【国等の委託研究の成果に係る記載事項】(出願人による申告)国立研究開発法人科学技術振興機構、先端計測分析技術・機器開発事業、産業技術力強化法第19条の適用を受ける特許出願
(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0009】
ところで、顕微鏡観察装置では、更なる高解像度での観察が行えることが望まれている。すなわち、レーザ光の集光点が極力小さいものが望まれている。しかしながら、観察対象物の内部に集光点を生成する場合、収差によって集光点が広がりピーク強度が低下し、分解能や像コントラストが低下する。その結果、良好な観察を行うことが困難となる。
【0010】
特に、液浸対物レンズを用いた顕微鏡観察装置では、観察対象物がスライドガラスとカバーガラスとの間の溶液中においてカバーガラスと接している必要があるが、観察対象物がカバーガラスと接しておらず集光位置が深くなると、大きな球面収差が発生してしまう(非特許文献2)。その結果、上記したように、集光点が広がりピーク強度が低下して、分解能や像コントラストが低下し、良好な観察を行うことが困難となる。
【0011】
そこで、本発明は、媒質に対するレーザ照射位置が深くても、レーザ光の集光度合を高めることが可能な収差補正方法、この収差補正方法を用いた顕微鏡観察方法、この収差補正方法を用いたレーザ照射方法、収差補正装置、及び、収差補正プログラムを提供することを目的としている。
【課題を解決するための手段】
【0012】
本願発明者らは、鋭意検討を重ねた結果、媒質に対するレーザ照射位置が深くなると、レーザ光を補正するための波面のPV(peak to valley)値(PV値とは波面収差の最大値と最小値との差であり、位相変調量の大きさに相当する。)が大きくなり、空間光変調器などの波面を制御する素子の性能を超えるために、収差を十分に補正できなくなることを見出した。波面を制御できる空間光変調器には、独立した画素に電圧を印加する位相変調型の空間光変調器や、膜ミラーをアクチュエータで変形させる可変鏡などがある。一般に、独立した画素に電圧を印加する位相変調型の空間光変調器で物理的に与えることの出来る位相変調範囲は2π〜6π程度である。この範囲を物理的位相変調範囲と呼ぶことにする。しかし、位相折り畳み技術(Phase wrapping)を用いることで、実効的な位相変調範囲を数十波長程度に広げることができる。位相折り畳み技術によって、広げられた実効的な位相変調範囲を実効的位相変調範囲と呼ぶことにする。位相折り畳み技術とは、位相0と2nπ(nは整数)が同値であることを利用して、物理的位相変調範囲を超える値を有する位相分布を、物理的位相変調範囲内に折りたたむ技術である。しかし、レーザ光を補正するための波面において、空間光変調器における隣接する画素間の位相変調量の差が、物理的位相変調範囲を超えると位相折り畳み技術を適用できなくなる。そのため、空間光変調器における隣接する画素間の位相変調量の差が物理的位相変調範囲を超えると、収差を補正するための波面を十分に再現しきれず、集光度合が低下し、良好な顕微鏡観察が困難であった。可変鏡などの他の空間光変調器においては、物理的位相変調範囲は独立した画素に電圧を印加する位相変調型の空間光変調器よりも大きいが、それでも変調できる位相範囲に限界があるため、レーザ照射位置が深くなると、収差を十分に補正できなくなる。なお、可変鏡の場合、空間的に連続した位相分布しか変調できず、位相折り畳み技術を適用できないため、物理的位相変調範囲が実効的位相変調範囲に等しい。
【0013】
そして、本願発明者らは、補正後のレーザ光の集光点の光軸方向の位置が、補正前の近軸光線の集光点の光軸方向の位置と補正前の最外縁光線の集光点の光軸方向の位置との間の範囲、すなわち媒質内部で縦収差が存在する範囲の間にあるように、レーザ光の収差を補正すると、収差補正のために与える波面変調のPV値が低減されることを見出した。収差補正のための波面変調のPV値が低減される結果、集光位置が深い場合においても、空間光変調器における隣接する画素間の位相変調量の差が小さくなり、位相折り畳み技術を適用できるようになる。以降では、位相折り畳みを適用する前の収差補正のための波面変調パターンを補正波面と呼び、それに位相折り畳みを適用したパターンを収差補正位相パターンと呼ぶことにする。
【0014】
そこで、本発明の収差補正方法では、光透過性を有する媒質内部にレーザ光を集光するレーザ照射装置の収差補正方法において、レーザ照射装置は、媒質内部にレーザ光を集光するための集光手段であって、当該集光手段の雰囲気媒質の屈折率が媒質の屈折率より大きい当該集光手段を備えており、媒質の屈折率
をn、媒質の入射面から集光手段
が有する焦点距離における焦点までの深さ
をd、媒質によって発生する縦収差の最大値をΔsと定義すると、レーザ光の集光点が、媒質の入射面からn×d−Δsより大きく、n×dより小さい範囲に位置するように、レーザ光の収差を補正することによって、収差を補正しないときに媒質内部で縦収差が存在する範囲の間に位置するように、レーザ光の収差を補正することを特徴とする。
【0015】
この収差補正方法によれば、レーザ光の集光点が、収差を補正しないときに媒質内部で縦収差が存在する範囲の間に位置するように、レーザ光の収差を補正するので、波面のPV値を低減することができる。その結果、位相変調量に制限がある空間光変調器を用いても、収差補正のための位相変調量を低減させることで、空間光変調器の負担を減らし、高精度な波面制御を可能とする。その結果、媒質に対するレーザ照射位置が深くても、レーザ光の集光度合を高めることができ、レーザ光のピーク強度を高めることができる。その結果、顕微鏡観察装置における分解能や像コントラストを高めることができ、良好な観察を行うことが可能となる。特に、浸液(雰囲気媒質)の屈折率が媒質の屈折率より大きい液浸レンズを用いた顕微鏡観察装置において、観察対象物である媒質がカバーガラスと接しておらず集光位置が深くなっても、レーザ光の集光度合及びピーク強度を高めることができ、その結果、分解能や像コントラストを高めることができ、良好な観察を行うことが可能となる。また、これはカバーガラスに接した観察対象物である媒質の内部を観察する場合においても有効である。
【0016】
上記した集光手段は液浸集光レンズであり、集光手段の雰囲気媒質は浸液であることが好ましい。上記したように、本発明の収差補正方法は、浸液の屈折率が媒質の屈折率より大きい液浸レンズを用いた顕微鏡観察装置に好適である。
【0017】
また、上記したレーザ照射装置は、集光手段としての集光レンズと、レーザ光の収差を補正するための空間光変調器とを備えており、上記した収差補正方法では、集光レンズの入射部に対応する空間光変調器上の任意の画素における位相変調量と、上記画素に隣接する画素における位相変調量との位相差が位相折り畳み技術を適用できる位相範囲以下であることを特徴とする。
【0018】
この構成によれば、隣接する画素間の位相差が小さくなるので、物理的位相変調範囲に限界がある空間光変調器での位相折り畳みの実現を可能にし、高精度な波面制御を可能とする。
【0019】
また、上記した収差補正方法では、補正波面の位相値が極大点及び極小点を有するように、前記レーザ光の集光点を設定することを特徴とする。
【0020】
このように、補正波面の位相値が極大点及び極小点を有するように集光点を設定することによって、補正波面のPV値を低減することが可能となる。
【0021】
本発明の顕微鏡観察方法は、レーザ光を生成する光源と、光源からのレーザ光の位相を変調するための空間光変調器と、空間光変調器からのレーザ光を観察対象物内部における観察位置に集光するための集光レンズであって、当該集光レンズの雰囲気媒質の屈折率が観察対象物の屈折率より大きい当該集光レンズとを備える顕微鏡観察装置の顕微鏡観察方法において、観察対象物内部における観察位置を設定し、観察対象物の屈折率
をn、観察対象物の入射面から集光レンズ
が有する焦点距離における焦点までの深さ
をd、観察対象物によって発生する縦収差の最大値をΔsと定義すると、観察位置が、観察対象物の入射面からn×d−Δsより大きく、n×dより小さい範囲に位置するように、観察対象物の相対移動量を設定することによって、収差を補正しないときに観察対象物内部で縦収差が存在する範囲の間に位置するように、観察対象物の相対移動量を設定し、観察位置にレーザ光が集光するように補正波面を算出して、空間光変調器に表示し、観察対象物と集光レンズとの距離が相対移動量となるように、集光位置を相対的に移動し、光源からのレーザ光を観察対象物における観察位置へ照射する。
【0022】
