(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、ワイヤレス電力伝送システムにおける受電装置としては、携帯電話機、ノート型PCまたはタブレット端末などの電子機器が挙げられる。そして、ワイヤレス電力伝送システムは、これら電子機器の二次電池をワイヤレスで充電する用法が挙げられる。受電装置が、二次電池の充電容量が大きいタブレット端末などの場合、電力伝送を効率よく行わないと、充電時間が長くなるといった問題がある。
【0006】
そこで、本発明の目的は、電力伝送を効率よく行えるワイヤレス電力伝送システムを提供することにある。
【課題を解決するための手段】
【0007】
本発明に係るワイヤレス電力伝送システムは、送電側第1電極および送電側第2電極と、前記送電側第1電極および前記送電側第2電極に交流電圧を印加する交流電圧印加回路と、を有する送電装置と、前記送電側第1電極に対向する受電側第1電極と、前記送電側第2電極に対向する受電側第2電極と、前記送電側第1電極および前記送電側第2電極に対向して、容量結合により前記受電側第1電極および前記受電側第2電極に誘起される電圧を負荷に供給する受電側回路と、を有する受電装置と、を備え、前記送電装置は、第1端が前記送電側第1電極に繋がり、第2端が前記送電側第2電極に繋がっている送電側コイルを有し、前記受電装置は、第1端が前記受電側第1電極に繋がり、第2端が前記受電側第2電極に繋がっている受電側コイルを有し、前記送電側コイルには前記受電側コイルに生じる磁束が鎖交し、前記受電側コイルには前記送電側コイルに生じる磁束が鎖交して、前記送電側コイルおよび前記受電側コイルは磁界結合することを特徴とする。
【0008】
この構成では、電界結合および磁界結合を併用することで、送電装置と受電装置との結合度を高くすることができ、送電装置から受電装置への電力伝送効率を高めることができる。
【0009】
前記送電側第1電極は前記受電側第1電極に対向し、前記送電側第2電極は前記受電側第2電極に対向し、前記送電側コイルおよび前記受電側コイルは、コイル巻回軸が同方向となるように設けられ、かつ、前記送電側第2電極から前記送電コイル経由で前記送電側第1電極へ電流が流れたときに前記送電側コイルに生じる磁界の向きと、前記受電側第1電極から前記受電側コイル経由で前記受電側第2電極へ電流が流れたときに前記受電側コイルに生じる磁界の向きが同方向となるように巻回されていることが好ましい。
【0010】
この構成では、送電装置と受電装置との結合度をより高くすることができ、送電装置から受電装置への電力伝送効率をより高めることができる。
【0011】
前記送電側コイルおよび前記受電側コイルは面状コイルであって、間隙をおいて対向する構成が好ましい。
【0012】
この構成では、送電側コイルおよび受電側コイルを平面状にすることで、送電装置および受電装置の薄型化を実現できる。
【0013】
前記送電側第1電極、前記送電側第2電極および前記送電側コイルは同一平面に沿って設けられ、前記受電側第1電極、前記受電側第2電極および前記受電側コイルは同一平面に沿って設けられている構成が好ましい。
【0014】
この構成では、送電装置および受電装置の薄型化を実現できる。
【0015】
前記送電側第2電極は前記送電装置の基準電位に接続され、前記送電側コイルは前記送電側第1電極を囲むように形成され、前記送電側第2電極は前記送電側コイルを囲むように形成され、前記受電側第2電極は前記受電装置の基準電位に接続され、前記受電側コイルは前記受電側第1電極を囲むように形成され、前記受電側第2電極は前記受電側コイルを囲むように形成されている構成が好ましい。
【0016】
この構成では、送電装置では、送電側第1電極からの不要輻射を送電側第2電極で抑制でき、受電装置は、受電側第1電極からの不要輻射を受電側第2電極で抑制できる。
【0017】
前記送電側第1電極および前記送電側第2電極は、間に前記送電側コイルを介在させて、対向配置され、前記受電側第1電極および前記受電側第2電極は、間に前記受電側コイルを介在させて、対向配置されている構成が好ましい。
【0018】
この構成では、受電装置および送電装置において、各電極およびコイルの占有面積を小さくできる。
【0019】
