b)検査試料中の定量された各抗原の量を合算し、所定のカットオフに対して(又は多数の所定のカットオフに対して)比較すること、並びに該比較に基づいて、定量された各抗原に対するスコア(又は可能な多数のスコアの1つから得られたスコア)を割り当てる工程、合計スコアを得るために、定量された各抗原に対する割り当てられたスコアを合算する工程、合計スコアを所定の合計スコアと比較する工程および対象が肺癌を有するかどうかを決定する上での補助として前記比較を使用する工程を実施するための1つ又はそれ以上のアルゴリズム又はコンピュータプログラムを含み得る。あるいは、1つ又はそれ以上のアルゴリズム又はコンピュータプログラムに代えて、ヒトが手動で上記工程を実施するための1つ又はそれ以上の指示書を提供することができる。キットは、1つ又はそれ以上の検出可能な標識も含有し得る。好ましくは、キットは、以下の抗原、サイトケラチン19、サイトケラチン18、CA19−9、CEA、CA−15−3、CA125、SCCおよびプロGRPを定量するために必要な試薬を含有する。
【0219】
別の態様において、キットは、(a)1つ又はそれ以上のバイオマーカーを定量するための試薬(前記バイオマーカーは、ACN9459、Pub11597、Pub4789、TFA2759、TFA9133、Pub3743、Pub8606、Pub4487、Pub4861、Pub6798、Tfa6453およびHic3959からなる群から選択される関心領域である。)、並びに必要に応じて、(b)検査試料中の定量された各バイオマーカーの量を合算し、所定のカットオフに対して(又は多数の所定のカットオフに対して)比較すること、並びに該比較に基づいて、定量された各バイオマーカーに対するスコア(又は可能な多数のスコアの1つから得られたスコア)を割り当てる工程、合計スコアを得るために、定量された各バイオマーカーに対する割り当てられたスコアを合算する工程、合計スコアを所定の合計スコアと比較する工程および対象が肺癌を有するかどうかを決定する上での補助として前記比較を使用する工程を実施するための1つ又はそれ以上のアルゴリズム又はコンピュータプログラムを含み得る。あるいは、1つ又はそれ以上のアルゴリズム又はコンピュータプログラムに代えて、ヒトが手動で上記工程を実施するための1つ又はそれ以上の指示書を提供することができる。好ましくは、キット中の定量すべき関心領域は、Pub11597、Pub3743、Pub8606、Pub4487、Pub4861、Pub6798、Tfa6453およびHic3959からなる群から選択される。1つ又はそれ以上の関心領域を定量するためのキット中に含まれる試薬には、パネル中に含有される少なくとも1つの関心領域を結合および保持する吸着物質、該吸着物質と一緒に使用される固体支持体(ビーズなど)、1つ又はそれ以上の検出可能な標識などが含まれ得る。
【0220】
さらに別の態様において、キットは、(a)検査試料中の1つ又はそれ以上の抗原を定量するための1つ又はそれ以上の抗体を含有する試薬(前記抗原は、サイトケラチン19、CEA、CA125およびプロGRPである。);(b)検査試料中の少なくとも1つの抗体を定量するための1つ又はそれ以上の抗原を含有する試薬(前記抗体は、抗p53、抗NY−ESO−1、抗−MAPKAPK3および抗サイクリンE2である。)、並びに必要に応じて、(c)検査試料中の定量された各抗原、抗体および関心領域の量を合算し、所定のカットオフに対して(又は多数の所定のカットオフに対して)比較すること、並びに該比較に基づいて、定量された各抗原、抗体および関心領域に対するスコア(又は可能な多数のスコアの1つから得られたスコア)を割り当てる工程、合計スコアを得るために、定量された各抗原、抗体および関心領域に対する割り当てられたスコアを合算する工程、合計スコアを所定の合計スコアと比較する工程および対象が肺癌を有するかどうかを決定する上での補助として前記比較を使用する工程を実施するための1つ又はそれ以上のアルゴリズム又はコンピュータプログラムを含み得る。あるいは、1つ又はそれ以上のアルゴリズム又はコンピュータプログラムに代えて、ヒトが手動で上記工程を実施するための1つ又はそれ以上の指示書を提供することができる。キットは、サイトケラチン19、CEA、CA125およびプロGRPの各々を定量するための抗体、抗p53、抗NY−ESO−1、抗MAPKAPK3および抗サイクリンE2の各々を定量するための抗原又はサイトケラチン19、CEA、CA125およびプロGRPの各々を定量するための抗体および抗p53、抗NY−ESO−1、抗MAPKAPK3および抗サイクリンE2の各々を定量するための抗原を含有し得る。
【0221】
バイオマーカーの同定
本発明のバイオマーカーは、当業者に周知の技術によって、単離し、精製し、および同定することができる。これらには、クロマトグラフィー、電気泳動および遠心技術が含まれる。これらの技術は、「Current Protocols in Protein Science, J. Wiley and Sons, New York, NY, Coligan et al.(Eds) (2002)」および「Harris, E.L.V., S. Angal in Protein Purification Applications:A Practical Approach, Oxford University Press, New York, NY(1990)」およびその他の文献に論述されている。
【0222】
限定ではなく、例として、本発明の実施例をここに記載する。
【0223】
実施例
患者の血清の臨床的試料を集め(実施例1)、イムノアッセイ抗原マーカーに関して(実施例2)、ビーズ(実施例3)又はスライド(実施例4)を用いたイムノアッセイ抗体マーカーに関して、並びに質量分析によって同定されたバイオマーカーに関して(実施例5)分析した。様々なアルゴリズムを用いて、同定されたマーカーを並べ替え、優先順位を決定した(実施例6)。臨床的有用性を評価するための予想モデルを同定するために(実施例8)スコアリング法(実施例7)を用いて、これらの優先順位が決定されたマーカーを組み合わせた。肺癌を有することが疑われる患者中の肺癌の検出を補助する方法の使用例が、実施例9に例示されている。組成および正体を決定するために、質量分析の関心領域によって同定されたバイオマーカーを分析した(実施例10)。実施例11は、イムノアッセイ技術および免疫質量分析技術を用いて、本発明に従って同定されたバイオマーカーをどのようにして検出および測定できるかについて記載する予見的な実施例である。
【実施例1】
【0224】
臨床試料
治験審査委員会によって承認されたプロトコールに基づいて、患者血清の臨床試料を集めた。試料を提供した全ての対象は、試料を収集され、このプロジェクトにおいて使用されることに関して、インフォームドコンセントを与えた。血清試料を血清分離管の中に引き込み、室温で15分間、凝血させた。凝血塊を遠心して沈降させ、試料を2mLへ分注した。24時間以内に、試料を−80℃で凍結させ、さらなる加工処理を行うまで、その温度に維持した。受領した時点で、試料を融解し、便宜のために、より小さな容量へ再び分取し、再度凍結した。次いで、分析の直前に、試料を最後に融解した。従って、セット中の全ての試料は、分析前に、2回凍結および融解された。
【0225】
合計751の試料を収集し、分析した。グループは、肺癌患者であることが確認された250の生検、良性肺疾患患者であることが確認された274の生検および正常と思われる被験者227から構成された。癌および良性患者は全て、診断において、確定的な生検によって確認された。正常な被験者には、このような確定的な診断操作を行わず、明確な悪性疾患が存在しないことによって、「正常」と判断された。この確定的診断操作の後、50歳以上の年齢の患者のみを次いで選択した。この選択後、癌231人、良性182人および正常155人が残った。癌、良性肺疾患および正常と思われる対象のこの大きなコホートは、以下で、「大きなコホート」と総称される。良性肺疾患と肺癌の間での識別に関して焦点を当てるために、大きなコホートのサブセットを使用した。以下で「小さなコホート」と称されるこのコホートは、癌138人、良性106人および正常と思われる対象13人からなった。「大きなコホート」から「小さなコホート」を取り除いた後、癌107人、良性74人および正常と思われる対象142人が残った。このコホート(以下、「検証コホート」と称される。)は小さなコホートとは独立しており、作製された予想モデルを検証するために使用した。上記のように調製された臨床的試料を実施例2から10において使用した。
【実施例2】
【0226】
バイオマーカーのイムノアッセイの検出
A.Abbott Laboratories(Abbott Park, IL, hereinafter「Abbott」)ArchitectTMアッセイ
以下の抗原に対して、ArchitectTMキットを獲得した。CEA、CA125、SCC、CA19−9およびCA15−3。全てのアッセイは、製造業者の指示に従って実行した。試料中の分析物の濃度は、ArchitectTM装置によって与えられた。これらの濃度は、下表1中に示されているAUCデータを作製するために使用した。
【0227】
【表2】
【0228】
B.Roche ElecsysTMアッセイ
製造業者の指示書に従って、ElecsysTM2010システム(Roche Diagnostics GmbH, Mannheim, Germany)に対して、Cyfra21−1(サイトケラチン19、CK−19)測定を行った。Cyfra21−1の濃度は、ElecsysTM装置によって与えられた。大きなコホートと小さなコホートに対するデータとAUCを用いてROC曲線を作成し、下表2中に報告されている。
【0229】
【表3】
【0230】
C.マイクロタイタープレートアッセイ
以下のELISAキットを購入した。Advanced Life Science Institute, Inc. (Japan)からプロGRP、IDL Biotech AB(Bromma, Sweden)からTPS(サイトケラチン18、CK−18)およびIBL Immuno Biological Laboratories (Minneapolis, MN, USA)からパラインフルエンザ1/2/3 IgG ELISA。アッセイは、製造業者の指示に従って実行した。分析物の濃度は、製造業者のプロトコール中に指示され、提供された計算から求めた。各アッセイに対して得られたAUCが、下表3に示されている。
【0231】
【表4】
【実施例3】
【0232】
自己抗体ビーズアレイ
A.市販のヒトタンパク質(表4、下記参照)をLuminexTMSeroMapTMビーズ(Austin,Texas)に付着させ、試薬を調製するために、各ビーズセットを合わせた。存在する全ての抗体がタンパク質に結合できる条件下で、試薬の一部をヒト血清試料に曝露させた。結合していない物質を洗浄除去し、次いで、ヒトIgGに特異的に結合する抗体に連結されたR−フィコエリトリンの蛍光性連結物へビーズを曝露させた。洗浄後、ビーズの内部色素に従って各ビーズを特定するLuminexTM100装置にビーズを通過させ、ビーズに結合された蛍光(ビーズに結合された抗体の量に対応する。)を測定した。このようにして、21のヒトタンパク質および対照用の7つの非ヒトタンパク質(ウシ血清アルブミン(BSA)および破傷風トキシン)に対する772の試料(肺癌251、正常244、良性277)の免疫応答を評価した。
【0233】
抗原MUC−I(Fujirebio Diagnostics INC, Malvern, PA)、サイトケラチン19(Biodesign, Saco, ME)およびCA−125(Biodesign, Saco, ME)を、細胞培養のイオン交換画分として取得した(表4参照、以下)。0.4mL/分で移動相=PBSとともに、サイズ排除カラム(BioRad SEC−250, Hercules, CA)を用いるHPLCを使用して、これらの相対的に未精製の調製物を分子量によるさらなる分画に供した。15分に開始して、各抗原に対して1分ずつ、各抗原に対して合計23の画分に対して、画分を集めた。MUC−Iに関しては、250μLを注入し、サイトケラチンおよびCA−125に関しては、150μLを注入した。3つの試料全てが、より低い分子量の物質の高い濃度を示唆する、高すぎて測定できない24分より長い時点でのシグナルとともに、15から24分から溶出する、より高い分子量のタンパク質の様々な濃度を示すシグナルを示した。ビーズ上のコーティングに関しては、以下の画分を合わせた。MUC−I−A画分6,7;MUC−I−B画分10,11;MUC−I−C画分12,13;サイトケラチン19−A画分4,5;サイトケラチン19−B画分8,9;サイトケラチン19−C画分16,17;CA125−A画分5,6;CA125−B画分12,13。
【0234】
【表5】
【0235】
B.抗原を有するLuminexSeroMapTMビーズのコーティング