この顕微鏡観察方法によれば、観察位置が、収差を補正しないときに観察対象物内部で縦収差が存在する範囲の間に位置するように設定され、空間光変調器によって、この観察位置にレーザ光の集光点が位置するように、レーザ光の収差が補正されるので、波面のPV値を低減することができる。その結果、位相変調量に制限がある空間光変調器を用いても、収差補正のための位相変調量を低減させることで、空間光変調器の負担を減らし、高精度な波面制御を可能とする。その結果、観察対象物に対するレーザ照射位置が深くても、レーザ光の集光度合を高めることができ、レーザ光のピーク強度を高めることができる。その結果、分解能や像コントラストを高めることができ、良好な観察を行うことが可能となる。特に、浸液(雰囲気媒質)の屈折率が媒質の屈折率より高い液浸レンズを用いた顕微鏡観察装置において、観察対象物がカバーガラスと接しておらず観察位置が深くなっても、レーザ光の集光度合及びピーク強度を高めることができ、その結果、分解能や像コントラストを高めることができ、良好な観察を行うことが可能となる。また、これはカバーガラスに接した観察対象物である媒質の内部を観察する場合においても有効である。
【0023】
また、本発明のレーザ照射方法は、レーザ光を生成する光源と、光源からのレーザ光の位相を変調するための空間光変調器と、空間光変調器からのレーザ光を媒質内部の所定の集光位置に集光するための集光レンズであって、当該集光レンズの雰囲気媒質の屈折率が前記媒質の屈折率より大きい当該集光レンズとを備える媒質内レーザ集光装置のレーザ照射方法において、媒質内部における集光位置を設定し、媒質の屈折率
をn、媒質の入射面から集光レンズ
が有する焦点距離における焦点までの深さ
をd、媒質によって発生する縦収差の最大値をΔsと定義すると、集光位置が、媒質の入射面からn×d−Δsより大きく、n×dより小さい範囲に位置するように、媒質の相対移動量を設定することによって、収差を補正しないときに媒質内部で縦収差が存在する範囲の間に位置するように、媒質の相対移動量を設定し、集光位置にレーザ光が集光するように補正波面を算出して、空間光変調器に表示し、媒質と集光レンズとの距離が相対移動量となるように、集光位置を相対的に移動し、光源からのレーザ光を媒質における集光位置へ照射する。
【0024】
このレーザ照射方法によれば、集光位置が、収差を補正しないときに媒質内部で縦収差が存在する範囲の間に位置するように設定され、空間光変調器によって、この集光位置にレーザ光の集光点が位置するように、レーザ光の収差が補正されるので、波面のPV値を低減することができる。その結果、位相変調量に制限がある空間光変調器を用いても、収差補正のための位相変調量を低減させることで、空間光変調器の負担を減らし、高精度な波面制御を可能とする。その結果、媒質に対するレーザ照射位置が深くても、レーザ光の集光度合を高めることができ、レーザ光のピーク強度を高めることができる。その結果、顕微鏡観察装置における分解能や像コントラストを高めることができ、良好な観察を行うことが可能となる。特に、浸液(雰囲気媒質)の屈折率が媒質の屈折率より大きい液浸レンズを用いた顕微鏡観察装置において、観察対象物である媒質がカバーガラスと接しておらず集光位置が深くなっても、レーザ光の集光度合及びピーク強度を高めることができ、その結果、分解能や像コントラストを高めることができ、良好な観察を行うことが可能となる。また、これはカバーガラスに接した観察対象物である媒質の内部を観察する場合においても有効である。
【0025】
また、本発明の別の収差補正方法は、光透過性を有する媒質内部にレーザ光を集光するレーザ照射装置の収差補正方法において、レーザ照射装置は、媒質内部にレーザ光を集光するための集光手段であって、当該集光手段の雰囲気媒質の屈折率が媒質の屈折率より大きい当該集光手段を備えており、(a)媒質の屈折率
をn、媒質の入射面から集光手段
が有する焦点距離における焦点までの深さ
をd、媒質によって発生する縦収差の最大値をΔsと定義すると、レーザ光の集光点が、媒質の入射面からn×d−Δsより大きく、n×dより小さい範囲に位置するように、レーザ光の収差を補正することによって、収差を補正しないときに媒質内部で縦収差が存在する範囲の間に位置するように、レーザ光の収差を補正するための補正波面であって、媒質内部の複数の観察位置にそれぞれ対応する複数の当該補正波面と、媒質内部の複数の観察位置にそれぞれ対応する複数の媒質表面から媒質がないときの集光点の位置までの距離(媒質移動量)とを求める第1の補正波面生成ステップと、(b)複数の媒質表面から媒質がないときの集光点の位置までの距離の高次多項式近似を行うことによって第1の高次多項式を求める第1の多項式近似ステップと、(c)複数の補正波面の高次多項式近似をそれぞれ行うことによって複数の第2の高次多項式を求める第2の多項式近似ステップと、(d)複数の第2の高次多項式における同一次数項の係数からなる複数の係数列の高次多項式近似をそれぞれ行うことによって、観察位置をパラメータとする複数の第3の高次多項式を求める第3の多項式近似ステップと、(e)第1の高次多項式における複数の次数項の係数と、複数の第3の高次多項式における複数の次数項の係数とを記憶する記憶ステップと、(f)第1の高次多項式における複数の次数項の係数と、第1の高次多項式と、複数の第3の高次多項式における複数の次数項の係数及び複数の第3の高次多項式を用いて、複数の第2の高次多項式に相当する任意の観察位置の第2の高次多項式を求め、当該第2の高次多項式を用いて当該任意の観察位置の補正波面を求める第2の補正波面生成ステップと、を含むことを特徴とする。
【0026】
また、本発明の収差補正装置は、光透過性を有する媒質内部にレーザ光を集光するレーザ照射装置のための収差補正装置において、レーザ照射装置は、媒質内部にレーザ光を集光するための集光手段であって、当該集光手段の雰囲気媒質の屈折率が媒質の屈折率より大きい当該集光手段を備えており、(a)媒質の屈折率
をn、媒質の入射面から集光手段
が有する焦点距離における焦点までの深さ
をd、媒質によって発生する縦収差の最大値をΔsと定義すると、レーザ光の集光点が、媒質の入射面からn×d−Δsより大きく、n×dより小さい範囲に位置するように、レーザ光の収差を補正することによって、収差を補正しないときに媒質内部で縦収差が存在する範囲の間に位置するように、レーザ光の収差を補正するための補正波面であって、媒質内部の複数の観察位置にそれぞれ対応する複数の当該補正波面と、媒質内部の複数の観察位置にそれぞれ対応する複数の媒質表面から媒質がないときの集光点の位置までの距離(媒質移動量)とを求める第1の補正波面生成手段と、(b)複数の媒質表面から媒質がないときの集光点の位置までの距離の高次多項式近似を行うことによって第1の高次多項式を求める第1の多項式近似手段と、(c)複数の補正波面の高次多項式近似をそれぞれ行うことによって複数の第2の高次多項式を求める第2の多項式近似手段と、(d)複数の第2の高次多項式における同一次数項の係数からなる複数の係数列の高次多項式近似をそれぞれ行うことによって、観察位置をパラメータとする複数の第3の高次多項式を求める第3の多項式近似手段と、(e)第1の高次多項式における複数の次数項の係数と、複数の第3の高次多項式における複数の次数項の係数を記憶する記憶手段と、(f)第1の高次多項式における複数の次数項の係数と、第1の高次多項式と、複数の第3の高次多項式における複数の次数項の係数及び複数の第3の高次多項式を用いて、複数の第2の高次多項式に相当する任意の観察位置の第2の高次多項式を求め、当該第2の高次多項式を用いて当該任意の観察位置の補正波面を求める第2の補正波面生成手段と、を備えることを特徴とする。
【0027】
また、本発明の収差補正プログラムは、光透過性を有する媒質内部にレーザ光を集光するレーザ照射装置のための収差補正プログラムにおいて、レーザ照射装置は、媒質内部にレーザ光を集光するための集光手段であって、当該集光手段の雰囲気媒質の屈折率が媒質の屈折率より大きい当該集光手段を備えており、コンピュータを、(a)媒質の屈折率
をn、媒質の入射面から集光手段
が有する焦点距離における焦点までの深さ
を、媒質によって発生する縦収差の最大値をΔsと定義すると、レーザ光の集光点が、媒質の入射面からn×d−Δsより大きく、n×dより小さい範囲に位置するように、レーザ光の収差を補正することによって、収差を補正しないときに媒質内部で縦収差が存在する範囲の間に位置するように、レーザ光の収差を補正するための補正波面であって、媒質内部の複数の観察位置にそれぞれ対応する複数の当該補正波面と、媒質内部の複数の観察位置にそれぞれ対応する複数の媒質表面から媒質がないときの集光点の位置までの距離(媒質移動量)とを求める第1の補正波面生成手段と、(b)複数の媒質表面から媒質がないときの集光点の位置までの距離の高次多項式近似を行うことによって第1の高次多項式を求める第1の多項式近似手段と、(c)複数の補正波面の高次多項式近似をそれぞれ行うことによって複数の第2の高次多項式を求める第2の多項式近似手段と、(d)複数の第2の高次多項式における同一次数項の係数からなる複数の係数列の高次多項式近似をそれぞれ行うことによって、観察位置をパラメータとする複数の第3の高次多項式を求める第3の多項式近似手段と、(e)第1の高次多項式における複数の次数項の係数と、複数の第3の高次多項式における複数の次数項の係数を記憶する記憶手段と、(f)第1の高次多項式における複数の次数項の係数と、第1の高次多項式と、複数の第3の高次多項式における複数の次数項の係数及び複数の第3の高次多項式を用いて、複数の第2の高次多項式に相当する任意の観察位置の第2の高次多項を求め、当該第2の高次多項式を用いて当該任意の観察位置の補正波面を求める第2の補正波面生成手段と、として機能させる。
