(58)【調査した分野】(Int.Cl.,DB名)
前記X検出部は、前記一対のビーム部を結ぶ直線を境界線として前記第1の可動電極の表面の一方側及び他方側に対向させて第1の固定電極を配置し、前記第1の可動電極と前記第1の固定電極との間の静電容量の変化に基づいて前記X方向の加速度を検出し、
前記Y検出部は、前記一対のビーム部を結ぶ直線を境界線として前記第2の可動電極の表面の一方側及び他方側に対向させて第2の固定電極を配置し、前記第2の可動電極と前記第2の固定電極との間の静電容量の変化に基づいて前記Y方向の加速度を検出し、
前記Z検出部は、前記第3の可動電極の表面及び裏面に対向させて第3の固定電極を配置し、前記第3の可動電極と前記第3の固定電極との間の静電容量の変化に基づいて前記Z方向の加速度を検出することを特徴とする請求項1に記載の加速度センサ。
前記第3の可動電極の裏面に配置されている第3の固定電極が前記第3の可動電極とは分離された柱状の固定電極を通して前記第3の可動電極の一方側に引き出されていることを特徴とする請求項1又は2に記載の加速度センサ。
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載のMEMSセンサによれば、直交する3方向の加速度を検出することができるものの、より高い感度で加速度を検出することが望まれている。
【0005】
そこで、本発明は、直交する3方向の加速度の検出感度を向上させることのできる加速度センサを得ることを目的とする。
【課題を解決するための手段】
【0006】
本発明は、加速度センサであって、一対のビーム部を軸にして第1の可動電極を揺動させることにより、平面方向のうちの一方向であるX方向の加速度を検出するX検出部と、一対のビーム部を軸にして第2の可動電極を揺動させることにより、平面方向のうちの一方向であって前記X方向と直交するY方向の加速度を検出するY検出部と、一対以上のビーム部により保持された第3の可動電極を垂直方向に平行移動させることにより、垂直方向であるZ方向の加速度を検出するZ検出部と
、を備え、前記X検出部、前記Y検出部及び前記Z検出部を1チップ内に配置し
た加速度センサであって、前記Z検出部が中央に配置され、その両側に前記X検出部及び前記Y検出部が配置され、前記X検出部、前記Y検出部及び前記Z検出部を内包するフレーム部が第1の固定板及び第2の固定板により挟持された状態において、前記Z検出部と前記X検出部及び前記Y検出部との間のフレーム部のうち、前記Z検出部のビーム部の付根領域が前記第1の固定板と分離され、前記Z検出部と前記X検出部及び前記Y検出部との間のフレーム部のうち、前記Z検出部を基準として前記付根領域に対称となる対称領域が前記第1の固定板と分離されたことを特徴とする。
【0007】
また、本発明において、前記X検出部は、前記一対のビーム部を結ぶ直線を境界線として前記第1の可動電極の表面の一方側及び他方側に対向させて第1の固定電極を配置し、前記第1の可動電極と前記第1の固定電極との間の静電容量の変化に基づいて前記X方向の加速度を検出してもよい。前記Y検出部は、前記一対のビーム部を結ぶ直線を境界線として前記第2の可動電極の表面の一方側及び他方側に対向させて第2の固定電極を配置し、前記第2の可動電極と前記第2の固定電極との間の静電容量の変化に基づいて前記Y方向の加速度を検出してもよい。前記Z検出部は、前記第3の可動電極の表面及び裏面に対向させて第3の固定電極を配置し、前記第3の可動電極と前記第3の固定電極との間の静電容量の変化に基づいて前記Z方向の加速度を検出してもよい。
【0008】
また、本発明において、前記第3の可動電極の裏面に配置されている第3の固定電極が前記第3の可動電極とは分離された柱状の固定電極を通して前記第3の可動電極の一方側に引き出されていてもよい。
【0009】
また、本発明において、前記X検出部、前記Y検出部、及び前記Z検出部が直線状に配置されていてもよい。
【発明の効果】
【0013】
本発明によれば、直交する3方向の加速度の検出感度を向上させることのできる加速度センサを提供することが可能となる。
【図面の簡単な説明】
【0014】
【
図1】
図1は、第1実施形態にかかる加速度センサを内蔵したパッケージの内部構成例を示す斜視図である。
【
図2】