Omega10K限外ろ過プレート(Pall Corporation, Ann Arbor, Michigan)のウェルに、水50μLを添加した。10分後、プレートを真空上に配置した。ウェルが空になったら、水分を保持するために水10μLを添加した。5mMモルホリノエタンスルホン酸(MES)pH5.6の50から100μL、表記されているLuminexTMSeroMAPTMビーズ50μLおよび表4中に示されている各抗原10から20μgに対応する適切な容量を各ウェルに添加した。ピペットで、ビーズを懸濁した。ビーズに、EDAC(5mMMESpH5.6の1.0mL中2.0mg)10μLを添加した。プレートに蓋い、暗所で振盪装置上に置いた。14時間後、プレートを真空によって吸引し、水で洗浄し、最後に、20mMトリエタノールアミン(TEA)pH5.6の50μL中にビーズを再懸濁した。暗所で、振盪装置によってプレートを撹拌した。各ウェルに、EDAC(5mMMESpH5.6の1.0mL中2.0mg)10μLをさらに添加し、暗所で1時間、プレートを振盪装置上に配置した。洗浄後、1%BSAおよび0.08%アジ化ナトリウムを含有するPBS緩衝液(PBN)200μLを各ウェルに添加した後、プローブとともに音波処理し、暗所に配置した。
【0236】
C.被覆されたビーズでの血清試料の検査
マイクロプレート当り80の試料を用いて、PBN中へ1:20希釈して、血清試料をマイクロプレート中に調製した。上記ビーズセット50μLに、(ここで検査されている抗原とは無関係の抗原で免疫されたウサギから得た)ウサギ血清5μLを添加した。ビーズセットを渦巻き撹拌し、37℃に配置した。35分後、5%ウサギ血清および1%CHAPS(BRC)を含有するPBN1mLを添加した。ビーズセットを渦巻き撹拌し、遠心によって沈殿させ、BRC1.05mL中に再懸濁した。Supor1.2μフィルタープレート(Pall Corporation)のウェルをPBN100μLで洗浄した。各ウェルに、BRC50μL、それぞれ1:20の血清試料10μLおよび再懸濁されたビーズ10μLを添加した。暗所にて室温で1時間、プレートを振盪し、ろ過し、次いで、BRC100μLで10分間、3回洗浄した。(BRC5.0mL中のRPE抗ヒトIgG20μL)の検出連結物50μLを添加し、ピペットによって、ビーズを再懸濁した後、プレートを暗所で30分間振盪させた。次いで、BRC100μLを添加し、ピペットによってビーズを撹拌し、LuminexTM100装置上で試料を分析した。
【0237】
ROC分析によって、結果(各試料および抗原に対するビーズの中央値強度)を評価し、大きなコホートおよび小さなコホートに対する以下の結果が、下表5に示されている。
【0238】
【表6】
【実施例4】
【0239】
自己抗体スライドアレイ
A.抗原の調製
InvitrogenのUltimateORFCollectionTM(Invitrogen,Grand Island, NY)から得られた約5,000のタンパク質を、完全長ヒトタンパク質とのグルタチオン−S−転移酵素(GST)配列の組換え融合物として調製した。GSTタグによって、タンパク質の他の特徴とは独立して、アレイに結合された各タンパク質の量を評価することが可能となった。
【0240】
B.スライドの抗原コーティング
ProtoArrayは、上記の約5,000タンパク質が点状に付与されたニトロセロロースで被覆されたガラス表面(スライド)および数多くの調節機構からなる。
【0241】
C.被覆されたスライドでの血清試料の検査
まず、4℃で1時間、PBS/1%BSA/0.1%Tween20でアレイをブロックした。次いで、これを、4℃で90分間、プロファイリング緩衝液(本明細書中に論述されている「プロファイリング緩衝液」は、PBS、5mMMgCl、0.5mMジチオスレイトール、0.05%TritonX−100、5%グリセロール、1%BSAを含有した)中の1:120希釈された血清試料に曝露した。次いで、洗浄ごとに8分間、プロファイリング緩衝液でアレイを3回洗浄した。次いで、44℃で90分間、プロファイリング緩衝液中において、0.5μg/mLのAlexaFluorが連結された抗ヒトIgGにアレイを曝露した。次いで、洗浄ごとに8分間、プロファイリング緩衝液でアレイを3回洗浄した。遠心装置上で乾燥させた後、Axon GenePix 4000B蛍光マイクロアレイスキャナ(Molecular Devices, Sunnyvale, CA)を用いて走査した。
【0242】
D.バイオマーカーの選択
正常な患者から得られた血清の陽性シグナルの分布と癌患者から得られた血清の陽性シグナル分布を比較することによって、癌患者に特徴的な自己抗体を示すタンパク質の正体を決定した。アレイの限られた数を用いて癌特異的自己抗体を発見する確率を増加させるために、試料の以下のプールを使用した。それぞれ4又は5人の肺癌患者から得られた血清を含有する10のプール、それぞれ4又は5人の正常な患者から得られた血清を含有する10のプール、それぞれ良性肺疾患を有する4又は5人の患者から得られた血清を含有する10のプール。上記のように処理するために、これらのプールをInvitrogenに送った。各プールに対する各タンパク質に対応する蛍光強度をスプレッドシート中に与えた。各タンパク質は、2回提示された(アレイ上の2つ組みのスポットに対応する。)。
【0243】
あるタンパク質に関して免疫応答の癌特異性を評価するための1つのアルゴリズムでは、非癌試料のシグナル強度から癌試料のシグナル強度を最もよく区別するカットオフ値は製造業者(Invitrogen)によって与えられた。このカットオフを上回る強度を有する各群からの試料の数(それぞれ、癌カウントおよび非癌カウント)を測定し、パラメータとして、スプレッドシート中に入力した。さらに、他の群と比べてある群のシグナルの増加が存在しない確率に相当するp値を計算した。次いで、非癌群中に陽性が最も少なく、癌群中に陽性が最も多いタンパク質が上位にくるように、データを並べ替え、p値によって、低い方から高い方へさらに並べ替えた。この式による並べ替えによって、下表7中に与えられている以下の情報が得られた。
【0244】
【表7】
【0245】
第二のアルゴリズムは、あるタンパク質に対する免疫応答の癌特異性を、非癌試料のシグナル強度の標準偏差によって除された、癌に対する平均シグナルと非癌に対する平均シグナル間の差として計算した。これには、強い免疫応答が弱い免疫応答より結果に大きな影響を与えるという利点がある。次いで、最も高い値を有するタンパク質が上位にくるように、データを並べ替える。この並べ替えによって同定された上位100のリストが、下表8に示されている。
【0246】
【表8】
【0247】
表7および8の並べ替えの結果を比較し、各タンパク質に対して癌および非癌試料によって生じたシグナルを調べることによって、下表9に示されている以下の25のタンパク質をさらなる調査のために選択した。
【0248】
【表9】
【0249】
E.サイクリンE2
サイクリンE2の2つの形態が、ProtoArrayTM上に存在することが見出された。Genbank受付BC007015.1(配列番号1)として同定された形態が癌試料のプールの幾つかと強い免疫反応性を示し、良性および正常(非癌)プールとずっと低い反応性を示した。これに対して、Genbank受付番号BC020729.1(配列番号2)として同定された形態は、癌又は非癌のプールされた試料の何れともほとんど反応性を示さなかった。以下に示されているように、2つの形態の配列の並置は、259アミノ酸にわたって同一性を示し、N末端およびC末端の両領域中が異なっていた。BC020729.1は、110個のアミノ酸をN末端に有しており、BC007015.1中に存在しない7個のアミノ酸をC末端に有する。BC007015.1は、BC020729.1中に存在しない37のアミノ酸をC末端に有する。形態BC007015.1のみが免疫反応性を示すので、これは、C末端の37個のアミノ酸部分が原因である。
【0250】
BC007015.1のC末端から2つのペプチドを合成した。E2−1(配列番号3)は、BC007015.1のC末端の37アミノ酸を含有する。E2−2(配列番号5)は、BC007015.1のC末端の18個のアミノ酸を含有する。担体タンパク質又は表面へ特定の共有結合に対する反応性部位を与えるために、両ペプチドは、N末端にシステインを含むように合成した。
【0251】
【化1】
【0252】
【化2】
【0253】
BSAをマレイミドで活性化した後に、ペプチドを結合することによって、ペプチドE2−1およびE2−2を、それぞれ、BSAに連結した。以下のプロトコールに従って、活性化されたBSAを調製した。PBS200μL中のBSA8.0mgに、DMF20μLおよび1MトリエタノールアミンpH8.410μL中のGMBS1mg(N−(γ−マレイミド−ブチリルオキシ)スクシンイミド、Pierece、Rockford、IL)を加えた。60分後に、400μLの画分を集めながら、PBS緩衝液を用いたSephadexG50カラムに混合物を通過させた。活性化されたBSA−Mal(100μL)に、ペプチドE2−1の2.5mg又はペプチドE2−2の3.2mgを添加した。何れの場合にも、混合物を渦巻き撹拌し、氷の上に15分間配置し、その後、混合物を室温に25分間移動した。結合された産物BSA−Mal−E2−1(BM−E2−1)およびBSA−Mal−E2−2(BM−E2−2)を、清浄化のために、SephadexG50カラムに通過させた。
【0254】
2つの方法を用いて、LuminexTM小球体に、タンパク質およびペプチドを結合した。第一の方法は、実施例10Cに記載されており、「直接法」と称される。第二の方法は、「事前活性化法」と称され、以下のプロトコールを使用する。Omega10k限外ろ過プレートのウェルに、水100μLを添加し、10分後に、真空上に配置した。ウェルが空になった時点で、MES(100mM)pH5.6の20μLおよびそれぞれLuminexTMSeroMapTMビーズセット50μLを下表10に示されているように添加した。行1列A、B、CおよびD中のウェルに、並びに行2列A、B、C、DおよびE中のウェルに、MES中のNHS(20mg/mL)10μLおよびMES中のEDAC(10mg/mL)10μLを添加した。暗所で45分間振盪した後、緩衝液および未反応の試薬を通して吸引するために真空上にプレートを配置した。ウェルが空になった時点で、MES100μLを添加し、膜を通過させた。プレートを真空から除去し、MES20μLおよび水50μLを添加した。表10中に示されているウェルに、4μLの各タンパク質又はペプチド(2μLを添加したDNAJB1を除く。)を添加し、ビーズを分散させるために、ピペットで撹拌した。振盪装置上でプレートを30分間撹拌し、次いで、行1にMES中の10mg/mLEDAC5μLを添加し、列EFGH(直接結合のため)を添加し、振盪装置上でプレートを30分間撹拌した後、緩衝液および未反応の試薬を除去するために、真空上に配置した。ウェルが空になった時点で、PBS50μLを添加し、混合物を撹拌し、プレートを真空上に配置した。ウェルが空になった時点で、PBS50μLを添加し、ビーズを分散するために混合物をピペットで撹拌し、振盪装置上で60分間温置した。反応を停止するために、PBN200μLを添加し、混合物を音波処理した。
【0255】
下表10は、様々なビーズセット上へのサイクリンE2ペプチドおよびタンパク質の様々な提示を要約している。ペプチドE2−1およびE2−2をBSAに結合し、次いで、事前活性化法(ビーズ番号25および26)又は直接法(ビーズ番号30および31)を用いて、ビーズにこれを結合させた。また、事前活性化法(ビーズ番号28および29)又は直接法(ビーズ番号33および34)を用いて、BSAなしで、ペプチドE2−1およびE2−2をビーズに結合させた。事前活性化法を用いて、ビーズ35、37、38、39および40をタンパク質で被覆した。
【0256】
【表10】
【0257】
以下のようにして、患者の血清を用いてビーズを検査した。PBN1mLに、各ビーズ調製物5μLを添加した。混合物を音波処理および遠心し、沈降されたビーズをPBS中のBSA1%の1mLで洗浄し、同じ緩衝液1mL中に再懸濁した。1.2μSuporフィルタープレート(Pall Corporation, East Hills, NY)に、PBN/Tween(0.2%Tween20を含有するPBS中の1%BSA)100μLを添加した。10分後に、プレートをろ過し、PBN0.2%Tween(0.2%Tween20を含有するPBS中の1%BSA)50μLを添加した。各ウェルに、表11に示されているように、ビーズミックス20μLおよび血清(1:50)20μLを添加した。血清は、ヒト患者血清又はウサギ抗GST血清の何れかであった。プレートを暗所で振盪装置上に配置した。1時間後、プレートをろ過し、PBN/Tween100μLで3回洗浄した。ヒト抗体を検出するために、RPE−抗ヒト−IgG(1:400)(Sigma, St. Louis, MO)50μLを添加したのに対して、ウサギ抗GST抗体を検出するために、RPE−抗ウサギIgG(1:200)50μLを添加した。30分間暗所で、プレートを振盪装置上に配置した後、ビーズをろ過し、洗浄し、LuminexTM上で走行させた。
【0258】
6つの血清試料およびウサギ抗GSTの結果が、下表11に示されている。
【0259】
【表11】
【0260】