【0028】
これらの別の収差補正方法、本発明の収差補正装置及び収差補正プログラムによれば、レーザ光の集光点が、収差を補正しないときに媒質内部で縦収差が存在する範囲の間に位置するようにレーザ光の収差を補正するための補正波面を予め求め、この補正波面の高次多項式近似による近似式を用いて任意の観察位置における補正波面を求めるので、この任意の観察位置の補正波面は、レーザ光の集光点が、収差を補正しないときに媒質内部で縦収差が存在する範囲の間に位置するようにレーザ光の収差を補正することができ、波面のPV値を低減することができる。その結果、位相変調量に制限がある空間光変調器を用いても、収差補正のための位相変調量を低減させることで、空間光変調器の負担を減らし、高精度な波面制御を可能とする。その結果、媒質に対するレーザ照射位置が深くても、レーザ光の集光度合を高めることができ、レーザ光のピーク強度を高めることができる。その結果、顕微鏡観察装置における分解能や像コントラストを高めることができ、良好な観察を行うことが可能となる。特に、浸液(雰囲気媒質)の屈折率が媒質の屈折率より大きい液浸レンズを用いた顕微鏡観察装置において、観察対象物である媒質がカバーガラスと接しておらず集光位置が深くなっても、レーザ光の集光度合及びピーク強度を高めることができ、その結果、分解能や像コントラストを高めることができ、良好な観察を行うことが可能となる。また、これはカバーガラスに接した観察対象物である媒質の内部を観察する場合においても有効である。
【0029】
ここで、収差の形状や大きさは集光位置により異なるので、観察位置を変更する観察では、その都度、補正波面を求め直す必要があり、その算出時間が大きかった。例えば、レーザ光の集光点が、収差を補正しないときに媒質内部で縦収差が存在する範囲の間に位置するように補正波面を求めるためには、複数のパラメータに関して多重の探索を行うことによって適切な値を導き出す必要があり、多大な計算時間を要していた。その結果、観察位置を変えながら観察を行う場合には、観察中の探索処理により、観察速度の低下を招いてしまうこととなる。
【0030】
しかしながら、これらの別の収差補正方法、本発明の収差補正装置及び収差補正プログラムによれば、複数の観察位置に対する補正波面を予め求め、これらの補正波面の高次多項式近似を行っているので、この近似式による演算を行うだけで適切な補正波面を求めることができる。その結果、観察位置を変更する際に補正波面を求め直す時間を短縮することができ、観察速度の低下を低減することができる。また、上記した探索処理により実際に求めた観察位置と異なる任意の観察位置に対しても、適切な補正波面を求めることができる。
【0031】
また、本発明の更に別の収差補正方法では、光透過性を有する媒質内部に照射光を集光する光照射装置の収差補正方法において、光照射装置は、媒質内部に照射光を集光するための集光手段であって、当該集光手段の雰囲気媒質の屈折率が媒質の屈折率より大きい当該集光手段を備えており、媒質の屈折率
をn、媒質の入射面から集光手段
が有する焦点距離における焦点までの深さ
をd、媒質によって発生する縦収差の最大値をΔsと定義すると、照射光の集光点が、媒質の入射面からn×d−Δsより大きく、n×dより小さい範囲に位置するように、照射光の収差を補正することによって、媒質内部に発生する収差範囲の間に位置するように、照射光の収差を補正することを特徴とする。
【0032】
この収差補正方法によれば、照射光の集光点が、媒質内部に発生する収差範囲の間に位置するように、すなわち、収差を補正しないときに媒質内部で縦収差が存在する範囲の間に位置するように、照射光の収差を補正するので、波面のPV値を低減することができる。その結果、位相変調量に制限がある空間光変調器を用いても、収差補正のための位相変調量を低減させることで、空間光変調器の負担を減らし、高精度な波面制御を可能とする。その結果、媒質に対する光照射位置が深くても、照射光の集光度合を高めることができ、レーザ光のピーク強度を高めることができる。その結果、顕微鏡観察装置における分解能や像コントラストを高めることができ、良好な観察を行うことが可能となる。特に、浸液(雰囲気媒質)の屈折率が媒質の屈折率より大きい液浸レンズを用いた顕微鏡観察装置において、観察対象物である媒質がカバーガラスと接しておらず集光位置が深くなっても、レーザ光の集光度合及びピーク強度を高めることができ、その結果、分解能や像コントラストを高めることができ、良好な観察を行うことが可能となる。また、これはカバーガラスに接した観察対象物である媒質の内部を観察する場合においても有効である。
【発明の効果】
【0033】
本発明によれば、媒質に対するレーザ照射位置が深くても、レーザ光の集光度合を高めることができる。
【発明を実施するための形態】
【0035】
以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
[第1の実施形態]
【0036】
まず、本発明の第1の実施形態に係る収差補正方法、顕微鏡観察方法及びレーザ照射方法を説明する前に、この収差補正方法を用いる顕微鏡観察装置(レーザ照射装置、レーザ集光装置)について示す。
【0037】
図1は、第1の実施形態に係る顕微鏡観察装置(レーザ照射装置、レーザ集光装置)の構成を示す図である。
図1に示す顕微鏡観察装置1は、光源10、レンズ20、ミラー30、空間光変調器(以下、SLMという。)40、液浸対物レンズ(集光手段、集光レンズ)50、リレーレンズ24B,26B、及び、観察結果を確認する観察光学系70を備えている。なお、
図1には、液浸対物レンズ50に用いられる浸液(雰囲気媒質)60Aと、溶液61A中の観察対象物61Bと、溶液61Aと観察対象物61Bとを閉じ込めるカバーガラス60B及びスライドガラス62とが示されている。
【0038】
光源10は、レーザ光を出力する。レンズ20は、例えば、コリメートレンズであり、光源10からのレーザ光を平行光に変換する。ミラー30は、レンズ20からのレーザ光をSLM40へ向けて反射させると共に、SLM40からのレーザ光を液浸対物レンズ50へ向けて反射させる。SLM40は、例えば、LCOS−SLM(Liquid Crystal on Silicon - Spatial Light Modulator)であり、ミラー30からのレーザ光の位相を変調する。液浸対物レンズ50は、ミラー30からのレーザ光を集光し、観察対象物61Bへ出射する。
【0039】
なお、本実施形態では、液浸対物レンズ50の入射瞳面とSLM40の変調面とが共役関係になるように、液浸対物レンズ50とSLM40との間にリレーレンズ24B,26Bが設けられている。このように、液浸対物レンズ50とSLM40との間に、1枚あるいは2枚以上のレンズからなるリレーレンズ系を配置し、対物レンズ50の入射瞳面とSLM40の変調面との間に結像関係を形成することにより、SLM40で変調された波面が対物レンズ50にフレネル回折を起こすことなく伝播されるため、良好な収差補正を行うことができる。また、SLM40の変調面が対物レンズ50の瞳面より大きい場合に、結像系が縮小系も兼ねると、レーザ光の光量を有効に利用することが可能であると共に、SLM40の有効領域を十分に利用することが可能となる。
【0040】
液浸対物レンズを用いた顕微鏡観察装置においては、対物レンズ50のNAを高めるために、屈折率の高い浸液60Aとカバーガラス60Bを用い、浸液60Aとカバーガラス60Bの屈折率差が等しいないしは極めて小さくなるように浸液60Aとカバーガラス60Bを選定することが望ましい。また、観察対象物61Bと溶液60Aとも同様に屈折率差が小さくなるように溶液60Aを選定することが望ましい。これにより、屈折率が極めて近いもの同士をまとめることができ、
図2のようなモデルを立てることができる。すなわち、液浸対物レンズ50から射出された光は、液浸対物レンズ50と接した屈折率n
dの浸液媒質(雰囲気媒質)60を通過し、浸液媒質60と接した屈折率nの観察対象物61の内部に集光するものと考えることができる。
【0041】
特に、液浸対物レンズ50として油浸対物レンズを用いた顕微鏡観察装置においては、浸液媒質60の屈折率n
dと観察対象物61の屈折率nとの関係はn<n
dとなる。
【0042】
図3は、集光光学系に平行平面が挿入された場合のレーザ光の光路を示す図である。
図3に示すように、集光レンズ50による集光光学系に、平行平面状の光透過性を有する媒質61が挿入された場合、焦点がOからO’へとδだけずれる。この焦点ずれの値δは、集光レンズ50に入射する光の入射高Hによって変わる。このように入射光によって集光点位置が異なることにより、球面収差が発生することとなる。このとき、近軸光線の集光位置からの光軸方向のズレ量が、縦収差表現された球面収差(longitudinal spherical aberration)となり、最外縁光線でもっとも収差が大きくなる。このときの縦収差の最大値Δsは非特許文献1の第14−2節に記載の第(14−4)式を用いて、下記(1)式で表される。