前記送電側第1電極および前記送電側第2電極、並びに、前記受電側第1電極および前記受電側第2電極は、渦電流発生を抑制する形状であることが好ましい。
【0020】
この構成では、各電極で渦電流発生を抑制することで、電極に生じる渦電流によって磁界が打ち消されることを防止できる。
【発明の効果】
【0021】
本発明によれば、電界結合および磁界結合を併用することで、送電装置から受電装置への電力伝送効率を高めることができる。
【発明を実施するための形態】
【0023】
まず、2つの共振回路の相互結合について説明する。
図1は、2つの共振回路の相互結合を説明するための回路図である。
【0024】
図1に示すように、コイルL1とキャパシタC1とを有するLC共振回路1、および、コイルL2とキャパシタC2とを有するLC共振回路2は、アクティブ電極A1,A2が対向し、パッシブ電極P1,P2が対向して電界結合する。この電界結合の結合係数はkeとする。また、LC共振回路1,2は、コイルL1,L2が磁界結合する。この磁界結合の結合係数はkmとする。電圧V1,V2と電流I1,I2の向きを、
図1に示す方向に定め、結合しているコイルの向きをドット(点)で定めて符号を決める。結合係数kmは−1<km<1の値を採り得る(
図1はkmが正の場合の電流および電圧を規定している)。簡単のためLC共振回路1,2を構成するコイルL1,L2は同じ値とし、キャパシタC1,C2も同じ値とする。
【0025】
ここで、電界結合および磁界結合を併用して2つのLC共振回路1,2を結合させる場合の結合係数をk、電界結合のみ用いた場合の結合係数をke、磁界結合のみ用いた場合の結合係数をkmで表すと、k=(ke−km)/(1−ke・km)の関係を有する。電界および磁界を併用することによって電界結合単独、磁界結合単独の結合係数よりも高くするためには、以下の式(1)及び式(2)を両立させる必要がある。
|k|>ke(0<ke<1)・・・(1)
|k|>|km|(−1<km<1(km≠0))・・・(2)
ここで、結合係数k、kmには負の値が含まれるので絶対値で表記する。結合係数kの分子の符号で場合分けを行い、式(1)および式(2)を両立する条件を求める。
【0026】
ke−km>0の場合、式(1)を満たす条件は、km<0、0<ke<1である。式(2)を満たす条件は、km<0、0<ke<1、または、km>0、ke>2km/(1+km
2)である。したがって、式(1)および式(2)を両立する条件は、km<0、0<ke<1である。
【0027】
ke−km=0の場合、式(1)および式(2)を満たす解はない。
【0028】
ke−km<0の場合、式(1)を満たす条件は、km>2ke/(1+ke
2)である。しかし、式(2)を満たす条件は無い。したがって、式(1)および式(2)を両立する条件が無い。
【0029】
したがって、
図1に記載した結合共振系の場合、−1<km<0にコイルの結合構造を定めると、電界結合および磁界結合を併用して2つの共振回路を結合させた場合の結合度は、電界結合のみを用いた場合、および、磁界結合を用いた場合よりも高くなる。
【0030】
図2は結合係数の相関関係を示す図である。
図2に示すように、−1<km<0の条件の場合、結合係数kは、磁界結合によって、電界結合の結合係数keよりも増大する。
【0031】
図3は、
図1の回路について、結合部分の入力インピーダンスの周波数特性の測定結果を示す図である。
図3では、0<km<1の場合、および、−1<km<0の場合それぞれにおける周波数特性の測定結果を示す。
図3に示す共振周波数f1、共振周波数f2は、送電側の共振回路と受電側の共振回路が結合した時に生成される結合共振周波数である。
【0032】
図3から読み取れるように、0<km<1の場合、共振周波数f1は11.56MHz、f2は12.22MHzである。また、−1<km<0の場合、共振周波数f1は6.62MHz、f2は19.54MHzである。ここで、結合係数kを共振周波数f1、f2で表すと、k=(f2
2−f1
2)/(f2
2+f1
2)と表すことができる。そして、0<km<1の場合の結合係数kは0.06であり、−1<km<0の場合の結合係数kは0.79である。また、
図3に示していないが、磁界結合のみを用いた場合の共振周波数f1,f2は、11.56および19.44であり、結合係数kmは0.48である。また、電界結合のみを用いた場合の共振周波数f1,f2は、8.8および14.22であり、結合係数keは0.45である。