BSAに連結され、それぞれ、直接的に(直接法を用いて)又はビーズの事前活性化を介して(すなわち事前活性化法)結合されたペプチドE2−1を含有するビーズ25および30が最も強いシグナルを与えたことが表11から明らかである。BSAキャリアなしに結合されたペプチドE2−1も強いシグナルを与えたが、BSAキャリアありで与えられたシグナルの約半分に過ぎなかった。ペプチドE2−2は、BSAキャリアを通じて結合された場合、ずっと低いシグナルを与え、BSAキャリアなしの場合、ほぼ検出不能なシグナルを与えた。(N末端のGST融合タグを含有する)完全長タンパク質CCNE2は、ペプチドE2−2の何れの形態のシグナルをも十分に上回るシグナルを示したが、ペプチドE2−1のシグナルよりずっと低く、完全長タンパク質CCNE2は、配列の免疫反応性部分を含有しているが、ビーズ上でより低い密度で含有していることを示唆している。ウサギ抗GSTとのそのシグナルは、このGST融合タンパク質が小球体へ首尾よく結合されたことを示している。
【0261】
上述の事前活性化および直接法によって並びに受動コーティングによって、下表12に示されているタンパク質を、LuminexSeroMapTMビーズ上に被覆した。受動コーティングのために、業者から供給された溶液中の前記タンパク質5μgをSeroMapTMビーズ200μLに添加し、混合物を渦巻き撹拌し、室温で5時間、次いで、4℃で18時間温置し、次いで、遠心して沈降させ、沈降物を洗浄し、PBN中に再懸濁した。
【0262】
【表12】
【0263】
患者234人(癌87人、良性70人および正常77人)から得られた血清試料を検査した。ROC曲線によって、この検査から得られた結果を分析した。各抗原に対する計算されたAUCが、下表13に示されている。
【0264】
【表13】
【実施例5】
【0265】
質量スペクトル
A.混合された時期ビーズ(MMB)の逐次溶出による試料の調製
血清試料を融解し、InvitrogenのSolB緩衝液の等容量と混合した。混合物を渦巻き撹拌し、さらなる処理の前に、清澄化し、破砕物を除去するために、0.8μmフィルター(Sartorius,Goettingen,Germany)を通してろ過した。Dynal(R)(Invitrogen)強陰イオン交換およびAbbottLaboratories(Abbott, Abbott Park, IL)の弱陽イオン交換磁気ビーズの混合物を用いて、96ウェルプレートKingFisher(R)(ThermoFisher, Scientific, Inc., Waltham, MA)上で、自動化された試料の調製を行った。典型的には、陰イオン交換ビーズは、機能的な末端基としてアミンをベースとする炭化水素−四級アミン又はジエチルアミン基を有し、弱陽イオン交換ビーズは、典型的には、スルホン酸(カルボン酸)ベースとする官能基を有する。Abbottの陽イオン交換ビーズ(CXビーズ)は2.5%(質量/容積)の濃度であり、Dynal(R)強陰イオン交換ビーズ(AXビーズ)は10mg/mLの濃度であった。試料調製の直前に、20mMTris・HCl、pH7.5、0.1%の還元されたTritonX100(Tris−Triton緩衝液)で陽イオン交換ビーズを一回洗浄した。この試料調製において使用された他の試薬20mMTris・HCl、pH7.5(Tris緩衝液)、0.5%トリフルオロ酢酸(以下、「TFA溶液」)および50%アセトニトリル(以下、「アセトニトリル溶液」)は、社内で調製した。 試薬および試料は、以下のようにして、96ウェルプレート中に設定した。
【0266】
列Aは、AXビーズ30μL、CXビーズ20μLおよびTris緩衝液50μLの混合物を含有した。
【0267】
列Bは、Tris緩衝液100μLを含有した。
【0268】
列Cは、Tris緩衝液120μLおよび試料30μLを含有した。
【0269】
列Dは、Tris緩衝液100μLを含有した。
【0270】
列Eは、脱イオン水100μLを含有した。
【0271】
列Fは、TFA溶液50μLを含有した。
【0272】
列Gは、アセトニトリル溶液50μLを含有した。
【0273】
列Hは、空であった。
【0274】
列A中のビーズおよび緩衝液を予め混合し、3のコレクトカウント(磁気ビーズを集めるために、磁気プローブが何回溶液中に入るかを示す装置のパラメータ)でビーズを収集し、放出設定を「迅速」に、洗浄設定を中に、および20秒の洗浄時間に設定して、Tris緩衝液中での洗浄のために、列Bに移した。ビーズ洗浄工程が終了したら、3のコレクトカウントでビーズを収集し、試料を結合するために、列Cに移した。ビーズの放出設定は迅速である。試料結合は、「遅い」設定、5分の結合時間で行う。結合工程の終了時に、3のコレクトカウントでビーズを集める。放出設定が「迅速」、洗浄設定が「中」、20秒の洗浄時間での第一の洗浄工程のために、収集されたビーズを列Dに移す。第一の洗浄工程の終了時に、3のコレクトカウントでビーズを集める。放出設定が「迅速」、洗浄設定が「中」、20秒の洗浄時間での第二の洗浄工程のために、収集されたビーズを列Eに移す。第二の洗浄工程の終了時に、3のコレクトカウントでビーズを集める。放出設定が「迅速」、溶出設定が「迅速」、2分の溶出時間でのTFA溶液中における溶出のために、収集されたビーズを列Fに移す。TFA溶出工程の終了時に、3のコレクトカウントでビーズを集める。このTFA溶出液を収集し、質量分析によって分析した。放出設定が「迅速」、溶出設定が「迅速」、2分の溶出時間でのアセトニトリル溶液中における溶出のために、収集されたビーズを列Gに移す。溶出後、3のコレクトカウントでビーズを除去し、列A中に廃棄した。アセトニトリル(AcN)溶出液を収集し、質量分析によって分析した。
【0275】
全ての試料は2つ組みで実施したが、系統的誤差を避けるために、同じプレート上では実施しなかった。溶出された試料を手動で吸引し、自動化されたMALDI標的試料調製のために、96ウェルプレート中に配置した。従って、各試料は、質量スペクトル分析のための2つの溶出液を与えた。
【0276】
MS検査の前に、MALDI標的を調製するためにCLINPROTロボット(Bruker Daltonics Inc., Billerica, MA)を使用した。簡潔に述べると、この過程は、溶出された血清試料を含有する試料プレートおよびMALDIマトリックス溶液(70%アセトニトリル中の10mg/mLシナピン酸)を含有するバイアルを、ロボット上の指定された位置に搭載することを含んだ。スポット付与操作を含有するファイルが搭載され、ロボットを調節するコンピュータから開始した。この場合には、スポット付与操作は、マトリックス溶液5μLを吸引すること、マトリックスプレート中にこれを分配すること、続いて、試料5μLを分配することを含んだ。試料とマトリックスの事前混合は、混合物5μLを吸引し、マトリックスプレート中にこれを数回分配することによって行った。事前混合後、混合物5μLを吸引し、アンカーチップ標的(Bruker Daltonics Inc., Billerica, MA)上の4つの連続するスポット上に、0.5μLを堆積させた。残りの溶液3μLは、廃棄容器中に廃棄した。必要とされる以上の試料を吸引することによって、アンカーチップ標的上への試料の堆積中に、脱落したスポットをもたらし得る使い捨て可能チップ中での気泡の形成が最少化された。
【0277】
B.C8磁気ビーズ疎水性相互作用クロマトグラフィー(C8MB−HIC)による試料の調製
血清試料をSOLB緩衝液と混合し、実施例5Aに記載されているように、フィルターで清澄化した。100MB−HIC8として知られるCLINPROT精製キット(Bruker Daltonics Inc., Billerica, MA)を用いて、96ウェルプレートKingFisher(R)上で、自動化された試料調製を行った。キットは、C8磁気ビーズ、結合溶液および洗浄溶液を含む。別段の記載がなければ、他の全ての試薬はSigmaChem.Co.から購入した。試薬および試料は、以下のようにして、96ウェルプレート中に設定した。
【0278】
列Aは、BrukerのC8磁気ビーズ20μLおよび脱イオン水80μLの混合物を含有した。
【0279】
列Bは、血清試料10μLと結合溶液40μLの混合物を含有した。
【0280】
列CからEは、洗浄溶液100μLを含有した。
【0281】
列Fは、70%アセトニトリル50μLを含有した(有機溶媒の蒸発を最小限に抑えるために、溶液工程の直前に添加した。)。
【0282】
列Gは、脱イオン水100μLを含有した。
【0283】
列Hは、空であった。
【0284】
列A中のビーズを事前混合し、3の「コレクトカウント」で収集し、試料を結合するために列Bに移した。ビーズ放出設定を、10秒の放出時間を用いて、「迅速」に設定した。「遅い」に設定して、試料結合を5分間行った。結合工程の終了時に、3の「コレクトカウント」でビーズを収集し、第一の洗浄工程のために、列Cに移した(放出設定=時間10秒で迅速、洗浄設定=時間20秒で中)。第一の洗浄工程後に、3の「コレクトカウント」でビーズを収集し、第一の洗浄工程と同じパラメータで、第二の洗浄工程のために、列Dに移した。第二の洗浄工程の終了時に、もう一度、ビーズを集め、前述のように、第三および最終洗浄工程のために、列Eに移した。第三の洗浄工程の終了時に、列Eから列Fへの移動工程の間、KingFisherTMを停止し、70%アセトニトリル50μLを列Fに添加した。アセトニトリルを添加した後、プロセスを再開した。溶出工程のために、列Eから収集したビーズを列Fに移した(放出設定=時間10秒で迅速、溶出設定=時間2分で迅速)。溶出工程後に、ビーズを取り除き、列G中に廃棄した。実施例5aに上述されているように、全ての試料は2つ組みで実施した。
【0285】
使用されたMALDIマトリックスに僅かな改変のみを施して、前セクションに記載されているように、MS検査の前に、MALDI標的を調製するために、CLINPROTロボット(Bruker Daltonics Inc., Billerica, MA)を使用した。この事例では、SAに代えて、HCCAを使用した(40%ACN/50%MeOH/10%水、v/v/v中の1mg/mLHCCA)。他の全てのパラメータは、同じままであった。
【0286】
C.SELDIチップを用いた試料の調製
以下の試薬を使用した。
【0287】
1.脱イオン水250mLを200mMリン酸二ナトリウム溶液152.5mLおよび200mMリン酸一ナトリウム溶液97.5mLと混合することによって調製された、100mMリン酸緩衝液、pH7.0。
【0288】
2.シナピン酸10mg/mL溶液の最終濃度を与えるために、アセトニトリルと0.4%トリフルオロ酢酸(v/v)水溶液の等容積を混合することによって調製された溶液の十分量の中にシナピン酸の秤量された量を溶解することによって調製された10mg/mLシナピン酸溶液。
【0289】
3.脱イオン水、シナピン酸およびトリフルオロ酢酸は、FlukaChemicalsから入手した。アセトニトリルは、BurdickおよびJacksonから入手した。
【0290】
8スポット構成のQ10ProteinChipアレイおよび標準的マイクロプレートと同じフットプリントを有する12×8アレイ中にアレイを保持するために使用されたBioprocessorは、Ciphergenから入手した。Q10活性表面は、四級アミン強陰イオン交換体である。チップ表面に結合されたペプチドを分析するために、Ciphergen ProteinChip System, Series 4000 Matrix Assisted Laser Desorption Ionization (MALDI)飛行時間質量分析装置を使用した。全てのCiphergen製品は、CiphergenBiosystems,Dumbarton,Californiaから入手した。
【0291】
全ての液体の移動、希釈および洗浄は、HamiltonCompany,Reno,NevadaのHamilton Microlab STARロボットピペット装置によって行った。
【0292】
血清試料を室温で融解し、穏やかな渦巻き撹拌によって混合した。試料を含有する容器を、Hamiltonピペット装置上の24位置試料固定装置中に搭載した。合計96試料とともに4つの試料固定装置を搭載した。Q10チップを保持する2つのBioprocessor(合計192のスポット)を、Hamiltonピペット装置のデッキ上に置いた。100mMリン酸緩衝液および脱イオン水を加えた容器を、Hamitlonピペット装置上に搭載した。使い捨て用のピペットチップも、装置のデッキ上に置いた。
【0293】
全ての試料処理は、完全に自動化された。Hamitonピペット装置のデッキ上のマイクロプレートの2つの別個のウェル中に、血清5μLをリン酸緩衝液45μLと混合することによって、2つの別個の分取試料中に、各試料を1から10倍希釈した。各スポットをリン酸緩衝液の2つの150μL分取試料へ各スポットを曝露することによって、Q10チップを活性化した。各添加後に5分間、緩衝液に表面を活性化させた。第二の分取試料を各スポットから吸引した後、希釈された血清25μLを各スポットに添加し、室温で30分間温置した。Q10チップのスポット上に配置された各希釈から得られた単一の分取試料を用いて、各試料を2回希釈した。希釈された血清の吸引後、リン酸緩衝液150μLで4回各スポットを洗浄し、最後に、脱イオン水150μLで洗浄した。処理されたチップを風乾し、シナピン酸で処理し、Ciphergen4000中でのMALDIプロセスを可能とするために、マトリックスを使用した。96ウェルマイクロプレート(各ウェルは、シナピン酸溶液で満たされている。)を装置のデッキ上に配置することによって、シナピン酸マトリックス溶液をHamitonピペット装置上に搭載した。Bioprocessor上の各スポットへ、シナピン酸マトリックス1μLを同時に添加するために、96ヘッドピペット装置を使用した。15分の乾燥期間後に、各スポットへ第二の1μL分取試料を添加し、乾燥させた。