【数1】
n:集光光学系における雰囲気媒質の屈折率
n’:媒質61の屈折率
d’:媒質61の厚さ
θ
max:媒質61に対するレーザ光の入射角θであって、このレーザ光の最外縁光線の入射角(=arctan(NA))
なお、縦収差(longitudinal aberration)は、縦方向収差や縦光線収差(longitudinal ray aberration)、縦方向誤差(longitudinalerror)と表現されることもある。
【0043】
図4は、集光点が平行平面内部にある場合のレーザ光の光路を示す図である。
図4に示すように、集光レンズ50による焦点Oが平行平面状の光透過性を有する媒質61内部にある場合、焦点がOからO’へとδだけずれる。この焦点ずれの値δは、集光レンズ50に入射する光の入射高Hによって変わるので、球面収差が発生することとなる。このときの縦収差の最大値Δsは非特許文献1の第14−2節に記載の第(14−3)式を変形して、下記(2)式で表される。
【数2】
n:集光光学系における雰囲気媒質60の屈折率
n’:媒質61の屈折率
d:媒質61の移動量
θ
max:媒質61に対するレーザ光の入射角θであって、このレーザ光の最外縁光線の入射角
【0044】
ここで、集光レンズ50の焦点距離をfとすると、上記(2)式の球面収差Δsより、波面収差E(h)は、非特許文献1の第28−1節に記載の第(28−6)式を用いて、下記(3)式で表される。
【数3】
【0045】
特許文献6によれば、上記(2)式の球面収差Δsを補正する場合には、集光前の波面、すなわち、集光レンズ50に入射する波面を、上記(3)式の波面収差E(h)とは逆の波面とすればよいこととなる。第1の実施形態の顕微鏡観察装置1では、上記(3)式の波面収差E(h)とは逆の波面に位相折り畳みを適用したものをSLM40の収差補正位相パターンとすればよい。このとき、縦収差の最大値Δsは近軸光線からの集光位置のズレ量で表されているため、補正後の集光点は、おおむね補正前の近軸光線の集光位置と一致することになる。ただし、収差を近似で求めているため、正確な集光位置は求まらない。
【0046】
例えば、レンズ50の焦点距離がf=1.8mm、観察対象物61の屈折率がn’=1.33、対象物と対物レンズとの間の浸液媒質60の屈折率n=1.515、開口数がNA=1.4、レーザ波長が532nmであり、観察対象物61の移動
量をd=25μmとした場合、補正後の集光深さは近似的に観察対象物61の移動量d×屈折率(n−n’)となり、観察対象物61の表面から4.625μmの位置となる。このときの補正波面は
図5に示すような補正パターンとなり、補正波面の位相変調量が400radian以上となる。
【0047】
顕微鏡観察装置1による観察位置O’が深くなるほど、この球面収差Δsが大きくなるので、補正波面の位相変調量が膨大となり、SLM40の分解能が不足し、収差を補正することが困難となる。
【0048】
このように、波面収差を解析的に求めた上でその逆の位相分布を波面制御素子に与えて、各入射高に対する光線の集光点を、観察対象物61の移動量d×屈折率(n−n’)の位置に戻す補正では、すなわち、観察対象物61内部に発生する縦収差範囲において最も集光レンズ50側に合わせる補正では、収差を補正することが困難である。
【0049】
そこで、本発明の第1の実施形態に係る収差補正方法、顕微鏡観察方法及びレーザ照射方法では、レーザ光の集光点が観察対象物61内部に発生する収差範囲の間に位置するように、すなわち、収差を補正しないときに観察対象物61内部で縦収差が存在する範囲の間に位置するように、レーザ光の収差を補正する。換言すれば、レーザ光の集光点が、収差を補正しないときの光軸上の光線の奥行き方向の集光位置と収差を補正しないときの最外縁光線の奥行き方向の集光位置との間の範囲の間に位置するように、レーザ光の収差を補正する。そのために、第1の実施形態の収差補正方法、顕微鏡観察方法及びレーザ照射方法では、各光線の光路長差から補正波面を算出する。すなわち、特許文献6に記載のように収差を求めてその逆の位相分布を与えるのではなく、集光レンズ50に入射する光線が全て一点に集光すると仮定し、逆光線追跡によって補正波面を算出する。その際に、観察対象物61の移動量dを適切な値とすることで、補正波面のPV値を小さくし、物理的または実効的位相変調範囲が限定されている空間光変調器での深い位置での収差補正が可能になる。更に、正確な集光深さが決定できる。
【0050】
図6は、本発明の第1の実施形態に係る収差補正方法、顕微鏡観察方法及びレーザ照射方法を説明するためのレーザ光の光路を示す図である。
図6に示すように、波面補正前の光線の観察対象物61への入射角をθ、波面補正後の光線の観察対象物61への入射角をθ
1、屈折角をθ
2とすると、光軸の高さh
1、h
2、hはそれぞれ下記(4)式、(5)式、(6)式によって表される。なお、下記(4)式、(5)式、(6)式は、観察対象物61と液浸対物レンズ50の間の浸液媒質60の屈折率n
dと観察対象物61の屈折率nとの関係がn<n
dである場合である。また、
図6においては波面補正を行うことにより観察対象物61へのレーザ光の光路が波面補正前の光路と異なっている。
【数4】
【数5】
【数6】
【0051】
ここで、θ
1とθ
2はスネルの法則により一意に関係づけられ、θ
1が与えられるとθ
2を求めることが可能であり、逆にθ
2が与えられてもθ
1を求めることが可能である。また、h=h
1+h
2と、上記(4)〜(6)式により、入射角θ、θ
1、θ
2が一意的に関係づけられる。ある特定のθ
1あるいはθ
2が与えられたとき、上記(4)式及び(5)式をh=h
1+h
2に代入し、上記(6)式を解くことで容易にθを決定することができる。しかし、ある特定のθが与えられたときに、θ
1とθ
2を解析的に求めるのは困難である。ある特定のθに対するθ
1とθ
2を求めるには、探索を行えばよい。例えば、θ
1あるいはθ
2の値を徐々に変化させて、その都度θを求め、所望のθとなるθ
1あるいはθ
2が得られるまで、θ
1あるいはθ
2を変化させて探索すればよい。
【0052】
一方、観察対象物61と、観察対象物61と液浸対物レンズ50の間の浸液媒質60により生じる光路差OPD(optical path difference)は、下記(7)式により表される。
【数7】
なお、この(7)式中の「−f−(n
d−n)×d+Δ」は定数項であり、OPDの値が大きくなりすぎるのを防ぐために付加した項である。
【0053】
この(7)式から求められる補正波面のPV値を減少させるように、波面補正後の焦点ずれの値Δを適切な値とすることにより、球面収差を補正するための位相変調量が低減される。ここで、適切な焦点ずれの値Δは、例えば上記した探索によって求める。すなわち、焦点ずれの値Δを初期値n
d×d−n×dに設定し、徐々に変化させて、その都度OPD(θ)を求め、θ
max≧θ≧−θ
maxの範囲におけるOPD(θ)が所望の形状になるまでΔを徐々に変化せしめればよい。なお、d−Δは所望の集光深さであり固定値なので、探索の間はこの値が一定となるようにΔとdを変化させる。集光深さd−Δが固定値なので、Δが決定されれば、集光深さからΔを差し引くことにより観察対象物61の移動量dも決定される。固定値である集光深さ(観察位置)d−Δを以降は、Dと表記する。
【0054】
具体的には、集光レンズ50の入射部に対応するSLM40上の任意の画素における位相変調量と、この画素に隣接する画素における位相変調量との位相差が物理的位相変調量以下となるように、集光点シフト量Δ及び移動量dを決定する。なお、この補正後のレーザ光のシフト量Δは、0<Δ<Δsを満たすこととする。
【0055】
これにより、隣接する画素間の位相差が小さくなるので、物理的位相変調量に限界があるSLM40の負担を減らすことができる。
【0056】
これによって、観察対象物61の屈折率をn、観察対象物61と液浸対物レンズ50との間の浸液媒質60の屈折率
をnd、観察対象物61の移動量
をd、観察対象物61によって発生する縦収差の最大値をΔsとすると、レーザ光の集光点が、観察対象物61の入射面からn×d−Δsより大きく、n×dより小さい位置、すなわち、n×d−Δs以上n×d以下の縦収差範囲の間に位置することとなる。
【0057】
なお、上記では集光レンズ50の入射部に対応するSLM40上の任意の画素における位相変調量と、この画素に隣接する画素における位相変調量との位相差が物理的位相変調量以下となるように、集光点シフト量Δを決定したが、この探索条件は曖昧であり、複数のΔが解になりうる。探索の終了判定を容易にするため、もっと具体的な探索条件に基づいて決定しても良い。例えば、θ
max≧θ≧−θ
maxの範囲におけるOPD(θ)のPV値が最小となるようにΔを決定してもよい。あるいは、θ
max≧θ≧−θ
maxの範囲におけるOPD(θ)の微分値の絶対値が最小となるようにΔを決定してもよい。なお、例に挙げた2つの条件はともに、最初のSLM40上の任意の画素における位相変調量とこの画素に隣接する画素における位相変調量との位相差が物理的位相変調量以下となるという条件に含まれるか、ほぼ等しい条件である。なお、探索条件としては、他にも、「OPD(θ)のRMS(Root Mean Square)値が最小となる」や、「観察対象物61の移動量dが、集光深さDを変数とする特定の関数で表される」など様々なものが考えられる。