図2は、第1実施形態にかかる加速度センサの分解斜視図である。
【
図3】
図3は、第1実施形態にかかる加速度センサの断面図であって、(a)はX検出部の断面図、(b)はZ検出部の断面図である。
【
図4】
図4は、第1実施形態にかかる加速度センサにおいて、X方向の加速度が印加されていない状態におけるX検出部の断面図である。
【
図5】
図5は、
図4に示される状態においてX方向の加速度を検出する原理を説明するための図である。
【
図6】
図6は、第1実施形態にかかる加速度センサにおいて、X方向に1Gの加速度が印加された状態におけるX検出部の断面図である。
【
図7】
図7は、
図6に示される状態においてX方向の加速度を検出する原理を説明するための図である。
【
図8】
図8は、第1実施形態にかかる加速度センサにおいて、Z方向に1Gの加速度が印加された状態におけるZ検出部の断面図である。
【
図9】
図9は、
図8に示される状態においてZ方向の加速度を検出する原理を説明するための図である。
【
図10】
図10は、第2実施形態にかかる加速度センサの分解斜視図である。
【
図11】
図11は、第2実施形態にかかる他の加速度センサの分解斜視図である。
【発明を実施するための形態】
【0015】
以下、本発明の実施形態について図面を参照しつつ詳細に説明する。なお、以下では、同様の構成要素には共通の符号を付与するとともに、重複する説明を省略する。
【0016】
(第1実施形態)
以下、
図1〜
図9を用いて、第1実施形態にかかる加速度センサの構成を説明する。
【0017】
〔適用例〕
図1は、第1実施形態にかかる加速度センサを内蔵したパッケージ300の内部構成例を示す斜視図である。ここでは、基板500に実装されたパッケージ300の蓋を開けた状態を示している。この図に示すように、パッケージ300には、加速度センサを収納するセンサチップ100や、センサチップ100からの出力に基づいて各種の演算を行うASIC200等が搭載されている。パッケージ300から端子400が引き出され、基板500に接続されている。
【0018】
〔加速度センサの構成〕
図2は、第1実施形態にかかる加速度センサの分解斜視図である。この加速度センサでは、XYZの3軸方向の加速度を検出する重りを1軸の加速度のみを検出する各軸個別の重りとして形成し、このような3軸方向の各重り(各センサ)を1チップ内に配置している。平面方向(XY方向)の加速度は、一対のねじりビームを軸にして重りをシーソー動作させることにより検出し、垂直方向(Z方向)の加速度は、一対以上のビームにより保持された重りを垂直方向に平行移動させることにより検出するようにしている。
【0019】
具体的には、
図2に示すように、センサ部1の上下面が上部固定板2aと下部固定板2bにより挟持された構成となっている。センサ部1は、シリコンSOI基板等により形成され、上部固定板2aと下部固定板2bは、ガラス等の絶縁体により形成されている。
【0020】
以下、センサ部1のうち、X方向の加速度を検出する部分を「X検出部10」、Y方向の加速度を検出する部分を「Y検出部20」、Z方向の加速度を検出する部分を「Z検出部30」と呼ぶことにする。X方向は、平面方向のうちの一方向である。Y方向は、平面方向のうちの一方向であってX方向と直交する方向である。Z方向は、垂直方向である。
【0021】
X検出部10は、一対のビーム部12a,12bを軸にして第1の可動電極11を揺動させることによりX方向の加速度を検出する。すなわち、一対のビーム部12a,12bを結ぶ直線を境界線として第1の可動電極11の表面の一方側及び他方側に対向させて第1の固定電極13a,13bを配置している。これにより、第1の可動電極11と第1の固定電極13a,13bとの間の静電容量の変化に基づいてX方向の加速度を検出することができる。
【0022】
Y検出部20は、一対のビーム部22a,22bを軸にして第2の可動電極21を揺動させることによりY方向の加速度を検出する。すなわち、一対のビーム部22a,22bを結ぶ直線を境界線として第2の可動電極21の表面の一方側及び他方側に対向させて第2の固定電極23a,23bを配置している。これにより、第2の可動電極21と第2の固定電極23a,23bとの間の静電容量の変化に基づいてY方向の加速度を検出することができる。
【0023】