【0294】
D.混合されたビーズ試料調製物のAutoFlexMALDI−TOFデータ取得
この装置の取得範囲は、m/z400から100,000までに設定された。2から17kDaの質量範囲に及ぶBrukerの較正標準を用いて、線形モードで、この装置を外部から較正した。高品質スペクトルを収集するために、レーザーを除き、ファジー調節をオンにして、取得は完全に自動化した。レーザー出力が実験の間に一定に保たれるように、レーザーのファジー調節を停止させた。一般に、固定されたレーザー出力で装置を較正するので、一定のレーザー出力を維持することが、精度にとって有益である。他のファジー調節設定は、2から10kDaの質量範囲中のピークの分離およびS/Nを調節した。これらの値を各取得前に最適化し、試料ごとの又はスポットごとの取得の失敗数を最小限に抑えながら、スペクトルの品質を最大化するように選択した。低分子量イオン(<400m/z)を偏向させて、マトリックスイオンでの検出装置の飽和および試料から生じたシグナルの最大化を抑制するために、偏向装置も作動させた。さらに、レーザー光線が試料表面を横切ってラスターデータ化されるので、あらゆる過剰なマトリックスを除去するために、各取得の前に、5つの加温ショット(LP閾値の約5から10%以上)を発火させた。各質量スペクトルに関して、上で設定されている分解およびS/N基準を満たした場合にのみ、600のレーザーショットを同時に添加した。質が劣る全ての他のスペクトルは無視および廃棄し、生のスペクトルの取得の間に、ベースライン補正又は円滑化アルゴリズムは使用しなかった。
【0295】
データを編纂し、比較を容易にするために、共通のm/z軸へ変換し、様々な統計的ソフトウェアパッケージによって分析することが可能なポータブルASCIIフォーマット中にエクスポートした。共通のm/z軸への転換は、社内で開発された内挿アルゴリズムを使用することによって行った。
【0296】
E.C8MB−HICのAutoFlex MALDI−TOFデータ取得
この装置の取得範囲はm/z1000から20,000までに設定させ、感度および分離能に関して最適化した。各質量スペクトルに対して、400のレーザーショットを同時添加したことを除き、他の全ての取得パラメータおよび較正法は、実施例5dに上述されているように設定した。
【0297】
F.Q−10チップのCiphergen4000SELDI−TOFデータ取得。
0から50,000Daの間の質量範囲に対して最適化されたパラメータを用いて、Ciphergen4000MALDI飛行時間質量分析装置上にBioprocessorを搭載した。イオン電流対質量/電荷(m/z)の単一スペクトルを得るために、スポット当り530の取得にわたって、データをデジタル化し、平均した。各スペクトルをサーバにエクスポートし、続いて、取得後分析のために、ASCIIファイルとして読み出した。
【0298】
G.質量スペクトルデータの関心領域分析
質量スペクトルデータは、0から50,000までの質量/電荷値および対応する強度値からなる。癌および非がんデータセットを構築した。癌データセットは、全ての癌試料から得られた質量スペクトルからなるのに対して、非癌データセットは、全ての非癌試料(正常対象および良性肺疾患を有する患者を含む。)から得られた質量スペクトルからなる。以下のことを実行するソフトウェアプログラム中に、癌および非癌データセットを別個にアップロードした。
【0299】
a)p値を与えるために、あらゆる記録された質量/電荷値において、スチューデントのt検定を決定する。
【0300】
b)癌および非癌スペクトルを各群に対して1つの代表へ平均化した。
【0301】
c)平均癌スペクトルおよび平均非癌スペクトルの強度の対数比(Log比)を決定する。
【0302】
ROIが、0.01未満のp値および0.1より大きな絶対対数比を有する10又はそれ以上の連続する質量値を有することが特定された。それぞれ、MMB−TFA、MMB−AcNおよびMB−HICデータセット中に、18、36および26のROIが見出された(表14aから14c)。さらに、表14dに示されているように、SELDIデータ中に、124のROI(<20kDa)が見出された。表14aから14dは、平均質量値が増加するように並べ替えられた本発明のRODを列記している。表中に記載されているROIは、計算された間隔(ある間隔に対する最初および最後の質量値の平均)に対する平均質量値である。平均ROI質量は、以下、単にROIと称される。各試料に対する各ROIの強度をROC分析に供した。各マーカーに対するAUCは、下表14aから14d中にも報告されている。下表14aから14cでは、計算されたROIは、罹病および非罹病群のMSプロファイルの分析から得られた。3つの異なる方法を用いて、すなわち、a)TFA(tfa)で溶出され、続いて、b)アセトニトリル(acn)で順次溶出され、c)疎水性相互作用クロマトグラフィー(hic)を使用する、混合された磁気ビーズ陰イオン/陽イオン交換クロマトグラフィーを用いて、各試料を処理した。ROIを取得する目的で、各試料調製法を独立に分析した。BrukerAutoFlexMALDI−TOF質量分析装置を用いて、全てのスペクトルを収集した。下表14dにおいて、計算されたROIは、罹病および非罹病群のMSプロファイルの分析から得られた。全ての試料は、Q−10チップを用いて処理した。全てのスペクトルは、Ciphergen4000SELDI−TOF質量分析装置を用いて収集した。
【0303】
【表14】
【0304】
【表15】
【0305】
【表16】
【0306】
【表17】
【0307】
H.ROIのファミリーの同定:高度に相関されたROIを同定するために、JMPTM統計パッケージ(SAS Institute Inc., Cary, NC)プログラムの多変量解析関数を使用した。二次元相関係数マトリックスをJMPプログラムから抽出し、MicrosoftExcelによってさらに分析した。全てのRIOに対して、相関係数が0.8を超えるROIの組を同定した。これらのRIOは一緒に、相関付けられたROIのファミリーとなる。表15は、大きなコホート中の相関するファミリー、対応するメンバーROI、メンバーROIに対するAUC値およびファミリーの他のメンバーに対する相関係数の平均を示している。従って、3449および3494の質量を有するROIは高度に相関しており、本発明において互いに置換できることが理解できる。
【0308】
【表18】
【実施例6】
【0309】
判別分析、決定木分析および主成分分析を用いたバイオマーカーの多変量解析
イムノアッセイバイオマーカーおよび関心領域に対して、多変量解析を実施した。全ての異なる分析は、JMP統計パッケージを用いて実施した。単純化のために、本明細書において、判別分析(DA)、主成分分析(PCA)および決定木(DT)は、全般的に、多変量法(MVM)と称される。PCAでは、データ中の全変動性の90%超に相当する最初の15の主成分のみが抽出されたことを述べることに価値がある。各主成分に最も寄与する1つの因子(バイオマーカー)のみを抽出するために、因子加重および/又は平等分配を使用した。因子加重の二乗は各主成分中の各因子の相対的寄与を反映するので、各主成分に対して最も寄与するマーカーを選択するための基礎として、これらの値を使用した。従って、最初の15の主成分に最も寄与する15の因子(バイオマーカー)を抽出した。DAでは、さらなるマーカーの付加が分類結果に対して影響を及ぼさなくなるまで、マーカーを選択するプロセスを実施した。一般に、DAは、5と8バイオマーカーの間を使用した。DTの場合には、約5つのバイオマーカーを有する6結節点の木を構築し、評価した。
【0310】
十分に確立されたブートストラップおよびリーブ・ワン・アウト検証法(Richard O. Duda et al.In Pattern Classification, 2nd Edition, pp. 485, Wiley−Interscience (2000))を使用することによって、バイオマーカーを評価した。定期的に出現する頑強なバイオマーカーを特定するために、10回訓練プロセスを使用した。訓練セットの少なくとも50%に出現するマーカーを頑強なバイオマーカーとして定義した。従って、本発明者らの10回訓練プロセス中で5以上の頻度を有するバイオマーカーをさらなる評価のために選択した。下表16は、各コホート中の各方法において定期的に出現したバイオマーカーを要約する。
【0311】
様々な統計法を用いてバイオマーカーを発見するためのアプローチは、候補バイオマーカーのより幅広いレパートリーを与えることによって、異なる利点を与える(図1)。DAおよびPCAなどの幾つかの方法は正規分布したデータとともに良好に機能するのに対して、ロジスティック回帰および決定木などの他のノンパラメトリック法は、離散的で、均一に分布していないデータ又は極端な変動を有するデータを用いて、よりよく機能する。マーカーは集団中において正規分布し得、又はし得ないので、多様な源(質量分析、イムノアッセイ、臨床歴など)からのマーカー(バイオマーカーおよびバイオメトリックパラメータなど)が単一のパネル中に組み合わされる場合には、このようなアプローチは理想的である。
【0312】
【表19】
【実施例7】
【0313】
分離およびスコア法(以下、「SSM」)
A.改善された分離およびスコア法(SSM)
Microsoft(C)Windosの下で実行するために、Mor他(PNAS, 102(21):7677 (2005)参照)によって記載されている分離点(カットオフ)スコアリング法を実施する双方向的ソフトウェアを記述した。このソフトウェアは、一群の試料に対するマーカー(バイオマーカーおよびバイオメトリックパラメータ)分析の結果を保存するための通常の手段であるMicrosoft(C)Excelスプレッドシートを読み取る。データは、試料の疾病を表記するためのフィールドを有する単一のワークシート上に保存し、2つのワークシート(一方は罹病試料に対するものであり、他方は非罹病試料に対するものである。)上に保存し、又は4つのワークシート(一方は罹病および非罹病試料を訓練するためのペア並びに他方は罹病および非罹病試料を検査するためのペア)上に保存することができる。最初の2つの事例では、使用者は、無作為に選択された訓練および検査対を入力から自動的に作製するためにソフトウェアを使用し得る。最後の事例では、複数のExcelファイルを一度に読み取り、単一の実行で分析し得る。
【0314】
ソフトウェアは、データ上に収集された全てのマーカーのリストを提示する。使用者は、分析中で使用されるべきこのリストから一群のマーカーを選択する。ソフトウェアは、罹病および非罹病訓練データセットから各マーカーに対して分離点(カットオフ)を自動的に計算する他、罹病群が非罹病群と比べて増加又は減少したかどうかを決定する。それぞれの単一マーカーの精度を最大化するために、分離点(カットオフ)を選択する。カットオフ(又は分離点)は、手動でも設定および調整し得る。
【0315】
全ての分析において、選択されたマーカーの組を用いて、それぞれの可能な閾値での精度、特異性および感受性が訓練セットおよび検査セットの両方に対して計算される。複数の結果を与える分析では、これらの結果は、訓練セットの精度によって順番に並べられる。
【0316】
分析の3つのモードが利用可能である。最も単純なモードは、選択されたマーカーのみを使用する標準的な結果を計算する。第二のモードは、選択されたリスト中の最も価値が低いマーカーを決定する。複数の計算(1つの計算は、単一のマーカーを除去することによって形成されるマーカーの各可能なサブセットに対するもの)を行う。最も大きな精度を有するサブセットは、サブセットを作製するために除去されたマーカーがセット全体において最も低い寄与を為すことを示唆する。これらの最初2つのモードに対する結果は、実質的に即時である。最も複雑な計算は、選択されたマーカーの全ての可能な組み合わせを調査する。2つの最も優れた結果が報告される。この最終選択肢は、多数の候補を含むことができる。従って、これは、演算的に極めて大規模であり、完了のために幾らかの時間を要し得る。使用される追加マーカーごとに、実行時間が倍増する。
【0317】
約20マーカーに対して、20の最も優れた結果の全てに、6から10のマーカーが通常存在することがしばしば見出されている。次いで、このセットから得られた2から4個の他のマーカーとこれらをマッチさせる。これは、診断パネルに対するマーカーを選択する上で幾つかの柔軟性が存在し得ることを示唆する。上位20の最も優れた結果は、一般に、精度の点で類似しているが、感受性および特異性の点で著しく異なり得る。このようにして、マーカーの可能な全ての組み合わせを観察することは、臨床的に最も有用であり得る組み合わせへの洞察を与える。
【0318】
B.重み付けされたスコアリング法