【0058】
なお、観察対象物61と液浸対物レンズ50の間の浸液媒質60の屈折率n
dと観察対象物61の屈折率nとの関係がn<n
dであるときには、下記(8)式のように全反射が発生する条件がある。
【数8】
この(8)式を満たす角度で入射してくる光は対象物61に入射しない。その角度で入射する光は対物レンズの瞳の周辺部より射出された光である。そこでOPDを求める際には、(8)を満たすようなθ
1に対応するθのOPDは無視して考える。
【0059】
例えば、集光レンズ50の焦点距離がf=1.8mm、観察対象物61の屈折率がn=1.33、浸液媒質60の屈折率がn
d=1.515、レーザ波長が630nm、開口数がNA=1.4であり、観察対象物61の移動量
をd=25μmとした場合、OPD(θ)のPV値が最小となるように探索したときのΔは16.565μmとなり、また、補正波面は
図7に示すような補正パターンとなり、補正波面の位相変調量が25radian程度に減少する。このときの集光深さは、D=8.435μmであり、従来法を用いた場合と同じ集光深さを実現しているにもかかわらず、位相変調量が少ないために、十分に収差が補正可能となる。
【0060】
なお、このときn<n
dであるため全反射が発生する。今回の条件では、上式(8)よりその領域はθ
1≧1.0714[rad]以上のときであり、これを満たす条件の領域に関してはOPDの導出を行っていない。
【0061】
図7によれば、この補正波面の位相値は、位置0mm、すなわち、光軸位置において極小点を有する。また、位置1.4mm及び−1.4mm付近に極大点を有する。このように、補正波面の位相値が極大点及び極小点を有するように集光点を設定することによって、補正波面のPV値を低減することが可能となる。
【0062】
図8は、第1の実施形態の収差補正方法、顕微鏡観察方法及びレーザ照射方法の手順を示すフローチャートである。まず、集光点を観察対象物61の表面に設定し、この位置を観察原点とする(ステップS01)。次に、観察対象物61内部における観察位置(深さ)を設定する(ステップS02)。
【0063】
次に、上記した探索条件に基づいて、観察対象物61の移動量dおよび集光点シフト量Δを設定する。これによって、観察位置が、収差を補正しないときに観察対象物61内部で縦収差が存在する範囲(観察対象物61の入射面からn×d−Δsより大きく、n×dより小さい範囲)の間に位置するように、観察対象物61の移動量dおよび集光点シフト量Δが設定される(ステップS03)。尚、移動量d及びシフト量Δは空間光変調器の最大変調量(空間光変調器の物理的位相変調範囲)以下となるように設定する。
【0064】
次に、ステップS02及びS03で設定された観察位置にレーザ光が集光するように補正波面を算出し、SLM40に表示する(ステップS04)。次に、観察対象物61を移動量dだけ移動する(ステップS05)。次に、レーザ光を照射し、観察を開始する。すると、SLM40の補正波面により、レーザ光が設定された観察位置に集光することとなる(ステップS06)。
【0065】
次に、観察終了時に、レーザ光照射を停止する(ステップS07)。他に観察位置がある場合にはステップS02に戻り、ない場合にはこの観察対象物61の観察を終了する(ステップS08)。
【0066】
尚、ステップS05においては、SLM40と集光レンズ50とで構成される集光光学系と観察対象物61との相対位置を変化させれば良いので、観察対象物61の移動の代わりに集光レンズ50を移動させても良いし、両者を移動させても良い。なお、集光レンズ50を移動させる場合において、集光レンズ50の入射瞳とSLM40とが結像関係にあるときには、集光光学系の単位で、すなわち、SLM40も共に移動する必要がある。
【0067】
また、ステップS01において、一旦観察用レーザ光を観察対象物61の表面に集光することで、観察原点を決定しているが、他の手段、例えばオートフォーカス装置などを用いて集光レンズと観察対象物との相対位置を決定してもよい。
【0068】
また、レーザ光を連続照射しても問題ない場合には、ステップS07を省略してもよい。
【0069】
さらに、上記の例では独立した画素に電圧を印加する位相変調型の空間光変調器を用いて波面形状を制御しているが、可変鏡など他の空間光変調器を用いても良い。可変鏡などの位相変調範囲が2πなどの小さい範囲に限定されない空間光変調器を用いる場合には、補正波面をそのままの形で表現できるので、位相折り畳み処理を省略できる。
【0070】
第1の実施形態の収差補正方法、顕微鏡観察方法及びレーザ照射方法によれば、レーザ光の集光点が、収差を補正しないときの媒質61内部での縦収差範囲の間に位置するように、レーザ光の収差を補正するので、波面のPV値を低減することができる。その結果、位相変調量に制限があるSLM40を用いても、補正波面のPV値を低減させることで、SLM40の負担を減らし、高精度な波面制御を可能とする。その結果、媒質61に対するレーザ照射位置が深くても、レーザ光の集光度合を高めることができ、レーザ光のピーク強度を高めることができる。その結果、顕微鏡観察装置における分解能や像コントラストを高めることができ、良好な観察を行うことが可能となる。
【0071】
このように、補正波面のPV値を低減することが可能となる位置に、レーザ光を集光する媒質(例えば、観察対象物等)61内での集光位置を移動するので、簡易な方法でSLM40の負担を減らしつつ、高精度な波面制御が可能となる。
【0072】
また、第1の実施形態の収差補正方法、顕微鏡観察方法及びレーザ照射方法によれば、集光レンズ50の入射部に対応するSLM40上の任意の画素における位相変調量と、この画素に隣接する画素における位相変調量との位相差がSLM40で位相折り畳み技術を適用できる位相範囲以下となる。したがって、物理的位相変調範囲に限界があるSLM40の負担を減らし、高精度な波面制御を可能とする。そして、特許文献6のように収差を近似で求めているものでは正確な集光位置は求まらないが、本発明では正確な集光位置を求めることができる。
【0073】
第1の実施形態の収差補正方法、顕微鏡観察方法及びレーザ照射方法を用いた顕微鏡観察装置1は、溶液中の細胞や細胞内部の観察に好適に適用可能である。特に、油浸対物レンズのように浸液の屈折率が媒質の屈折率より高い液浸レンズを用いた際には、細胞がカバーガラスに接しておらず集光位置が深いと良好な観察結果が得られなかったが、観察位置が深くなっても、空間光変調器によって収差を補正し、レーザ光の集光度合及びピーク強度を高めることができ、その結果、分解能や像コントラストを高めることができ、良好な観察を行うことが可能となる。また、これはカバーガラスに接した観察対象物の内部を観察する場合においても有効である。ただし、油浸対物レンズの場合には、n<n
dであることから全反射が起こる入射角度がある。その角度で入射する光は対物レンズの瞳の周辺部より射出された光であるため、実行的なNAが低下する。
[第2の実施形態]
【0074】
上記した第1の実施形態の収差補正方法、顕微鏡観察方法及びレーザ照射方法では、
図6に示す観察位置O’が変わると球面収差Δsが変わるので、観察位置O’を変更するたびに、上記(7)式による補正波面を求め直す必要があり、その算出時間が大きいことがある。
【0075】
具体的には、上記(7)式中のθ
1、θ
2、Δは、上記したように直接求めることが困難であり、Δの値を徐々に変化させて繰り返し補正波面を計算する探索によって求めることとなる。さらに、Δを変化させた探索の各回において、上記(7)式中のθもしくはθ
1とθ
2の値を上記した探索方法で求める必要がある。すなわち、2重の探索となっており、多大な計算時間を要することがある。
【0076】
その結果、観察位置を変えながら観察を行う場合には、観察中の探索処理により、観察レートの低下を招いてしまうことがある。
【0077】
そこで、本願発明者らは、第1の実施形態の収差補正方法を用いて、すなわち、上記探索を用いて、位相変調量が小さい収差補正波面を予め求め、この収差補正波面の多項式近似を行った近似式を用いて、任意の観察位置における補正波面を求めることによって、時間短縮を図る収差補正方法を見出した。以下では、時間短縮を図る本発明の第2の実施形態に係る収差補正方法を説明する。
【0078】
まず、本発明の第2の実施形態に係る収差補正方法を説明する前に、この収差補正方法を用いる顕微鏡観察装置(レーザ照射装置、レーザ集光装置)について示す。
【0079】
図9は、第2の実施形態に係る顕微鏡観察装置(レーザ照射装置、レーザ集光装置)の構成を示す図である。
図9に示す顕微鏡観察装置1Aは、第1の実施形態の顕微鏡観察装置1において制御部80と本発明の実施形態に係る収差補正装置90とを更に備える構成で顕微鏡観察装置1と異なっている。顕微鏡観察装置1Aのその他の構成は