【0033】
すなわち、−1<km<0の場合の方が、結合係数kが高い。2つの共振系それぞれに電源、あるいは、負荷を接続することで、電力伝送系を構成することができる。2つの共振系を結合させて構成した電力伝送系では、共振回路間の結合係数が高いほど伝送効率が高い。したがって、本共振系を用いて構成した電力伝送系の電力伝送効率は高くなる。ここでは、同一等価回路で現象を説明するために負のkmを用いたが、以下の各実施形態では、磁界結合係数kmは正として説明する。
【0034】
(実施形態1)
図4は、実施形態1に係るワイヤレス電力伝送システム301の送電装置および受電装置を示す斜視図である。送電装置101および受電装置201それぞれの筐体内部には、アクティブ電極11,21、パッシブ電極12,22および平面コイル13,23が設けられていて、
図1はそれらを透視した図である。
【0035】
ワイヤレス電力伝送システム301の受電装置201は、二次電池と充電回路等を含めたバッテリモジュールを備えた携帯電子機器である。携帯電子機器としては携帯電話機、携帯音楽プレーヤ、ノート型PC、デジタルカメラなどが挙げられる。受電装置201は送電装置101に載置され、送電装置101は受電装置201の二次電池を充電する。
【0036】
送電装置101は、設置面に対して略水平となる載置面101Aと、載置面101Aに対して略垂直となる背もたれ面101Bとを有している。載置面101Aには受電装置201が載置され、背もたれ面101Bは、載置された受電装置201の傾倒を防止する。送電装置101の内部には、背もたれ面101Bに沿って円形状のアクティブ電極11およびパッシブ電極12と、円環状の平面コイル13とが設けられている。
【0037】
アクティブ電極11は、本発明に係る送電側第1電極または送電側第2電極に相当し、パッシブ電極12は、本発明に係る送電側第2電極または送電側第1電極に相当する。また、平面コイル13は、本発明に係る送電側コイルに相当する。
【0038】
受電装置201は略直方体状の筐体を備え、その筐体の前面には、例えば、不図示の液晶パネルが設けられている。受電装置201は、背面が送電装置101の背もたれ面101Bと面接触するようにして載置面101Aに載置される。受電装置201の内部には、背面に沿って、円形状のアクティブ電極21およびパッシブ電極22と、円環状の平面コイル23とが設けられている。
【0039】
アクティブ電極21は、本発明に係る受電側第1電極または受電側第2電極に相当し、パッシブ電極22は、本発明に係る受電側第2電極または受電側第1電極に相当する。また、平面コイル23は、本発明に係る受電側コイルに相当する。
【0040】
アクティブ電極11,21はそれぞれ同じ径を有し、パッシブ電極12,22もそれぞれ同じ径を有している。また、平面コイル13,23は、それぞれ同じ外径を有し、かつ、同じ径のコイル開口13A,23Aを有している。
【0041】
図5は、受電装置201を送電装置101に載置した際の、アクティブ電極11,21、パッシブ電極12,22および平面コイル13,23の位置関係を説明するための断面図である。
図5に示すように、送電装置101に受電装置201を載置した場合、アクティブ電極11,21、パッシブ電極12,22、平面コイル13,23それぞれは、中心軸を一致させて間隙をおいて対向する。
図3の場合、平面コイル13,23それぞれに電流が流れた場合、コイル開口13A,23Aの面に対して垂直方向に磁界が発生する。
【0042】
送電装置101において、アクティブ電極11およびパッシブ電極12は、高周波発振回路OSCが発生した、例えば100kHz〜数10MHzの高周波電圧が印加される。これにより、アクティブ電極11,21が容量結合し、パッシブ電極12,22も容量結合する。受電装置201において、容量結合によりアクティブ電極21およびパッシブ電極22に電圧が誘起され、その電圧は受電側回路20により降圧、整流および平滑される。
【0043】