本明細書中に先述されているように、この方法は、1つのマーカーの測定を多くの潜在的スコアの1つへ変換することを含む重み付けられたスコアリング法である。スコアは、以下の方程式を用いて得られる。
【0319】
スコア=AUC*係数/(1−特異性)
【0320】
マーカーサイトケラチン19を例として使用することができる。サイトケラチン19のレベルは、小さなコホートにおいて、0.4から89.2ng/mLの範囲である。Analyze−itソフトウェアを用いて、癌が陽性であるようにサイトケラチン19のデータを用いて、ROC曲線を作成した。偽陽性率(1−特異性)をx軸上にプロットし、真正陽性率(感受性)をy軸上にプロットし、曲線上の各点に対応するサイトケラチン19の値を有するスプレッドシートを作製した。3.3ng/mLのカットオフで、特異性は90%であり、偽陽性率は10%であった。そのAUCが0.7より大きく、0.8未満であったので、このマーカーに対して、3の係数を任意に与えた(表2参照)。しかしながら、あらゆる整数を係数として使用することができる。この場合、より優れた臨床成績を示唆するより高いAUCを有するバイオマーカーとともに、増加する数字が使用される。3.3ng/mL以上のサイトケラチン19の値を有する個体に対するスコアをこのように計算した。
【0321】
スコア=AUC*係数/(1−特異性)
スコア=0.70*3/(1−0.90)
スコア=21
【0322】
3.3ng/mLを上回るサイトケラチンの何れの値に関しても、21のスコアがこのようにして与えられた。1.9より大きく、3.3より小さいサイトケラチン19の何れの値に対しても、8.4のスコアなどが得られた(下表17a参照)。
【0323】
【表20】
【0324】
スコアの値は、特異性のレベルが増加するにつれて増加する。特異性の選択された値は、何れの1つのマーカーに対しても適合させることができる。何れかの1つのマーカーに対して選択された特異性レベルの数値を適合させることができる。この方法によって、特異性がパネルへのバイオマーカーの貢献を改善することが可能となる。
【0325】
重み付けられたスコアリング法の比較は、上記実施例7A中に記載されている二分スコアリング法に対して行った。この実施例では、パネルは、8つのイムノアッセイバイオマーカー:CEA、サイトケラチン19、サイトケラチン18、CA125、CA15−3、CA19−9、プロGRPおよびSCCを構成した。これらの特異性レベルの各々におけるAUC、係数、選択された特異性レベルおよびスコアが、表17b中の以下のマーカーの各々に対して表として記載されている。これらの各カットオフおよびスコアを用いて、8つのバイオマーカーに対して、各試料の表を作成した。各試料に対する全スコアを合計し、ROC曲線中にプロットした。このROC曲線を、表18に与えられている小さなコホートカットオフ(分離点)又は大きなコホートカットオフ(分離点)の何れかを用いた二分スコアリング法を用いて作製されたROC曲線と比較した。重み付けられたスコアリング法に対するAUCの値、二分スコアリング法の大きなコホートカットオフ(分離点)および二分スコアリング法の小さなカットオフ(分離点)は、それぞれ、0.78、0.76および0.73であった。AUC値によって示されるパネルの改善された全般的成績を別にして、重み付けられたスコアリング法は、パネルに対して、より多数の可能なスコア値を与える。可能なパネルスコアがより多くなることの1つの利点は、陽性検査に対するカットオフを設定するためにより多くの選択肢が存在する(図5参照)。8バイオマーカーパネルに対して適用された二分スコアリング法は、パネル出力として、1ずつ増加しながら、0から8の範囲の値を有することができる(図5参照)。
【0326】
【表21】
【0327】
2007年6月29日にDocket番号8621.US.P1として電子出願された「Weighted Scoring Methods and Use Thereof In Screening」という名称の特許出願は、特に、重み付けされたスコアリング法について記載している。
【実施例8】
【0328】
分離およびスコア法(SSM)を用いた肺癌の予測モデル
A.イムノアッセイバイオマーカーのSSM
実施例2に論述されているように、免疫学的アッセイによって、幾つかのバイオマーカーを検出した。これらには、サイトケラチン19、CEA、CA125、SCC、プロGRP、サイトケラチン18、CA19−9およびCA15−3が含まれた。これらのデータは、SSMを用いて評価した。一緒にされたこれらのバイオマーカーは、限定された臨床的有用性を示した。良性肺疾患および肺癌を呈する小さなコホートでは、陽性の結果として4又はそれ以上の閾値を有する8バイオマーカーパネルの精度は、10の小コホート検査セットにわたって64.8%の平均精度(AUC0.69)を達成した。正常並びに良性肺疾患および肺癌を呈する大きなコホートでは、陽性の結果として4又はそれ以上の閾値を有する8バイオマーカーパネルの精度は、10の大コホート検査セットにわたって77.4%の平均(AUC0.79)を達成した。
【0329】
パック・年のバイオメトリックパラメータを含めることによって、これらのバイオマーカーの予想精度がほぼ5%向上した。従って、陽性結果として4又はそれ以上の閾値を有する8バイオマーカーおよび1バイオメトリックパラメータパネルの精度は、10の小コホート検査セットにわたって69.6%の平均(AUC0.75)を達成した。
【0330】
【表22】
【0331】
B.ROC/AUCによって選択されたバイオマーカーおよびバイオメトリックパラメータのSSM
多変量統計法を用いてバイオマーカー候補が同定された実施例6とは異なり、この事例では、バイオマーカー候補を同定するために、ROC/AUC解析を用いる単純なノンパラメトリック法を使用した。この方法を適用することによって、許容され得る臨床成績(AUC>0.6)を有する各マーカーをさらなる解析のために選択した。上位15のバイオマーカーおよびバイオメトリックパラメータ(パック・年)のみを選択し、以下、このグループは16AUC群(小および大)と称される。これらのマーカーは、下表19に列記されている。
【0332】
【表23】
【0333】
10の訓練サブセットの各々に対してSSMを使用して、16AUC小コホートマーカーの最適化された組み合わせ(パネル)を決定した。この工程は、SSMを用いて、バイオメトリックパラメータ喫煙歴(パック・年)の不存在下(表20a)および存在下(表20b)の両方で行われた。従って、15バイオマーカー(バイオメトリックパラメータであるパック・年を除く。)又は15バイオマーカーおよび1バイオメトリックパラメータ(パック・年)(16AUC)が、分離およびスコア法に対する入力変数であった。全体的な精度に基づいて、10の訓練セットの各々に対する最適なパネルを決定した。残りの未検査試料に対して各パネルを検査し、成績の統計を記録した。次いで、10のパネルを比較し、各バイオマーカーの頻度に注目した。このプロセスは、バイオメトリックであるパック・年を含めておよび除外して、2回行った。これらの2つのプロセスの結果は、下表20aおよび20bに示されている。同じく、さらなる検討のために、5以上の頻度を有する頑強なマーカーを選択した。大きなコホートに対して、このプロセスを繰り返し、結果が表20cに示されている。表20aおよび20bは、a)15AUCバイオマーカーのみ並びにb)15AUCバイオマーカーおよびバイオメトリックパラメータであるパック・年に対するマーカーの頻度を示す小コホートのSSMの結果の部分的なリストを含有する。最初の表(20a)では、5つのマーカーが5以上の頻度を有するに過ぎないことに注意。表20bでは、7つのマーカーがこの基準に適合する。表20cは、15AUCマーカーに対するマーカーの頻度を示す大きなコホートのSSMの結果の部分的リストを含有する。11のマーカーが5以上の頻度を有することに注目されたい。
【0334】
【表24】
【0335】
【表25】
【0336】
【表26】
【0337】
C.MVMによって選択されたバイオマーカーのSSM
1つの多変量法の例は、決定木解析である。決定木解析のみを用いて同定されたマーカーを統合し、SSMにおいて使用した。バイオマーカーのこの群は、16AUCと表記されるバイオマーカーの群と同様の臨床的有用性を示した。一例として、バイオメトリックパラメータであるパック・年なしで、(10のうちの)検査セット1が0.90のAUC(検査)を有し、バイオメトリックパラメータであるパック・年ありで0.91のAUC(検査)を有する。
【0338】
PCAおよびDAを用いて同定されたバイオマーカーとDTバイオマーカーを合わせて、MVM群を作製した。SSMを用いて、バイオメトリックパラメータである喫煙歴(パック・年)ありおよびなしで、14MVM群を評価した。同じく、さらなる検討のために、5以上の頻度を有する頑強なマーカーを選択した(結果は示されていない。)。上記表から明らかなように、パック・年(喫煙歴)は、頑強なマーカーとして現れるバイオマーカーの数および種類に対して影響を有する。幾つかのバイオマーカーは他のバイオマーカーに対して相乗効果又は有害効果を有し得るので、これは完全に予想できないわけではない。本発明の一態様は、モデルの予想能力を改善する上で、パネルとして協同するマーカーを発見することを含む。同様の道筋に沿って、より優れたマーカーのパネルを同定することを目指して、両方法(AUCおよびMVM)において、バイオメトリックパラメータであるパック・年と相乗的に機能することが同定されたバイオマーカーを組み合わせた(実施例8D参照)。
【0339】
大きなコホートに対して同定された多変量マーカーを、SSMを用いて評価した。同じく、さらなる検討のために、5以上の頻度を有するマーカーのみを選択した。下表21は、大きなコホートに対するSSMの結果を要約する。
【0340】
【表27】
【0341】
D.組み合わされたマーカー(AUC+MVM+パック・年)のSSM
続く工程において、両コホートに対するAUCおよびMVM両群から得られるマーカーを含有するマーカーの第二のリストを作成するために、(10の訓練セット中の)5以上の頻度を有する全てのマーカー(バイオマーカーおよびバイオメトリックパラメータ)を組み合わせた。SSMの結果から、5以上の頻度を有する特有のマーカーを小さんコホートから16、大きなコホートから15選択した。下表22は、選択されたマーカーを要約する。
【0342】
【表28】
【0343】
SSMを用いた最終評価サイクルに、マーカーの上記リストを供した。前述のように、10の訓練サブセットに対してマーカーの組み合わせを最適化し、各バイオマーカーおよびバイオメトリックパラメータの頻度を決定した。マーカーが訓練セットの少なくとも50%中に存在するという選択基準を適用することによって、小さなコホートに対して、16マーカーのうち13を選択し、大きなコホートに対して、15マーカーのうち9を選択した。
【0344】
【表29】
【0345】
マーカーのレベルが最適化されるので、各マーカーに対して、分類に対する最高の精度に関して各訓練データセットを評価することによって、分離点(カットオフ)を決定した。小さなコホートにおいて使用された上位8つの高頻度マーカーに対する分離点(カットオフ)が、以下に列記されている。
【0346】
【表30】
【0347】
表23bは、平均(Ave)分離点(それぞれ、所定のカットオフ)とともに、上位8つの高頻度マーカーのリストを示している。各分離点(カットオフ)に対する標準偏差も含まれている(Stdev)。分離点(カットオフ)に対する対照群の位置が、左から二番目の列に記されている。一例として、サイトケラチン19では、正常群又は対照群(非癌)は、1.89の分離点(カットオフ)以下である。
【実施例9】
【0348】
予想モデルの検証
小さなコホートに対する13バイオマーカーおよびバイオメトリックパラメータのリストのサブセット(上記表23a参照)は、優れた臨床的有用性を与える。例えば、分離およびスコア法において、パネルとして一緒に使用された上位8つの高頻度バイオマーカーおよびバイオメトリックパラメータは、検査サブセット1に対して、0.90のAUCを有する(上記表23b参照)。
【0349】
10の無作為な検査セットを用いて、7マーカーパネル(マーカー1から7、表23b)および8マーカーパネル(マーカー1から8、表23b)を含む予想モデルの有効性を検証した。下表24aおよび24bは、2つのモデルに対する結果を要約する。各モデル中のマーカーの数を除き、両ケースにおいて、全ての条件および計算パラメータは同一であった。
【0350】
【表31】
【0351】
表24aは、10の無作為な検査セットを用いた、7マーカーパネルの臨床成績を示している。計算において使用された7マーカーおよび平均分離点(カットオフ)を表16bに記載した。非罹病群から罹病群を分離するために、3の閾値を使用した。このモデルに対する平均AUCは0.90であり、これは、83.9%の平均精度並びに、それぞれ、79.1%および89.4%の感受性および特異性に対応する。
【0352】
【表32】
【0353】
表24bは、10の無作為な検査セットを用いた、8マーカーパネルの臨床成績を示している。計算において使用された8マーカーおよび平均分離点(カットオフ)を表16bに記載した。非罹病群から罹病群を分離するために、3の閾値(所定の合計スコア)を使用した。このモデルに対する平均AUCは0.91であり、これは、84.1%の平均精度並びに、それぞれ、91.5%および71.5%の感受性および特異性に対応する。