図1に示す顕微鏡観察装置1と同一である。なお、本発明の思想の説明簡素化のため、
図9には、
図1に示す顕微鏡観察装置1に代えて
図2に示すモデルを示す。
【0080】
制御部80は、収差補正装置90から補正波面情報を受けて、SLM40の位相変調量を制御する。
【0081】
収差補正装置90は、例えばコンピュータであり、後述する収差補正プログラムを実行することによって、第1の補正波面生成部91と、第1の多項式近似部92と、第2の多項式近似部93と、第3の多項式近似部94と、記憶部95と、第2の補正波面生成部96と、として機能する。
【0082】
第1の補正波面生成部91は、対物レンズ50により定まる開口数NA及び焦点距離fと、観察対象物61の媒質により定まる屈折率nと、観察対象物61と液浸対物レンズ50との間の浸液媒質60により定まる屈折率n
dとを受ける。また、第1の補正波面生成部91は、観察の深さを変える観察において予め予想される観察の深さの範囲内及びこの範囲付近における複数の観察位置(集光の深さ)D
1、D
2、・・・D
p、・・・D
Pを受ける。これらの集光深さの個数と間隔は、後述する多項式近似が十分な精度で行えるように設定する。第1の補正波面生成部91は、第1の実施形態の収差補正方法に従い、上記(7)式及び上記(4)〜(6)式等を用いた探索によって、複数の観察位置D
1、D
2、・・・D
p、・・・D
Pにそれぞれ対応する複数の補正波面と複数の観察対象物61の移動量d
1、d
2、・・・d
p、・・・d
Pを求める。すなわち、第1の補正波面生成部91は、レーザ光の集光点が、収差を補正しないときに観察対象物61内部で縦収差が存在する範囲の間に位置し、補正波面の位相変調量が最小となるように、複数の観察位置D
1、D
2、・・・D
p、・・・D
Pにそれぞれ対応する複数の補正波面と複数の観察対象物61の移動量を求める。探索の際の探索条件には、1個の観察位置に対して補正波面と観察対象物61の移動量が一意に定まるような条件、例えば「補正波面のPV値が最小となるように」を適用する。このようにして求められた複数の補正波面の位相変調量Φ
1x、Φ
2x、・・・Φ
px、・・・Φ
Pxを動径位置xに関してプロットしたものを
図10に示す。
【0083】
上記したように、観察対象物61と液浸対物レンズ50の間の浸液媒質60の屈折率n
dと観察対象物61の屈折率nの関係がn<n
dであるときには、上記(8)式のように全反射が発生する条件があり、この(8)式を満たす角度で入射してくる光は観察対象物61に入射しない。その角度で入射する光は対物レンズの瞳の周辺部より射出された光である。そこで補正波面を求める際には、上記(8)式を満たすようなθ
1に対応するθを無視して補正波面を得る。
【0084】
以上の作業によって、複数の観察位置D
1、D
2、・・・D
p、・・・D
Pに対する、観察対象物61の移動量d
1、d
2、・・・d
p、・・・d
Pと、点Oから観察位置までの距離Δ
1、Δ
2、・・・Δ
p、・・・Δ
Pと、補正波面Φ
1x、Φ
2x、・・・Φ
px、・・・Φ
Pxが得られる。
【0085】
第1の多項式近似部92は、観察対象物61の移動量のデータセットd
1、d
2、・・・d
p、・・・d
Pを、所望の集光深さを変数とするM次のべき多項式で近似し、1個の第1の高次多項式を求める(下式(9))。
【数9】
ここで、Dは所望の集光深さであり、D=d−Δである。
【0086】
第2の多項式近似部93は、
図10に示す複数の補正波面の位相変調量Φ
1x、Φ
2x、・・・Φ
px、・・・Φ
Pxをそれぞれ、動径位置xを変数とするQ次のべき多項式で近似し、
図11に示すように、複数の第2の高次多項式を求める。これらの第2の高次多項式における同一次数項の係数からなる複数の係数列a
1p、a
2p、・・・a
qp、・・・a
Qp、すなわち、第1次項の係数列a
1p〜第Q次項の係数列a
Qpをそれぞれ観察対象物61の移動量d
pに対してグラフ化したものを
図12に示す。
【0087】
第3の多項式近似部94は、
図12に示す複数の第2の高次多項式における第1次項の係数列a
1p〜第Q次項a
Qpをそれぞれ、移動量dを変数とするK次のべき多項式で近似し、
図13に示すように複数の第3の高次多項式を求める。
【0088】
記憶部95は、
図13に示す複数の第3の高次多項式における複数の次数項の係数、すなわち、複数の第1次項〜第Q次項の係数b
11〜b
1Q、b
21〜b
2Q、・・・b
k1〜b
kQ、・・・b
K1〜b
KQと、第1の高次多項式における係数列c
1、c
2、・・・c
q、・・・,c
Qを
図14に示すように、係数データセットとして記憶する。
【0089】
以上の作業で記憶された係数データセットを用いて、任意の位置の集光深さに対する補正波面を生成することができる。次に、その生成方法を説明する。
【0090】
第2の補正波面生成部96は、係数データセットにおける係数c
1〜c
Qおよび第1の多項式を用いて任意の集光深さDに対する観察対象物61の移動量dを求め、さらに係数データセットにおける係数b
11〜b
1Q、b
21〜b
2Q、・・・b
k1〜b
kQ、・・・b
K1〜b
KQ、及び、
図13に示す複数の第3の高次多項式を用いて、任意の集光深さDに対する第2の高次多項式の第1次項係数A
1〜第Q次項係数A
Qを求める、すなわち、
図11に示す複数の第2の高次多項式に相当する任意の観察位置Dの第2の高次多項式を求める(下式(10))。
【数10】
第2の補正波面生成部96は、この上記(10)式の第2の高次多項式を用いて、任意の観察位置n×d
n−Δにおける補正波面を求める。
【0091】
上記では、第1〜第3の多項式に、1次から特定の次数までのべき乗項で構成される多項式を用いたが、他の構成の多項式を用いてもよい。例えば、第1〜第3の多項式に0次のべき乗項を加えてもよい。また、第2の多項式に偶数次のべき乗項で構成される多項式を用いてもよい。さらに、べき乗関数ではなく、他の関数、例えばツェルニケ多項式やガウス関数、ローレンツ関数などを含む多項式を用いてもよい。また、第2及び第3の多項式には観察対象物61の移動量dを変数として用いたが、集光深さ(観察位置)Dや、集光点シフト量Δを変数として用いてもよい。また、探索条件が「観察対象物61の移動量dが、集光深さDを変数とする特定の関数で表される」というものであった場合、当該関数を上記(9)式の代わりに用い、第1の多項式近似ステップを省略してもよい。
【0092】
次に、本実施形態の収差補正装置90の動作を説明すると共に、本発明の第2の実施形態に係る収差補正方法を説明する。
図15は、本発明の第2の実施形態に係る収差補正方法を示すフローチャートである。
【0093】
まず、対物レンズ50により定まる開口数NA及び焦点距離f、観察対象物61により定まる屈折率n、観察対象物61と液浸対物レンズ50との間の浸液媒質60により定まる屈折率n
dが入力され、観察の深さを変える観察において予め予想される観察の深さの範囲内及びこの範囲付近における複数の観察位置(集光の深さ)D
1、D
2、・・・D
p、・・・D
Pが入力されると、第1の補正波面生成部91によって、第1の実施形態の収差補正方法に従い、上記(7)式及び上記(4)〜(6)式を用いた探索によって、複数の集光深さD
1、D
2、・・・D
p、・・・D
Pにそれぞれ対応する複数の補正波面Φ
1x、Φ
2x、・・・Φ
px、・・・Φ
Pxと、複数の観察対象物61の移動量d
1、d
2、・・・d
p、・・・d
Pが求められる。すなわち、レーザ光の集光点が、収差を補正しないときに観察対象物61内部で縦収差が存在する範囲の間に位置し、補正波面のPV値が最小となるように、複数の集光深さD
1、D
2、・・・D
p、・・・D
Pにそれぞれ対応する複数の補正波面Φ
1x、Φ
2x、・・・Φ
px、・・・Φ
Pxが求められる(S11:第1の補正波面生成ステップ)。
【0094】
次に、第1の多項式近似部92によって、複数の観察対象物61の移動量d
1、d
2、・・・d
p、・・・d
Pのべき多項式近似が行われ、上記(9)式に示すように、1個の第1の高次多項式が求められる(S12:第1の多項式近似ステップ)。
【0095】
次に、第2の多項式近似部93によって、
図10に示す複数の補正波面の位相変調量Φ
1x、Φ
2x、・・・Φ
px、・・・Φ
Pxのべき多項式近似がそれぞれ行われ、
図11に示すように、複数の第2の高次多項式が求められる。これらの第1の高次多項式における同一次数項の係数からなる複数の係数列a
1p、a
2p、・・・a
qp、・・・a
Qp、すなわち、第1次項の係数列a
1p〜第Q次項の係数列a
Qpが得られる(S13:第2の多項式近似ステップ)。
【0096】
次に、第3の多項式近似部94によって、
図12に示す複数の第2の高次多項式における第1次項の係数列a
1p〜第Q次項の係数列a
Qpのべき多項式近似がそれぞれ行われ、
図13に示すように、観察対象物61の移動量dを変数とする複数の第3の高次多項式が求められる(S14:第3の多項式近似ステップ)。これらの複数の第3の高次多項式における複数の次数項の係数、すなわち、複数の第1次項〜第Q次項の係数b