また、送電装置101において、アクティブ電極11およびパッシブ電極12への電圧印加時に、平面コイル13に電流が流れ、平面コイル13に磁界が発生する。この磁界が平面コイル23に鎖交することで、平面コイル23に電流が流れる。さらに、アクティブ電極21およびパッシブ電極22に電圧が誘起されることにより、平面コイル23に電流が流れ、これにより平面コイル23にも磁界が発生する。すなわち、平面コイル23を鎖交する磁界は強められる。そして、平面コイル13,23に同方向に磁界が発生することで、平面コイル13,23は磁界結合する。
【0044】
このように、本実施形態に係るワイヤレス電力伝送システム301では、送電装置101に受電装置201を載置した場合、容量結合と磁界結合との組み合わせにより、送電装置101から受電装置201へ電力が伝送される。
【0045】
図6Aはワイヤレス電力伝送システム301の回路である。
【0046】
送電装置101は、高周波発振器OSCおよび昇圧トランスTGを備えている。昇圧トランスTGは、高周波電圧発生回路OSCの発生する電圧を昇圧してアクティブ電極11とパッシブ電極12との間に印加する。キャパシタC11は、アクティブ電極11およびパッシブ電極12の間に形成される浮遊容量、または実部品である。平面コイル13は、キャパシタC11と共に直列共振回路を構成している。
【0047】
受電装置201は、アクティブ電極21およびパッシブ電極22に誘起された電圧を降圧する降圧トランスTLと、降圧した交流電圧を直流電圧に変換する整流回路20Aと、負荷RLに対して規定の直流電圧を出力するDC−DCコンバータ20Bとを備えている。キャパシタC21は、アクティブ電極21およびパッシブ電極22の間に形成される浮遊容量、または実部品である。平面コイル23は、キャパシタC21と共に直列共振回路を構成している。
【0048】
このワイヤレス電力伝送システム301において、受電装置201が送電装置101に載置され、送電装置101のアクティブ電極11およびパッシブ電極12間に電圧が印加されることで、対向配置となったアクティブ電極11,21同士、および、パッシブ電極12,22同士がそれぞれに電界が生じて容量結合する。そして、この電界を介して電力が送電装置101から受電装置201へ伝送される。受電装置201では、電力伝送により誘起される交流電圧が降圧された後、整流および平滑され、負荷RLに印加される。
【0049】
以上のように、ワイヤレス電力伝送システム301は、電界結合および磁界結合を併用した電力伝送系であって、その電力伝送効率は高い。また、この場合に、平面コイル13,23は、コイル巻回軸が同方向となるように設けられ、かつ、パッシブ電極12から平面コイル13経由でアクティブ電極11へ電流が流れたときに平面コイル13に生じる磁界の向きと、アクティブ電極21から平面コイル23経由でパッシブ電極22へ電流が流れたときに平面コイル23に生じる磁界の向きが同方向となるように巻回されているので、結合係数kを大きくすることができる。その結果、効率のよい電力伝送が実現できる。
【0050】
なお、ワイヤレス電力伝送システム301の回路は、
図6Aの構成に限定されない。
図6B〜
図6Fは、ワイヤレス電力伝送システム301の回路の別の例を示す図である。
【0051】
図6Bでは、送電装置101の平面コイル13は、一端がアクティブ電極11に接続され、他端がパッシブ電極12に接続されている。平面コイル13は、キャパシタC11と並列共振回路を構成している。また、受電装置201の平面コイル23は、
図6Aと同様に、キャパシタC21と共に直列共振回路を構成している。
【0052】
図6Cでは、送電装置101の平面コイル13は、
図6Aと同様に、キャパシタC11と並列共振回路を構成している。また、受電装置201の平面コイル23は、一端がアクティブ電極21に接続され、他端がパッシブ電極22に接続されている。そして、平面コイル23は、キャパシタC21と共に並列共振回路を構成している。
【0053】
図6Dでは、送電装置101の平面コイル13は、
図6Bと同様に、キャパシタC11と並列共振回路を構成している。また、受電装置201の平面コイル23は、
図6Cと同様に、キャパシタC21と共に並列共振回路を構成している。
【0054】
図6Eは、送電装置101のアクティブ電極11と、受電装置201のアクティブ電極21とが対向し、送電装置101のパッシブ電極12と、受電装置201のパッシブ電極22とが対向して結合する構成を示す。ただし、受電装置201のアクティブ電極21とパッシブ電極22は、