【0354】
表24aと24bの比較は、AUCおよび精度の観点で両モデルが同等であり、感受性および特異性のみが異なっていることを示す。表24aから明らかなように、7マーカーパネルは、より大きな特異性を示す(89.4%対75.1%)。これに対して、8マーカーパネルは、これらの平均値(Ave)から判断した場合、より優れた感受性(91.5%対79.1%)を示す。分類の精度を最大化する閾値(又は所定の合計スコア)が選択されたこと(ROC曲線のAUCを最大化することと似ている。)に留意すべきである。従って、選択された3の閾値(所定の合計スコア)は、精度を最大化したのみならず、モデルの感受性および特異性の間で最良のバランスを与えた。実際に、このことが意味するのは、このモデル中の7つのマーカー候補のうち3以下(又は第二のモデルでは、8つのうち3つ以下)に対して正常個体が陽性結果を示せば、この個体は、肺癌を発症する「リスク」が低いと考えられる。設定閾値(又は所定の合計スコア)より大きなスコア(合計スコア)を有する個体は、より大きなリスクを有すると考えられ、さらなる検査又は追跡措置の候補となる。モデルの閾値(すなわち、所定の合計スコア)は、(精度を犠牲にして)モデルの感受性又は特異性を最大化するために、増加又は減少させ得ることに留意すべきである。様々な診断上の問題および/又はリスクを有する集団に対処するためにモデルを調整することができる(例えば、正常個体を症候性個体および/又は無症候性(asymtomatic)個体と区別する。)ので、この柔軟性は有利である。
【0355】
様々な予想モデルが、下表25aおよび25bに要約されている。各予想モデルに対して、モデルを構成するバイオマーカーおよびバイオメトリックパラメータが、10の検査セットにわたって、対応する標準偏差(カッコ内に記載)とともに、閾値(すなわち、所定の合計スコア)、平均AUC、精度、感受性および特異性と一緒に記されている。上に概説されている8マーカーパネルは混合モデル2であり、上に概説されている7マーカーパネルは混合モデル3である。混合モデル1Aおよび混合モデル1Bは、同じマーカーを含有する。混合モデル1Aと混合モデル1B間の唯一の差は、閾値(すなわち、所定の合計スコア)である。同様に、混合モデル10Aおよび混合モデル10Bは、同じマーカーを含有する。混合モデル10Aと混合モデル10B間の唯一の差は、閾値(すなわち、所定の合計スコア)である。
【0356】
【表33】
【0357】
【表34】
【0358】
同様に、大きなコホートに関して、様々な予想モデルを全体的な精度、感受性又は特異性に関して最適化することができる。4つの候補モデルが、下表26に要約されている。
【0359】
【表35】
【0360】
同様に、サイクリンコホート(測定された抗サイクリンE2タンパク質抗体および抗サイクリンE2ペプチド抗体を有する個体のサブセット)に対する予想モデルが、下表27aおよび27bに要約されている。
【0361】
【表36】
【0362】
【表37】
【0363】
同様に、自己抗体アッセイを用いた予想モデルが、下表28に要約されている。
【0364】
【表38】
【0365】
検証コホートに対して、これらのモデルの5つを使用した。下表29は、独立コホート、小コホートおよび検証コホートに対する予想モデルの各々の臨床成績を要約している。
【0366】
【表39】
【実施例10】
【0367】
バイオマーカーの同定
A.HPLC分画
表22中のMSバイオマーカー候補を特定するために、標準的なプロトコールを用いる逆相HPLCによって、プールされた血清試料および/又は個別の血清試料をまず分画することが必要であった。ゲル電気泳動およびMS分析に対して十分な材料を得るには、複数の分画サイクルが必要であった。MALDI−TOFMSによって、各画分の特性を決定し、目的ピークを含有する画分を一緒にプールし、speedvac中で濃縮した。全ての他のバイオマーカーの候補を上述のように処理した。
【0368】
図2は、濃縮前および後のバイオマーカー候補(pub11597)を示している。最初の試料中の11kDaのバイオマーカー候補は、極めて低濃度であることに注目されたい。濃縮後、強度はより高くなるが、試料は分析に十分な純度ではなく、目的のバイオマーカーを単離するために、SDS−PAGEによるさらなる分離が必要であった。
【0369】
B.ゲル内消化およびLC−MS/MS分析
濃縮後、候補バイオマーカーに対応する分子量を有する所望のタンパク質/ペプチドを単離するために、候補バイオマーカーを含有する画分をSDS−PAGEに供した。製造業者によって提供された標準的な方法を用いて、ゲル電気泳動(SDS−PAGE)を実施した。要約すれば、操作は、候補バイオマーカーと分子量公知の標準タンパク質を含有する試料を、図3に示されているように、同じゲル中の異なるウェル中に搭載することを含んだ。標準タンパク質の移動距離を「未知の」試料の移動距離と比較することによって、所望の分子量を有するバンドを同定し、ゲルから切り出した。
【0370】
次いで、WatersMassPREPTMステーションを用いて、切り出されたゲルバンドを自動化されたゲル内トリプシン消化に供した。続いて、消化された試料をゲルから抽出し、オンライン逆相ESI−LC−MS/MSに供した。次いで、生成物イオンのスペクトルをデータベース検索のために使用した。可能な場合には、同定されたタンパク質を商業的に入手し、先述のように、SDS−PAGEおよびゲル内消化に供した。2つの試料間でのゲル電気泳動、MS/MSの結果およびデータベース検索における良好な一致は、バイオマーカーが正しく同定されたというさらなる証拠であった。図3から明らかなように、市販のヒト血清アミロイドA(HSAA)と分画された試料中の11.5kDaのバイオマーカー候補の間には、良好な一致が存在する。MS/MS分析およびデータベース検索は、両試料が同じタンパク質であることを確認した。図4は、候補バイオマーカーPub11597のMS/MSスペクトルを示している。bおよびyイオンから得られたアミノ酸配列には、各パネルの上部に注釈が付されている。バイオマーカー候補は、ヒト血清アミロイドA(HSAA)タンパク質の断片と同定された。
【0371】
消化に適していない小さな候補バイオマーカーは、配列情報およびタンパク質IDを得るために、ESI−q−TOFおよび/又はMALDI−TOF−TOF断片化後に、デノボ配列決定およびデータベース検索(BLAST)に供された。
【0372】
C.データベース検索およびタンパク質ID
バイオマーカーの候補を完全に性質決定するために、バイオマーカーが由来したタンパク質を同定することが不可欠であった。未知のタンパク質の同定には、ゲル内消化に続く、トリプシン断片の直列質量分析法が含まれた。源タンパク質を同定するために、MS/MSプロセスから得られた生成物イオンを、Swiss−Protタンパク質データベースに対して検索した。低分子量を有するバイオマーカー候補に関しては、直列質量分析後のデノボ配列決定およびデータベース検索が、源タンパク質を同定するために選択した方法であった。検索は、ホモ・サピエンスのゲノムのみを検討し、前駆体イオンに対する質量精度は±1.2Daおよび生成物イオンに対する質量精度は±0.8Da(MS/MS)であった。トリプシンに関しては、1つの喪失した切断のみが許容された。データベース検索に関して許容された唯2つの可変的修飾は、カルバミドメチル化(C)および酸化(M)であった。最終タンパク質IDは、Mascot検索エンジンの結果を編纂し、関連するMSおよびMS/MSスペクトルを手動で解釈した後に帰属させた。結果の精度は、反復測定によって確認した。
【0373】
【表40】
【0374】
上記表30は、タンパク質IDとともに、様々な候補バイオマーカーの源タンパク質を与える。マーカーは、ゲル内消化およびLC−MS/MSおよび/又はデノボ配列決定によって同定された。観察された断片のアミノ酸配列のみが示されており、記されている場合、平均MWはPTMを含むことに注意されたい。受付番号はSwiss−Protデータベースから取得され、参考として挙げられているに過ぎない。TFA9133がグリコシル化された部分からシアル酸を喪失した(−291.3Da)ことを除き、ACN9459およびTFA9133は同じタンパク質断片であることに注目するのは興味深い。ACN9459およびTFA9133は何れも、アポリポタンパク質CIIIの変形物として同定された。本発明者らの発見は、このタンパク質の公表されている公知の配列および分子量と一致する(Bondarenko et al, J. Lipid Research.40:543−555 (1999))。Pub4789は、α−1−アンチトリプシンタンパク質と同定された。生成物イオンスペクトルの詳細な調査は、表30中に示されている部位にKからEへの置換が存在し得ることを示唆する。質量精度の不明確さによって、帰属が妨害された。さらに、上表30中のバイオマーカーは、急性期タンパク質(本明細書中において、「急性期応答物質(APR)」又は「免疫応答バイオマーカー」とも称される。)として知られている。本明細書中に先述されているように、急性期タンパク質は、タンパク質の自然免疫ファミリーの一員である。
【実施例11】
【0375】
肺癌の検出
A.ペプチド又はタンパク質に対するイムノアッセイ:上記実施例9に記載されているバイオマーカーは、イムノアッセイ技術によって検出および測定することができる。例えば、本発明のバイオマーカーを含有していることが疑われる試料中における未知の物質の自動アッセイのために、Abbott DiagnosticsのArchitectTMイムノアッセイシステムが使用される。本分野において公知であるように、このシステムは、目的のバイオマーカーに結合することができる抗体で被覆された磁性微粒子を使用する。機器制御下で、試料の一部を抗体被覆された磁気微粒子の等量並びに緩衝液、塩、界面活性剤および可溶性タンパク質を含有する試料希釈液の2倍容量と混合する。温置後、緩衝液、塩、界面活性剤および防腐剤を含む洗浄緩衝液を用いて、微粒子を洗浄する。試料希釈液の等量とともにアクリジニウム標識された連結物の分取試料を添加し、粒子を再分散する。混合物を温置し、次いで、洗浄緩衝液で洗浄する。微粒子からアクリジニウム連結物を解離させるために、硝酸および過酸化水素を含有する酸性プレトリガー中に、洗浄された粒子を再分散する。次いで、化学発光反応を惹起するために、NaOHの溶液を添加する。光増倍管によって光を測定し、標準曲線を構築するために使用されたバイオマーカーペプチドの既知量を含有する試料の系列によって発せられた光との比較によって、未知の結果を定量する。次いで、同様に処理された臨床試料中のバイオマーカーの濃度を推定するために、標準曲線を使用する。結果は、単独で、又は以下に記載されているような他のマーカーと組み合わせて使用することができる。
【0376】
B.ペプチド又はタンパク質に対する多重化されたイムノアッセイ:単一の試料から複数のバイオマーカーを検出することが必要とされる場合、多重化されたアッセイを実施するのがより経済的であり、便利であり得る。問題となる各分析物に対して、一対の特異的抗体が必要とされ、Luminex100TM分析装置上で使用するために特有に染色された微粒子が必要とされる。前記対の各捕捉抗体は、特有の微粒子上に個別に被覆される。前記対の他の抗体は、R−フィコエリトリンなどの蛍光色素体へ連結される。微粒子をプールし、約1000の特有な粒子/μLの濃度(約0.01%w/vに対応する。)になるように希釈する。希釈剤は、緩衝液、塩および界面活性剤を含有する。10のマーカーがパネル中に存在すれば、固体の合計は、約10,000粒子/μL又は約0.1%固体w/vである。連結物をプールし、それぞれ、微粒子希釈液中約1から10nMの最終濃度になるように調整する。アッセイを実施するために、分析物の1つ又はそれ以上を含有すると疑われる試料の一部を温置ウェル中に配置し、続いて、プールされた微粒子の半分容量を配置する。懸濁液を30分間温置した後、プールされた連結物溶液の半分容量を添加する。30分のさらなる温置後、塩および界面活性剤を含有する緩衝化された溶液の2倍容量を添加することによって、反応を希釈する。懸濁物を混合し、Luminex100TM装置によって、試料の約2倍の容積を分析のために吸引する。必要に応じて、各温置後に、微粒子を洗浄し、次いで、分析のために再懸濁することが可能である。各個別の粒子の蛍光を3つの波長で測定する。2つは粒子およびその会合された分析物を同定するために使用され、3つ目は粒子に結合された分析物の量を定量するために使用される。各種類の100の微粒子を測定し、各分析物に対する中央値蛍光を計算する。必要に応じて、精度の低下およびそれに伴う感受性の低下が殆どなしに、各種類の50又はそれ以下の微粒子を測定することができる。ペプチド又はタンパク質の既知量を含有する一連の試料に対して同じ分析を行い、既知濃度に対して既知試料の中央値蛍光をプロットすることによって作成された標準曲線と比較することによって、試料中の分析物の量を計算する。実施例7に記載されているような分離およびスコア法又は分離および重み付けされたスコア法などのモデルを用いて、既知の癌又は非癌試料との比較における分析物の濃度(上昇又は下降したかどうか)に基づいて、未知の試料は、癌又は非癌であると分類される。必要に応じて、分析物のパネルに対するスコア付け法として、実施例12に記載されている中央値の倍数などの他の方法を使用することが可能である。