11〜b
1Q、b
21〜b
2Q、・・・b
k1〜b
kQ、・・・b
K1〜b
KQ、ならびに第1の高次多項式における1項からM項までの係数c
1、c
2、・・・c
q、・・・,c
Mは、
図14に示すように、係数データセットとして記憶部95に記憶される(S15:記憶ステップ)。
【0097】
記憶された係数データセットから補正波面を算出するには、第2の補正波面生成部96において、所望の集光深さDに対する観察対象物61の移動量と、第2の多項式の係数とを求めた後、補正波面を算出する。まず、係数データセットにおける係数c
1、c
2、・・・c
q、・・・,c
Mと第1の多項式を用いて、任意の集光深さDに対する観察対象物61の移動量dを求める。次に、観察対象物61の移動量dと、係数データセットにおける係数b
11〜b
1Q、b
21〜b
2Q、・・・b
k1〜b
kQ、・・・b
K1〜b
KQ、及び、
図13に示す複数の第3の高次多項式を用いて、任意の集光深さDの第2の高次多項式の第1次項係数a
1p〜第Q次項係数a
Qpが求められる、すなわち、
図11に示す複数の第2の高次多項式に相当する任意の集光深さDの第2の高次多項式が(9)式の形で求められる。その後、この(9)式の第2の高次多項式を用いて、任意の集光深さDにおける補正波面が求められる(S16:補正波面生成ステップ)。尚、観察深さを変える際には、ステップS16を行ってその深さに対応した補正波面を生成すれば良い。
【0098】
上記した第1の補正波面生成ステップS11での探索では、「補正波面のPV値が最小となるように」という条件を用いたが、他の条件を用いることができる。ただし、1個の観察位置に対して補正波面と観察対象物61の移動量が一意に定まり、かつ隣接する画素の間の位相差が物理的位相変調量以下となるような条件である必要がある。
【0099】
次に、コンピュータを収差補正装置90として動作させるための収差補正プログラムについて説明する。
図16は、本発明の実施形態に係る収差補正プログラムの構成を、記録媒体と共に示す図である。
【0100】
図16に示すように、収差補正プログラムP100は、記録媒体100に格納されて提供される。記録媒体100としては、フロッピーディスク、CD−ROM、DVD、あるいはROM等の記録媒体、あるいは半導体メモリ等が例示される。
【0101】
図17は、記録媒体に記録されたプログラムを実行するためのコンピュータのハードウェア構成を示す図であり、
図18は、記録媒体に記憶されたプログラムを実行するためのコンピュータの斜視図である。
【0102】
図17に示すように、コンピュータ200は、フロッピーディスクドライブ装置、CD−ROMドライブ装置、DVDドライブ装置等の読取装置202と、オペレーティングシステムを常駐させた作業用メモリ(RAM)204と、記録媒体100に記憶されたプログラムを記憶するメモリ206と、ディスプレイといった表示装置208と、入力装置であるマウス210及びキーボード212と、データ等の送受を行うための通信装置214と、プログラムの実行を制御するCPU216とを備えている。コンピュータ200は、記録媒体100が読取装置202に挿入されると、読取装置202から記録媒体100に格納された収差補正プログラムP100にアクセス可能になり、当該収差補正プログラムP100によって、収差補正装置90として動作することが可能になる。
【0103】
図18に示すように、収差補正プログラムP100は、搬送波に重畳されたコンピュータデータ信号220としてネットワークを介して提供されるものであってもよい。この場合、コンピュータ200は、通信装置214によって受信した収差補正プログラムP100をメモリ206に格納し、当該収差補正プログラムP100を実行することができる。
【0104】
図16に示すように、収差補正プログラムP100は、第1の補正波面生成モジュールP10と、第1の多項式近似モジュールP20と、第2の多項式近似モジュールP30と、第2の多項式近似モジュールP40と、記憶モジュールP50と、第2の補正波面生成モジュールP60とを備えている。
【0105】
第1の補正波面生成モジュールP10、第1の多項式近似モジュールP20、第2の多項式近似モジュールP30、第2の多項式近似モジュールP40、記憶モジュールP50、及び、第2の補正波面生成モジュールP60がコンピュータに実現させる機能はそれぞれ、上述した第1の補正波面生成部91、第1の多項式近似部92、第2の多項式近似部93、第2の多項式近似部94、記憶部95、及び、第2の補正波面生成部96のうち対応要素と同様である。
【0106】
なお、本実施形態では、収差補正装置90として機能するコンピュータが顕微鏡観察装置の内部に一体的に備えられた形態を示したが、収差補正装置90として機能するコンピュータは顕微鏡観察装置1Aと別体的に外部に設けられ、コンピュータと顕微鏡観察装置との間で補正波面情報をやりとりしてもよい(
図19)。
【0107】
また、顕微鏡観察装置1Aの内部と外部とにそれぞれコンピュータ90A,90Bを備え、これらの2つのコンピュータ90A,90Bによって収差補正装置90が実現されてもよい。例えば、収差補正装置90の一部の第1の補正波面生成部91、第1の多項式近似部92、第2の多項式近似部93、第3の多項式近似部94及び記憶部95Aが外部コンピュータ90Aによって実現され、他の記憶部95B及び第2の補正波面生成部96が内部コンピュータ90Bによって実現されてもよい。これによれば、外部コンピュータ90Aと内部コンピュータ90B、すなわち、顕微鏡観察装置1Aとの間で係数データセットが、記憶媒体や通信経路などを介してやりとりされ、外部コンピュータ90Aの記憶部95Aの内容が内部コンピュータ90Bの記憶部95Bに複製される(
図20)。
【0108】
このように、第2の実施形態の収差補正方法、本実施形態の収差補正装置90及び収差補正プログラムでも、第1の実施形態の収差補正方法と同様の利点を有する。すなわち、第2の実施形態の収差補正方法、本実施形態の収差補正装置及び収差補正プログラムでも、上記したように、レーザ光の集光点が収差を補正しないときの観察対象物61内部での縦収差範囲の間に位置するようにレーザ光の収差を補正するための補正波面を予め求め、この補正波面の高次多項式近似による近似式を用いて任意の観察位置における補正波面を求めるので、この任意の観察位置の補正波面は、レーザ光の集光点が収差を補正しないときの観察対象物61内部での縦収差範囲の間に位置するようにレーザ光の収差を補正することができ、波面のPV値を低減することができる。その結果、位相変調量に制限がある空間光変調器を用いても、収差補正のための位相変調量を低減させることで、空間光変調器の負担を減らし、高精度な波面制御を可能とする。その結果、媒質に対するレーザ照射位置が深くても、レーザ光の集光度合を高めることができ、レーザ光のピーク強度を高めることができる。その結果、顕微鏡観察装置における分解能や像コントラストを高めることができ、良好な観察を行うことが可能となる。特に、浸液の屈折率が媒質の屈折率より高い液浸レンズを用いた顕微鏡観察装置において、観察対象物である媒質がカバーガラスと接しておらず集光位置が深くなっても、レーザ光の集光度合及びピーク強度を高めることができ、その結果、分解能や像コントラストを高めることができ、良好な観察を行うことが可能となる。また、これはカバーガラスに接した観察対象物である媒質の内部を観察する場合においても有効である。
【0109】
例えば、集光レンズ50の焦点距離がf=1.8mm、観察対象物61の屈折率がn=1.33、浸液媒質60の屈折率がn
d=1.515、レーザ波長が630nm、開口数がNA=1.4であり、観察対象物61の移動
量をd=20μmとした場合、OPD(θ)のPV値が最小となるように探索したときのΔは13.19μmとなり、また、補正波面は
図21に示すような補正パターンとなり、補正波面の位相変調量が20radian程度に減少する。
【0110】
更に、第2の実施形態の収差補正方法、本実施形態の収差補正装置及び収差補正プログラムによれば、複数の観察位置に対する補正波面を予め求め、これらの補正波面の高次多項式近似を行っているので、この近似式による演算を行うだけで適切な補正波面を求めることができる。その結果、観察の深さを変更する際に補正波面を求め直す時間を短縮することができ、観察レートの低下を低減することができる。また、上記した探索処理により実際に求めた観察位置と異なる任意の観察位置に対しても、適切な補正波面を求めることができる。
【0111】
なお、本発明は上記した本実施形態に限定されることなく種々の変形が可能である。例えば、本実施形態では、独立した画素に電圧を印加する位相変調型で反射型のSLM40を用いたが、独立した画素に電圧を印加する位相変調型で透過型のSLMを用いる場合であっても同様の利点を得ることができる。また、可変鏡を用いる場合であっても同様の利点を得ることができる。
【0112】
また、本実施形態では、SLM40と対物レンズ50の間にリレーレンズ24B,26Bを配置したが、SLM40と対物レンズ50の間が短いときなど伝搬による波面の変化が小さいと考えられる場合においてはリレーレンズ24B,26Bは配置しなくともよい。