図6Aとは接続位置が逆である。この場合、送電装置101の平面コイル13は、
図6Aと同様に接続されている。受電装置201の平面コイル23は、
図6Aとは接続方向が逆、すなわち、電流が流れたときに極性が
図6Aとは反対となるよう、接続されている。
【0055】
図6Fでは、送電装置101において、昇圧トランスTGの二次コイルを、送電装置101の平面コイル13として利用している。また、受電装置201において、降圧トランスTLの一次コイルを、平面コイル23として利用している。
【0056】
(実施形態2)
以下に、本発明に係る実施形態2について説明する。本実施形態では、送電装置および受電装置それぞれが備えるアクティブ電極およびパッシブ電極の形状が実施形態1と相違する。以下、その相違点について説明する。
【0057】
図7は、実施形態2に係るワイヤレス電力伝送システム302の送電装置102および受電装置202を示す斜視図である。
図8は、受電装置202を送電装置102に載置した際の、アクティブ電極14,24、パッシブ電極15,25および平面コイル13,23の位置関係を説明するための断面図である。
【0058】
送電装置102は、背もたれ面101Bに沿って設けられた、平面コイル13と、円形状のアクティブ電極14と、円環状のパッシブ電極15とを備えている。平面コイル13、アクティブ電極14およびパッシブ電極15は中心軸を一致させて設けられている。また、アクティブ電極14は平面コイル13の内側に配置され、かつ、平面コイル13およびアクティブ電極14はパッシブ電極15の内側に配置されている。パッシブ電極15が、平面コイル13およびアクティブ電極14を囲むことで、平面コイル13およびアクティブ電極14から出る不要輻射を抑制できる。
【0059】
受電装置202は、筐体の背面に沿って設けられた平面コイル23と、円形状のアクティブ電極24と、円環状のパッシブ電極25とを備えている。平面コイル23、アクティブ電極24およびパッシブ電極25は中心軸を一致させて設けられている。また、アクティブ電極24は平面コイル23の内側に配置され、かつ、平面コイル23およびアクティブ電極24はパッシブ電極25の内側に配置されている。パッシブ電極25が、平面コイル23およびアクティブ電極24を囲むことで、平面コイル23およびアクティブ電極24から出る不要輻射を抑制できる。なお、アクティブ電極14,24、パッシブ電極15,25はそれぞれ同じ径を有している。
【0060】
送電装置102に受電装置202を載置した場合、アクティブ電極14,24、パッシブ電極15,25それぞれは、間隙をおいて対向する。また、平面コイル13は、コイル開口13Aが平面コイル23のコイル開口23Aと一致して、平面コイル23と間隙をおいて対向する。
【0061】
実施形態2に係るワイヤレス電力伝送システム302では、実施形態1と同様に、電界結合および磁界結合を併用して、送電装置102と受電装置202とを結合させた場合の結合度を高くしている。これにより、送電装置102から受電装置202への高い電力伝送効率を実現している。
【0062】
なお、本実施形態に係るアクティブ電極14,24、パッシブ電極15,25は、例えば櫛歯状の電極であることが好ましい。アクティブ電極14,24は平面コイル13,23のコイル開口に配置されているため、アクティブ電極14,24が平板電極である場合、平面コイル13,23から生じる磁界を遮るように渦電流が発生する。このため、アクティブ電極14,24を櫛歯状とすることで、渦電流の発生を抑制し、平面コイル13,23から生じる磁界が打ち消されないようにできる。パッシブ電極15,25も、渦電流損を抑制するという点で、上記と同じである。
【0063】
(実施形態3)
以下に、本発明に係る実施形態3について説明する。本実施形態では、送電装置および受電装置それぞれが備える磁界結合するコイル、および、アクティブ電極およびパッシブ電極の構成が、実施形態1と相違する。以下、その相違点について説明する。
【0064】
図9は、実施形態3に係るワイヤレス電力伝送システム303の回路図である。
【0065】