【0377】
例えば、表18並びに分離およびスコア法の8つのイムノアッセイ(IA)パネルを用いて、患者が肺癌を有する可能性を決定するために患者を検査し得る。患者から検査試料を得た後、患者の検査試料(すなわち、血清)中の8つのバイオマーカーの各々の量を定量し、次いで、バイオマーカーの各々の量を、表18に列記されているような(すなわち、サイトケラチン19に対して使用することができる所定のカットオフは、1.89又は2.9である。)、バイオマーカーに対する対応する所定の分離点(所定のカットオフ)と比較する。その対応する所定の分離点(所定のカットオフ)より高い量を有する各バイオマーカーに対して、1のスコアを与え得る。その対応する所定の分離点(所定のカットオフ)以下の量を有する各バイオマーカーに対して、0のスコアを与え得る。次いで、患者に対する合計スコアを得るために、8つのバイオマーカーの各々に対するスコアを(すなわち、バイオマーカーのスコアの各々を一緒に加算することによって)数学的に合算する。この合計スコアがパネルスコアとなる。パネルスコアを、表25aの8IAモデルの所定の閾値(所定の合計スコア)、すなわち1と比較する。1より大きいパネルスコアは、患者に対する陽性結果である。1以下のパネルスコアは、患者に対する陰性結果である。実施例9に記載されている集団研究において、このパネルは、30%の特異性、70%の偽陽性率および90%の感受性を示した。患者に対する陽性パネルの結果は、偽陽性である70%の確率を有している。さらに、肺癌患者の90%が陽性パネルの結果を有している。従って、陽性パネルの結果を有する患者を、肺癌の兆候又は疑いに関するさらなる検査に供し得る。
【0378】
さらなる例として、再度、8IAパネルおよび重み付けされたスコア法を用いて、患者から検査試料を取得した後、患者の検査試料(すなわち、血清)中の8バイオマーカーの各々の量を定量し、次いで、バイオマーカーの各々の量を、表17b中に列記されている分離点(カットオフ)(すなわち、サイトケラチン19に対して使用することができる所定のカットオフは、1.2、1.9および3.3である。)などの所定の分離点(所定のカットオフ)と比較する。この例では、各バイオマーカーは、3つの所定の分離点(所定のカットオフ)を有する。従って、4つの可能なスコアが、各バイオマーカーに対して付与され得る。次いで、患者に対する合計スコアを得るために、8つのバイオマーカーの各々に対するスコアを(すなわち、バイオマーカーのスコアの各々を一緒に加算することによって)数学的に合算する。次いで、合計スコアがパネルスコアとなる。パネルスコアは、11.2であると計算された8IAモデルに対する所定の閾値(又は所定の合計スコア)と比較することができる。11.2より大きい患者のパネルスコアは、陽性結果である。11.2以下のパネルスコアは、陰性結果である。実施例9に記載されている集団研究において、このパネルは、34%の特異性、66%の擬陽性率および90%の感受性を示した。陽性パネルの結果は、偽陽性である66%の確率を有する。さらに、肺癌患者の90%が陽性パネルの結果を有している。従って、陽性パネルの結果を有する患者を、肺癌の兆候又は疑いに関するさらなる検査に供し得る。
【0379】
C.患者の自己抗体に対する多重化されたイムノアッセイ:臨床診断を行うために使用される一又は複数のバイオマーカーが循環自己抗体である場合には、実施例11Aおよび11Bに上述されているものと類似のアプローチを使用することができる。単一の又は少数の自己抗体が使用されるべき場合には、アッセイは、Abbott Diagnostics, Abbott Park, Illinoisから入手可能なArchitectTMイムノアッセイシステムなどの自動化された分析装置上で行うことができる。バイオマーカーに対する患者の血清の陽性又は陰性は、標準又は対照血清を用いて、検査血清によって生じたシグナルを比較することによって決定され、値がカットオフを超えていれば、患者は陽性と決定される。決定を行うために複数の自己抗体が使用される場合には、Luminex Corporation, Austin, Texasから入手可能なLuminex100TM分析装置又は関連する装置が使用される。以下の実施例12に記載されているような選択された自己抗原で被覆された、プールされた微粒子を、患者の血清(又は血漿)の希釈された分取試料に曝露する。最初の温置後、粒子を洗浄し、検出可能な標識がタグ付加されたヒトIgGに対する抗体を含む検出試薬に曝露する。第二の温置後、粒子を再度洗浄し、蛍光標識の使用によって、検出可能な試薬が検出される、検出可能な標識がビオチンであれば、蛍光標識は、抗ビオチン、アビジン又はR−フィコエリトリンに付着されたストレプトアビジンの何れかであり得る。第三の温置および洗浄(又は吸引)後、緩衝液中に粒子を再懸濁し、Luminex100TM分析装置中に導入する。非特異的結合(陰性対照)および特異的結合(陽性対照)を検査するために、対照粒子はこのプロセスを通じて存続され得る。同様に、操作的対照、例えば、抗ヒトIgGで被覆された粒子を含めることができる。患者の試料から得られた値を陰性試料と比較することによって、単一のバイオマーカーを陽性又は陰性であると決定することができる。複数の自己抗体を測定する場合、各バイオマーカーを順次測定し、患者に対する陽性又は陰性の全体的な評価に到達するために、結果を合算する。複数の結果は、上記実施例11Bに記載されている分離およびスコア法又は実施例12に記載されている中央値の倍数(MOM)などのデータ解析ツールを用いることによって、最適に組み合わせることができる。
【0380】
抗原および自己抗体の両方を各患者の試料上に流すことが所望され、抗原の濃度が自己抗体測定において使用される濃度と同等の希釈を可能にするほど十分に高ければ、全ての微粒子を1つの試薬中に組み合わせ、患者の血清又は血漿の1つの分取試料に対して検査を実施することができる。自己抗体プロトコールに対する唯一の改変は、抗ヒトIgG試薬の他に、抗原分析物の各々に対する検出可能に標識された抗体を第二の試薬中に含めなければならないということである。最後の段階で、適切なr−フィコエリトリン試薬を用いて全てを検出することができる。抗原アッセイには、高い感度が必要とされ得るので、自己抗体測定のために試料を適切に希釈することができない。この場合には、最小限に希釈された血清試料中で抗原を測定し、高度に希釈された血清試料中で自己抗体を測定する。測定の数を倍増させるが、測定の両種類はLuminex装置のファミリー上で容易に実施することが可能である。あるいは、BDBiosciences、San Jose、Californiaから入手可能なものなど、他のフローサイトメーター上で測定を行うことができる。Invitrogen、Carlsbad、CaliforniaのProtoArrayに類似するアレイへフォーマットを変更することによって、個別に調製された微粒子試薬の利便性が失われるが、技術的には実行可能である。
【0381】
D.免疫質量スペクトル分析:質量スペクトルのための試料の調製は、免疫学的方法およびクロマトグラフィー又は電気泳動法を使用することもできる。ペプチドバイオマーカーに対して特異的な抗体で被覆された超常磁性微粒子を、塩を含有する緩衝溶液中の約0.1%の濃度になるように調整する。患者の血清試料の一部を抗体で被覆された微粒子の等量および希釈液の2倍量と混合する。温置後、緩衝塩、並びに必要に応じて、塩および界面活性剤を含有する洗浄緩衝液で微粒子を洗浄する。次いで、脱イオン化水で微粒子を洗浄する。トリフルオロ酢酸を含有する水性アセトニトリルの所定容量を添加することによって、免疫精製された分析物を微粒子から溶出する。次いで、試料をシナピン酸マトリックス溶液の等量と混合し、飛行時間質量分析のためのMALDI標的へ、少量(約1から3μL)を適用する。所望のm/zでのイオン電流を、同一の様式で処理されたペプチドバイオマーカーの既知量を含有する試料に由来するイオン電流と比較する。
【0382】
イオン電流は、濃度と直接関係しており、特定のm/z値(又はROI)でのイオン電流(又は強度)は、所望であれば、濃度へ変換することができることに留意すべきである。次いで、実施例7に記載されているモデル構築アルゴリズムの何れかへの入力として、このような濃度又は強度を使用することができる。
【0383】
E.ROIに対する質量分析:患者から血液試料を取得し、血清試料を形成させるために凝血させた。SELDI質量分析のために試料を調製し、バイオプロセッサ中のタンパク質チップ上に搭載し、実施例2に記載されているように処理した。Ciphergen4000MALDI飛行時間質量分析計上にProteinChipを搭載し、実施例3のように分析した。多変量解析を用いて、受容性に関して各スペクトルを検査する。例えば、総イオン電流および(未知の試料と既知の基準集団の間の)スペクトルコントラスト角を計算する。次いで、マハラノビス距離を求める。そのマハラノビス距離が確定された臨界値を下回るスペクトルに関して、定量を行う。そのマハラノビス距離が確定された臨界値を上回るスペクトルに関しては、スペクトルをさらなる分析から除外し、試料を再度実行すべきである。判定後、質量スペクトルを標準化する。
【0384】
選択されたデータ解析モデルに適した関心領域中のイオン電流を測定することによって、得られた質量スペクトルを評価する。分析の結果に基づいて、患者は肺癌に対するリスクがあると判断され、又は肺癌を有する可能性が高いと判断され、さらなる診断処置を続行すべきである。
【0385】
分離およびスコア法を使用するために、表5中に与えられているm/z値のROI中の強度が患者に対して測定される。患者の値が、表7に与えられている平均分離点の値の癌の側にあるか又は癌でない側にあるかどうかに注目することによって、患者の結果にスコアが与えられる。分離点の癌の側にあることが明らかとなった各ROI値に対して、1のスコアが与えられる。3およびそれ以上のスコアは、患者が癌に対して上昇したリスクを有しており、さらなる診断処置を受けるべきであることを示唆する。
【実施例12】
【0386】
中央値倍数法
データ積算の中央値倍数(MoM;multiple of median)法は、バイオマーカーのパネルのスコア付けを可能とする。中央値倍数法では、正常コホート中の各バイオマーカーの中央値を求める。その特定のバイオマーカーの全ての測定を標準化するために、この中央値を使用する。MoMは、血清抗体および血清抗原の両者のレベルを解析するために使用されてきた。W.Kuttechら(Obstet Gynecol.84;811−815(1994))は、患者中の抗リン脂質抗体レベルを報告するために、MoMを使用した。さらに、G.Palomakiら(Clinc.Chem.Lab.Med.) 39:1137−1145(2001))は、血清タンパク質レベルを解析するためにMoMを使用した。従って、測定されたあらゆるバイオマーカーのレベルが正常群の中央値によって除され、中央値の倍数が得られる。これらの中央値の倍数値は、パネル中の各バイオマーカーに関して合算され(すなわち、合計又は加算され)、各試料に対してパネルMoM値又はMoMスコアが得られる。臨床目的のために、疾病の存在又はリスクを示唆するパネルMoM値に対してカットオフを決定することができる。
【0387】
MoM法の特徴は、集団中のデータの分布が保持されることである。一例として、1059人の個体(291の肺癌、387の良性肺疾患および381の健康者)において、7つの自己抗体を測定した。正常コホートに対して、7つの自己抗体測定の中央値を求め、全ての測定を中央値の倍数へ変換した。1059人の個体全員に関して、7つの中央値の倍数値を合計した。これらの1059のパネルMoM値を受信者動作特性曲線(ROC曲線;receiver−operator characteristic curve)に供した。得られた曲線が図6に示されている。最大精度によって又は98%特異性要件によって求められた分割点を用いる二分割スコアリング法から得られた曲線も、図6にプロットされている。
【実施例13】
【0388】
自己抗体ビーズアレイ
A.市販のヒトタンパク質(表31、下記参照)をLuminexTMSeroMapTMビーズ(Austin,Texas)に結合し、試薬を調製するために、各ビーズセットを合わせる。存在する全ての抗体がタンパク質に結合できる条件下で、試薬の一部をヒト血清試料に曝露させた。結合していない物質を洗浄除去し、次いで、ヒトIgGに特異的に結合する抗体に連結されたR−フィコエリトリンの蛍光性連結物へビーズを曝露させた。洗浄後、ビーズの内部色素に従って各ビーズを特定するLuminexTM100装置にビーズを通過させ、ビーズに結合された蛍光(ビーズに結合された抗体の量に対応する。)を測定した。このようにして、21のヒトタンパク質および対照用の7つの非ヒトタンパク質(ウシ血清アルブミン(BSA)および破傷風トキシン)に対する772の試料(肺癌251、正常244、良性277)の免疫応答を評価した。
【0389】
B.抗原でのLuminexSeroMapTMビーズのコーティング
本研究のためのビーズは、実施例3Bに記載されている直接法、実施例4Eに記載されている事前活性化法又はここで記載されている受動吸着によって示されるとおりに被覆した。