【0113】
また、本実施形態では、単点観察を例示したが、本発明の思想は、観察点が複数有り、それらが3次元的に分布している多点観察にも適用可能である。例えば、2点観察では、集光位置の異なる2つのフレネルレンズパターンにそれぞれの観察深さを考慮した補正波面を位相同士で足し合わせる。得られた2点のパターンの位相をそれぞれΦ
A、Φ
Bとすると、exp(Φ
A)+exp(Φ
B) から位相のみを取り出すことで、空間光変調器のホログラムパターンが得られる。このように、空間光変調器は3次元観察において利点を有する。すなわち、入射光を変調することにより奥行き方向にも面内にも位置の異なる多数の集光点を生成することができ、単点観察を繰り返す観察に比べて、観察のスループットを向上することができる。
【0114】
この多点観察でも、本実施形態と同様に、それぞれ異なる観察深さに集光するため、それぞれの観察位置に応じた補正波面をもそれぞれ求める。このとき、上記(7)式及び上記(4)〜(6)式等を用いた探索を行い、レーザ光の集光点が観察対象物61内部に発生する縦収差範囲の間に位置し、補正波面の位相変調量が最小となるように、補正波面を求めることができるが、探索処理に多大な時間を要する。そこで、この多点観察でも、上記した収差補正装置90を用いた収差補正方法を適用することによって、観察の深さを変更する際に補正波面を求め直す時間を短縮することができ、観察レートの低下を低減することができる。
【0115】
なお、この多点観察では、上記したフレネルレンズパターンに代えてフレネルゾーンプレートパターン(0又はπの2値で構成されたもの)が用いられてもよい。また、フレネルレンズパターンにそれぞれの観察深さを考慮した補正波面を位相同士で足し合わせる際に、同一深さの平面内で多点を生成する例えばグレーティングパターンや任意のCGHパターンの位相をそれらに足し合わせてもよい。
【0116】
また、本実施形態では、顕微鏡観察装置における収差補正方法について説明したが、以下では、別の実施形態に係るレーザ照射装置及びレーザ照射方法として、レーザ走査顕微鏡の一例を示す。
【0117】
例えば、レーザ走査顕微鏡は、レーザ光の集光位置を光軸方向に垂直な方向だけでなく光軸方向に走査する。すなわち、レーザ走査顕微鏡は、測定対象物の表面だけでなく、内部にも集光点を生成する。このとき収差によって集光点が広がりピーク強度が低下し、分解能と像コントラストが低下する。このレーザ走査顕微鏡に、本実施形態の収差補正方法及びレーザ照射方法を適用すれば、位相変調量に制限のあるSLMを用いて、測定対象物の内部におけるレーザ光の集光度合を高め、深い位置においても分解能と像コントラストの高い像を計測することができる。レーザ走査顕微鏡の一種である、コンフォーカル顕微鏡や多光子励起レーザ走査顕微鏡(Multi-Photon Laser-Scanning Microscope)では、照射光の集光位置でのピーク強度が低下すると測定光強度が激減するため、特に収差補正の効果が大きい。また、レーザ走査顕微鏡のように、集光ビームを走査して像を得る撮像装置においては、SLD(Super-Luminescent diode)など波長帯域が狭く空間コヒーレンスの高い、レーザに類似した光源が用いられることがあるが、そのような光源に対してもここで記述した収差補正法及びレーザ照射方法を適用することができる。
【0118】
また、本発明の収差補正方法は、上記したレーザ走査顕微鏡の他にも様々な顕微鏡に適用可能であり、例えば、測定対象を広く照明してイメージセンサで検出を行う顕微鏡等の撮像装置にも好適に適用可能である。この種の顕微鏡では、光源としてレーザ光に限らず、非コヒーレントな光が用いられることがある。このように、非コヒーレントな光を用いる顕微鏡(光照射装置)においても、本発明の収差補正方法を適用可能である。以下では、本発明に係る光照射装置として、この種の顕微鏡の一例を示す。
【0119】
図22は、本発明の実施形態に係る光照射装置であって、測定対象を広く照明してイメージセンサで撮像を行う顕微鏡の一例を示す。
図22に示す顕微鏡1Bは、光源10B、コンデンサーレンズ20B、ミラー22B、液浸対物レンズ50、リレーレンズ24B,26B、プリズムミラー30、空間光変調器40、結像用レンズ28B、及び、カメラ(イメージセンサ)70Bを備えている。
【0120】
光源10Bは、例えば、白熱灯などの照明である。光源10Bからの光は、コンデンサーレンズ20Bによって平行光に変換され、ミラー22Bによって反射されて、観察対象物61を広く照射する。観察対象物61から発する透過及び前方散乱光は対物レンズ50に入射し、対物レンズ50から射出された光は、リレーレンズ24B,26B及びプリズムミラー30を介してSLM40上に導かれる。SLM40で反射された光は、プリズムミラー30及び結像用レンズ28Bを介してカメラ70Bへと導かれ、カメラ70Bの面上に観察対象物61の像を結ぶ。なお、この実施形態でも、対物レンズ50の入射瞳面とSLM40とが共役関係になるように、対物レンズ50とSLM40との間にリレーレンズ24B,26Bが設けられている。また、各レンズ50、24B,26B,28Bは、観察対象物61とカメラ70Bの面とが結像関係になるように配置されている。
【0121】
この実施形態の光照射装置では、観察対象物61を点の集まりと見なし、各点が2次光源となっていると考える。すなわち、観察対象物61を2次の点光源の集まりと見なす。このようにして、2次点光源の集まりである観察対象物61とカメラ70Bとの間において、本発明の収差補正方法を適用することとなる。
【0122】
各2次点光源からは球面波の光が発せられ、対物レンズ50によって概ね平面波の光に変換される。ここで、観察対象物61は水中にあるため、各2次点光源から射出された光は、浸液やカバーガラスとの間の屈折率ミスマッチによる球面収差を有することとなり、対物レンズ50から射出される光は、上記(7)式で表される波面収差を含んだ平面波になることとなる。そのため、結像用レンズ28Bによってカメラ70B上に結像される際に収差の影響を受けることになり、像の空間分解能とコントラストとが低下することになる。
【0123】
この対物レンズ50から射出される光であって、波面収差を含んだ平面波の光は、リレーレンズ24B,26BによってSLM40上に伝達される。このとき、SLM40に上記(7)式で表される位相変調を加えることによって収差を除去することができる。これにより、SLM40を射出する光は、波面収差が除去されたほぼ完全な平面波の光となる。その結果、結像用レンズ28Bによってカメラ70B上に結像する際に、収差のない結像が行われることになり、像の分解能とコントラストとを向上させることが可能となる。
【0124】
第1及び第2の実施形態のレーザ加工装置では、プリズムミラー30上方に光源があり、上方から下方に光が伝播していたが、この実施形態の光照射装置では、光の伝播方向が逆であり、対物レンズ50下方に光源があり、下方から上方に光が伝播する。古典光学の範囲では、光伝播は時間反転に対して不変なので、同じ構成であれば、光の伝播方向にかかわらず収差補正が行われることは自明である。ただし、第1及び第2の実施形態のレーザ加工装置では、集光点が光軸上にあったが、この実施形態の光照射装置では、光源10Bは光軸上以外にも存在するので、その影響について検討する。
【0125】
観察対象物61中にある2つの発光点を考える。一方の発光点から発する光は、光軸上にあるので球面収差の影響のみを受け、本発明による収差補正により良好に収差が除去される。一方、他方の発光点から発する光については、光軸上にないため、球面収差のみならず他の収差をも含むことになる。ただし、通常の顕微鏡においては観察視野が狭い。他方の発光点がその観察視野に含まれる限り、光軸からの外れ量は小さく、球面収差以外の収差は十分に小さい。したがって、他方の発光点から発せられる光についても、本発明による収差補正により、良好に収差が除去される。
【0126】
この実施形態の光照射装置では、透過照明の場合を示したが、落射照明の場合にも本発明の収差補正方法を適用できる。また、この実施形態の光照射装置では、リレーレンズ24B,26Bを用いたが、これらは省略することも可能である。その場合、SLM40と対物レンズ50とを近接せしめることが望ましい。また、この実施形態の光照射装置では、光源10Bとして白熱灯を用いたが、光源10Bには他の白色光源やレーザ、SLD、LEDなどを用いることも可能である。さらに、白色光源にバンドパスフィルタを用いて波長帯域を制限した光を照明光として用いることもできる。
【0127】
また、本実施形態では、顕微鏡観察の例を用いて実施例を説明したが、1つ以上の屈折率の異なる媒質を通過し、最後に通過した媒質と異なる屈折率を持つ媒質に集光する、特にn<n
dのような関係の場合に本発明を適用できる。例えば、屈折率の異なるガラスが2枚以上張り合わされており、屈折率の高いガラスを通過し、屈折率の低いガラスに集光させ、改質層を形成する場合にも適用できる。改質層とはクラック、屈折率変化などのことを言う。