本実施形態では、送電装置103において、アクティブ電極16およびパッシブ電極17には、第1のコイル18Aと第2のコイル18Bとが接続されている。第1のコイル18Aおよび第2のコイル18Bは、キャパシタC11などと共にLC共振回路を構成している。第1のコイル18Aと第2のコイル18Bとは、昇圧トランスTGの二次コイルL12に接続されていて、第1のコイル18A、第2のコイル18Bおよび二次コイルL12は、一つのコイル(以下、送電側コイルという。)を構成している。アクティブ電極16およびパッシブ電極17は、この送電側コイルにより構成されている。すなわち、一つの送電側コイルには、アクティブ電極16、パッシブ電極17、第1のコイル18A、第2のコイル18B、および二次コイルL12が構成されている。
【0066】
図10Aは、送電側コイルの構成を説明するための図である。送電側コイル19は、前記のように、第1のコイル18A、第2のコイル18B、および昇圧トランスTGの二次コイルL12とで構成されている。送電側コイル19における二次コイルL12の周囲には、昇圧トランスTGの一次コイルL11が設けられていて、一次コイルL12と二次コイルL12とが磁界結合する。
【0067】
また、送電側コイル19の両端のコイル開口には、櫛歯状に電極が形成されていて、アクティブ電極16とパッシブ電極17とが形成されている。アクティブ電極16とパッシブ電極17とが形成された送電側コイル19の両端は、平面視でアクティブ電極16よりパッシブ電極17が大きくなるように形成されている。アクティブ電極16とパッシブ電極17とが櫛歯状の平板電極としてあることで渦電流の発生を抑制し、送電側コイル19から生じる磁界が打ち消されないようにできる。
【0068】
なお、送電側コイル19の両端のコイル開口の構成は、
図10Aに示す構成に限定されず、渦電流の発生を抑制できる形状であればよい。
図10B〜
図10Fは、送電側コイルの構成の別の例を示す図である。なお、
図10B〜
図10Fは、アクティブ電極16の変形例の平面視である。なお、
図10B〜
図10Fは、アクティブ電極16の構成のみを示しているが、パッシブ電極17もアクティブ電極16と同様にいずれの構成でも良い。
【0069】
図10Bに示すように、アクティブ電極16は櫛歯状に電極が形成されていてもよい。また、
図10Cに示すように、アクティブ電極16は、円形状の外周から内側に向かって放射状に電極が形成されていてもよい。さらに、
図10Dに示すように、アクティブ電極16は、内から外側に向かって放射状に電極が形成されていてもよい。
図10Eに示すように、アクティブ電極16はミアンダ状に形成されていてもよい。
図10Fに示すように、アクティブ電極16は葉脈状に形成されていてもよい。
【0070】
なお、渦電流の発生が抑制される形状とは、送電側コイル19の巻回軸から平面視で、アクティブ電極16及びパッシブ電極17それぞれは、導体が一様に広がった平板状でなく、線状の導体が折れ曲がり、または、組み合わされ、かつ、その線状の導体に閉ループが形成されない形状を言う。
【0071】
図9に戻り、受電装置203において、アクティブ電極26およびパッシブ電極27には、第1のコイル28Aと第2のコイル28Bとが接続されている。第1のコイル28Aおよび第2のコイル28Bは、キャパシタC21などと共にLC共振回路を構成している。第1のコイル28Aと第2のコイル28Bとは、降圧トランスTLの一次コイルL21に接続されていて、第1のコイル28A、第2のコイル28Bおよび一次コイルL21は、一つのコイル(以下、受電側コイルという。)を形成している。そして、アクティブ電極26およびパッシブ電極27は、この受電側コイルにより構成されている。受電側コイルの構成は、
図8で示した送電側コイル19と同様であるため、説明は省略する。
【0072】
図11は、受電装置203を送電装置103に載置した際の送電側コイルおよび受電側コイルの位置関係を説明するための断面図である。
【0073】
送電側コイル19と受電側コイル29とは、送電装置103に受電装置203を載置した場合、それぞれの巻回軸がほぼ一致するよう設けられている。また、送電側コイル19は、アクティブ電極16が受電装置203側となるように設けられ、受電側コイル29は、アクティブ電極26が送電装置103側となるように設けられている。すなわち、アクティブ電極16,26は間隙をおいて対向し、パッシブ電極17,27は、間にアクティブ電極16,26が介在して対向している。また、送電側コイル19と受電側コイル29とは、それぞれに電流が流れたときに発生する磁界が同方向となるようにされている。