【0390】
LuminexSeroMapビーズ100μLに、被覆されるべきタンパク質の2.5μgに対応する適切な容量を添加し、混合物を渦巻き撹拌し、室温で暗所に放置した。90分後に、混合物を37℃に60分間配置した後、PBN/Tween1mLを添加し、混合物を渦巻き撹拌し、遠心して沈殿させた。PBN/Tween1mL中に沈降物を再懸濁し、混合物を音波処理した。ビーズを遠心して沈降させ、PBN/Tween500μL中に沈降物を再懸濁した。
【0391】
C.被覆されたビーズを用いた血清試料の検査
マイクロプレート当り80の試料を用いて、PBN中へ1:30希釈して、血清試料をマイクロプレート中に調製した。プロトコール:1.2μSuporフィルタープレートのウェルに、PBN/Tween100μLを添加した。約5分後、真空にした。ウェルが空になった時点で、プレートの底を紙タオルで吸収し、ウェル当り1XMasterMix50μLを添加した。各ウェルに、1;30試料20μLを試料プレートから添加し、次いで、最大振盪数で振盪装置上において60分間温置した。全ての液体を除去するために、真空にした。PBN/Tween100μLを添加し、全ての液体を除去するために真空にした。PBN/Tween100μLを添加し、振盪装置上に10分間配置し、次いで、全ての液体を除去するために真空にした。PBN/Tween100μLを添加し、振盪装置上に10分間配置し、全ての液体を除去するために真空にした。1:500連結物(PBN/Tween10.4mL中のRPE抗ヒトIgG20.8μL)100μLを各ウェルに添加し、ピペットで撹拌し、振盪装置上に30分間配置し、全ての液体を除去するために真空にした。PBN/Tween100μLを添加し、ピペットで撹拌し、マイクロプレートに移し、Luminex上で走行させた。
【0392】
D.自己抗体パネルの解析
a.ROC解析
各試料を用いて検査された各自己抗原に対して記録された生の結果は、中央値であった。これらの結果を受信者動作特性(ROC)解析に供し、癌を非癌群から区別するために、曲線下面積(AUC)を計算した。下表31は、各自己抗原に対するAUC値を報告する。
【0393】
【表41】
【0394】
b.スコアリング法
癌を非癌群から識別する際のバイオマーカーの複数パネルを評価するために、二分スコアリング法を使用した。下表32は、各バイオマーカーに対して使用された分離点(カットオフ)を列記する。下表33は、各パネル中の各マーカーおよび各パネルに対するAUCを特定する。
【0395】
【表42】
【0396】
c.中央値の倍数
「正常」群の中央値で除することによって、各バイオマーカーに対する生データを中央値の倍数へ変換した。各パネルに対して中央値の倍数を合計して、各試料に対する中央値の倍数のパネルを得る。これらの中央値の倍数のパネルを、受信者動作特性分析に供し、下表33aおよび33b中にAUCが報告されている。
【0397】
【表43】
【0398】
【表44】
【0399】
上記表33aおよび33b中のパネルを、バイオマーカーとして自己抗原のみと比較すると明らかなように、NY−ESO−1、p53、mapkapk3およびサイクリンE2−1ペプチドを含む4/0/0パネルは、さらに4つの自己抗原を含む8/0/0パネルと同程度に優れていた。さらに、少なくとも3つの自己抗原(すなわち、NY−ESO−1、p53およびサイクリンE2−1ペプチド)をパネル中に含めたときに、最高のAUC値が得られた。
【0400】
leave−one−out解析(上記表33b)では、中央値の倍数(MoM)および二分スコアリング法によって、同じAUCが達成された。しかしながら、MoM解析法と比べて、二分スコア法では、バイオマーカーのより大きなパネルが必要とされた。この方法(中央値の倍数)は、最も少ないバイオマーカーで、NY−ESO−1、p53およびサイクリンE2−1に対する自己抗体並びに腫瘍抗原CK19、CEA、CA125およびプロGRPを含むパネル3/4/0が達成可能な最高のAUCを与えることを明らかにした。少なくとも本実施例では、さらなるバイオマーカーを付加することによって、AUCは変化しなかった。しかしながら、二分スコア法を用いると、最高のAUCおよび最小のバイオマーカーを有するパネルは、NY−ESO−1、p53、サイクリンE2−1およびmapkapk3に対する自己抗体並びに腫瘍抗原CK19、CEA、CA125およびプロGRP並びに質量分析バイオマーカーPUB4789、Tfa2759およびACN9459を含む4/4/3であった。
【0401】
喫煙数が多い喫煙者群(20パック・年)、喫煙数が少ない喫煙者および非喫煙者群(<20パック・年)並びにパック・年歴が未知の群において、パネル4/4/0(上記表33aおよび33b)を検査した。各患者は、1つの群中のみに動員された(表34)。全ての個体が喫煙数の多い喫煙者であるか、全ての個体が喫煙数の少ない喫煙者若しくは非喫煙者であるか、又は喫煙歴が不明であるかどうかを問わず、同様に、パネルは癌を非癌から識別した(図7参照)。検査は、3つの群全てにおいて、同様に優れた成績を収め、結果が喫煙歴とは独立していることを示している。喫煙数が多いコホート中の非癌患者から癌を区別する能力は、0.84であり、喫煙数が少ないコホート又は非喫煙コホートでは0.85、喫煙歴不明のコホートでは0.88であった。
【0402】
【表45】
【0403】
診断している肺癌の段階に従って、各癌患者をグループ分けした。初期段階の肺癌を段階IおよびIIと定義した。後期段階の肺癌を段階IIIおよびIVと定義した。対照として良性肺疾患コホート又は対照として正常コホートの何れかを用いて、癌を非癌から識別する能力に関して、4/4/0パネルを検査した。各患者は、1つの群中にのみ動員された。下表35は、各群中の患者の数およびそれぞれの比較のためのAUCを特定する。
【0404】
【表46】
【0405】
4/4/0パネルおよび同様に構成された他のパネルを用いると、初期段階の肺癌および良性肺疾患の識別が著しく改善された。図8および表36aでは、正常コホートおよび良性肺疾患コホートから初期および後期段階の肺癌を識別する能力に関して、それぞれの各バイオマーカーを検査した。幾らかの能力(AUC−0.7から0.8)で、後期疾病が正常および良性から識別されたが、正常および良性からの初期段階の肺癌の識別能は、より低かった(AUC約0.5から0.7)点で、腫瘍抗原(CK19、CA19−9、CEA、CA15−3、CA125、SCC、CK18およびプロGRP)は全て、有意な段階依存性を示すことが明瞭である。
【0406】
ハプトグロビン、血清アミロイドA、C反応性タンパク質およびアポリポタンパク質CIIIを含む免疫応答マーカーは、腫瘍抗原と同様の段階依存性を示す(図8)。
【0407】
個別のバイオマーカーとしての自己抗体は、段階依存性がずっと低い。初期および後期段階の肺癌は、ほぼ等しい能力で、正常および良性から識別される。より成績が良好な自己抗原には、p53、mapkapk3、サイクリンE2−1、NY−ESO−1、HDJ1およびtmodが含まれ、0.6から0.75の範囲のAUCを有する。
【0408】
MSマーカー(4789、11597、2759およびACN9459(これらの各々はAPRである。))は、その挙動の段階依存性がより低いという点で、自己抗体と同様に振舞う。
【0409】
これらの組み合わせの能力は、図9および表36bにおいて明確となる。腫瘍抗原を免疫応答マーカーと組み合わせることによって、著しく増強された段階依存性を有し、初期段階肺癌を良性肺疾患から一貫して識別することができないパネルが得られる(AUC約0.65から0.68)。初期段階の肺癌は、AUC約0.75から0.8を有する正常なコホートから識別される。
【0410】
自己抗原バイオマーカーを免疫応答マーカーと組み合わせることによって、癌を非癌から(初期および後期段階の肺癌を正常および良性肺疾患からなど)識別する上でより大きな全般的一貫性を有するパネルが得られる(図9)。初期段階の肺癌は、約0.75から0.82のAUCで、正常および良性肺疾患から首尾よくに識別される。後期段階の疾病および正常又は良性肺疾患に対するAUCは同様であり(0.75から0.85)、腫瘍抗原を使用した場合ほどは良好でない。
【0411】
腫瘍抗原と自己抗体の組み合わせは、優れたパネルを与える。図9中に4IA+4abとして記載されている4/4/0パネルは、AUC約0.82で、初期段階肺癌を良性肺疾患から識別する。免疫応答マーカー(C反応性タンパク質、血清アミロイドA又はハプトグロビン)をさらに組み合わせることによって、ほとんど改善は見られない。実際には、4/4/0パネルへ3つの免疫応答マーカーを付加することによって、パネルの性能が実際に低下する。
【0412】
【表47】
【0413】
【表48】
【実施例14】
【0414】
チモシンβEIA(Tβ4)
チモシンβ4EIAキットは、ALPCODiagnostics(Salem, NH)から購入した。
アッセイは、製造業者の指示に従って実行した。血清試料は、希釈せずに直接使用した。正常、良性および癌患者試料を含有する118の試料の選択された群を実施した。分析物の濃度は、製造業者のプロトコール中に指示されているとおりに、既知の標準濃度の4−パラメータロジスティック曲線の適合(4PLC)から得た。全ての計算は、JMP5.0統計パッケージ中に提供されている非線形曲線フィッティングアルゴリズムを用いて行った。Tβ4アッセイに対して得られたAUCが図10に示されている。
【0415】
上に示されているように、Tβ4単独で、比較的良好に、罹患群および非罹患群を識別することができた。しかしながら、下表37に示されているように、高い特異性では、その感受性は比較的不良である(特異性=90%、感受性=53%)。ここでは、Tβ4がパネル中に含められた場合の、幾つかの好ましいマルチマーカーパネルの性能の改善を評価した。マーカーパネルの3つの異なる群(4IA(CK19、CEA、CA125およびプロGRP)、4Aab(サイクリンE2−1、MAPKAPK3、P53およびNY−ESO−1)および3APR(血清アミロイドA(pub11597)、C反応性タンパク質およびハプトグロビン(17858質量であると推測される。))を使用した。下表37は、Tβ4ありのパネルおよびTβ4なしのパネルの性能を比較する。2つの異なる特異性(HspecおよびLspec)でのAUCおよび感受性も比較した。パネルの性能を高い特異性と低い特異性で比較するために、それぞれ、Hspecは90%に設定し、Lspecは70%に設定した。
【0416】
【表49】
【0417】
上記表37から明らかなように、Tβ4なしで最良のパネルは4Aabであり、0.9のAUCであった。このパネルの感受性は、それぞれ、高い特異性および低い特異性で、約80%および90%である。しかしながら、Tβ4をこのパネルに加えると、感受性が80%から75%へ低下するので、性能は高い特異性(Hspec)で僅かに悪化する。AUCは同じのままなので、このことは、幾らかの特性を得ることによって、パネルが喪失を補い得ることを示唆する。しかしながら、4IAパネルは、高い特異性および低い特異性において、AUCおよび感受性の両方で全般的な改善を示す。このことは、このパネルの性能に対して、Tβ4が相乗効果を有することを示唆する。上記表37に示されているように、AUCは0.86から0.92まで向上し、高い特異性での感受性は約10%向上する。低い特異性において、この向上はさらに大きい(約15%)。しかしながら、Tβ4が含められたときに、3APRパネルは幾らかの改善を示すが、罹患状態と非罹患状態とを識別するための臨床的アッセイとして使用するには十分頑強でない可能性があり得る。パネルの感受性は、高い特異性および低い特異性の両方で、比較的不良である。
【0418】
従って、上記結果は、Tβ4は高い特異性と低い特異性の両方でパネルの識別力を改善するので、4IAパネルとともにTβ4を使用し得ることを示唆している。その後、このような組み合わされたパネルは、単独で使用されるパネルより有用となる。成績パラメータを注意深く検査すると、組み合わされたパネルの成績は相対的に頑強な臨床アッセイにとって十分であることが示唆される(特異性=90%、感受性=83%で、AUC=0.92)。さらに、Tβ4とパネルの一員間での相関分析は全く相関を示さず、マーカーの独立性を確認する。
【0419】
当業者は、目的を実行し、記載されている目標および利点並びにその中に内在する目標および利点を得るために、本発明が上手く適合されることを容易に理解する。本明細書中に記載されている組成物、製剤、方法、操作、処理、分子、特異的化合物は、好ましい実施形態を現在代表する、例示的なものであり、本発明の範囲を限定することを意図するものではない。本発明の範囲および精神から逸脱することなく、本明細書中に開示されている本発明に様々な置換および修飾を施し得ることが当業者に自明である。
【0420】
本明細書中に記載されている全ての特許および公報は、本発明が属する分野の当業者のレベルの指標となる。
図1
図2
図3
図4a
図4b
図4c
図4d
図5
図6
図7
図8
図9
図10
【配列表】
[この文献には参照ファイルがあります.J-PlatPatにて入手可能です(IP Forceでは現在のところ参照ファイルは掲載していません)]