【0074】
送電装置103において、高周波発振回路OSCが発生した電圧は、
図9、
図10に示す昇圧コイルの一次コイルL11を介して送電側コイル19に印加される。そして、アクティブ電極16,26が容量結合し、パッシブ電極17,27も容量結合して、送電装置103から受電装置203へ電力が伝送される。また、第1のコイル18A、第2のコイル18Bおよび二次コイルL12と、第1のコイル28A、第2のコイル28Bおよび一次コイルL21とからは同方向に磁界が発生し、送電側コイル19および受電側コイル29は磁界結合する。この磁界結合の結合度は、実施形態1,2で説明したように高い。したがって、送電装置103と受電装置203との間では効率のよい電力伝送を実現できる。
【0075】
なお、本実施形態に係るワイヤレス電力伝送システム303では、送電装置103は第1のコイル18Aおよび第2のコイル18Bを備え、受電装置203は第1のコイル28Aおよび第2のコイル28Bを備えているが、この構成に限定されない。例えば、送電装置103は第1のコイル18Aのみを備え、第1のコイル18Aが受電装置203の第1のコイル28Aおよび第2のコイル28Bと磁界結合する構成であってもよい。また、送電装置103は第1のコイル18Aのみを備え、受電装置203は第2のコイル28Bのみを備え、第1のコイル18Aと第2のコイル28Bとが磁界結合する構成であってもよい。
【0076】
(実施形態4)
図12は、実施形態4に係るワイヤレス電力伝送システム304の送電装置104および受電装置204を示す斜視図である。
図13は、受電装置204を送電装置104に載置した際の、アクティブ電極11,21、パッシブ電極12,22および平面コイル31,32,33,34の位置関係を説明するための断面図である。
図14は、ワイヤレス電力伝送システム304の回路図である。
【0077】
送電装置104は、背もたれ面101Bに沿って設けられた円形状のアクティブ電極11およびパッシブ電極12と、円環状の平面コイル31,32とを備えている。アクティブ電極11と平面コイル31とは中心軸を一致させて、かつ、アクティブ電極11が平面コイル31の内側に位置するように設けられている。また、パッシブ電極12と平面コイル32とは中心軸を一致させて、かつ、パッシブ電極12が平面コイル32の内側に位置するように設けられている。
【0078】
受電装置204は、筐体の背面に沿って設けられた円形状のアクティブ電極21およびパッシブ電極22と、円環状の平面コイル33,34とを備えている。平面コイル33,34は、それぞれ平面コイル31,32と同じ径を有している。アクティブ電極21と平面コイル33とは中心軸を一致させて、かつ、アクティブ電極11が平面コイル33の内側に位置するように設けられている。また、パッシブ電極12と平面コイル34とは中心軸を一致させて、かつ、パッシブ電極12が平面コイル34の内側に位置するように設けられている。
【0079】
送電装置104に受電装置204を載置した場合、アクティブ電極11および平面コイル31は、アクティブ電極21および平面コイル33と間隙をおいて対向し、パッシブ電極12および平面コイル32は、パッシブ電極22および平面コイル34と間隙をおいて対向する。このとき、対向する平面コイル31,33から発生する磁界は同方向となり、対向する平面コイル32,34から発生する磁界も同方向となる。
【0080】
なお、アクティブ電極11,21およびパッシブ電極12,22は、実施形態2,3で説明したように、渦電流の発生を抑制するため櫛歯状とすることが好ましい。
【0081】
実施形態4に係るワイヤレス電力伝送システム304では、実施形態1と同様に、電界結合および磁界結合を併用して、送電装置104と受電装置204とを結合させた場合の結合度を高くしている。これにより、送電装置104から受電装置204への高い電力伝送効率を実現している。また、電力伝送部の回路構成の対称性を高めることができ、ノイズが少ないシステムを構成できる。
【0082】
なお、本実施形態では、アクティブ電極11,21を囲む平面コイル31,33が磁界結合し、パッシブ電極12,22を囲む平面コイル32,34が磁界結合する構成としているが、平面コイル31,34が磁界結合し、平面コイル32,33が磁界結合する構成であってもよい。