Z検出部30は、二対のビーム部32a,32b,32c,32dにより保持された第3の可動電極31を垂直方向に平行移動させることによりZ方向の加速度を検出する。すなわち、第3の可動電極31の表面及び裏面に対向させて第3の固定電極33a,33bを配置している。これにより、第3の可動電極31と第3の固定電極33a,33bとの間の静電容量の変化に基づいてZ方向の加速度を検出することができる。
【0024】
X検出部10とY検出部20は互いに90°回転させただけの同形状とし、これらを別形状のZ検出部30の両側に並べて1チップ内に配置している。すなわち、
図2に示すように、フレーム部3には、3つの矩形枠10a,20a,30aが直線状に並んで形成されている。矩形枠10aには第1の可動電極11が配置され、矩形枠20aには第2の可動電極21が配置され、矩形枠30aには第3の可動電極31が配置されている。第1〜第3の可動電極11,21,31はいずれも矩形形状である。第1〜第3の可動電極11,21,31と矩形枠10a,20a,30aの側壁部との間には所定サイズの隙間が空いた状態となっている。
【0025】
図3は、第1実施形態にかかる加速度センサの断面図であって、(a)はX検出部10の断面を示し、(b)はZ検出部30の断面を示している。Y検出部20の断面はX検出部10と同様であるため、ここでは図示を省略している。
【0026】
まず、X検出部10の断面は、
図3(a)に示す通りである。すなわち、第1の可動電極11の表面の対向する2辺の略中央部と矩形枠10aの側壁部とを一対のビーム部12a,12bで連結することにより、第1の可動電極11がフレーム部3に対して揺動自在に支持されている。上部固定板2aの第1の可動電極11と対向する側には、ビーム部12aとビーム部12bを結ぶ直線を境界線として第1の固定電極13a,13bが設けられている。第1の固定電極13a,13bは、第1の貫通電極14a,14bを用いて上部固定板2aの上面(一方側)に引き出されている。第1の貫通電極14a,14bの材質は、シリコンやタングステン、銅等の導体であり、第1の貫通電極14a,14bを保持する周囲の材質は、ガラス等の絶縁体である。
【0027】
Y検出部20についても同様である。すなわち、第2の可動電極21の表面の対向する2辺の略中央部と矩形枠20aの側壁部とを一対のビーム部22a,22bで連結することにより、第2の可動電極21がフレーム部3に対して揺動自在に支持されている。上部固定板2aの第2の可動電極21と対向する側には、ビーム部22aとビーム部22bを結ぶ直線を境界線として第2の固定電極23a,23bが設けられている。第2の固定電極23a,23bは、第2の貫通電極24a,24bを用いて上部固定板2aの上面に引き出されている。第2の貫通電極24a,24bの材質は、シリコンやタングステン、銅等の導体であり、第2の貫通電極24a,24bを保持する周囲の材質は、ガラス等の絶縁体である。
【0028】
更に、Z検出部30の断面は、
図3(b)に示す通りである。すなわち、第3の可動電極31の四隅と矩形枠30aの側壁部とを二対のL字形のビーム部32a,32b,32c,32dで連結することにより、第3の可動電極31が垂直方向に平行移動可能になっている。ビーム部32a,32b,32c,32dの形状は特に限定されるものではないが、L字形にすれば、ビーム部32a,32b,32c,32dを長くすることができる。上部固定板2aの第3の可動電極31と対向する側には第3の固定電極33aが設けられ、下部固定板2bの第3の可動電極31と対向する側には第3の固定電極33bが設けられている。第3の固定電極33aは、第3の貫通電極34aを用いて上部固定板2aの上面に引き出されている。第3の固定電極33bは、矩形領域33b1から突き出した突出領域33b2を備えている(
図2参照)。突出領域33b2は、第3の可動電極31とは分離された柱状の固定電極34cに接続され、柱状の固定電極34cは、上部固定板2aに設けられた第3の貫通電極34bに接続される構成となっている。これにより、柱状の固定電極34c及び第3の貫通電極34bを用いて第3の固定電極33bを上部固定板2aの上面に引き出すことができる。第3の貫通電極34a,34bの材質は、シリコンやタングステン、銅等の導体であり、第3の貫通電極34a,34bを保持する周囲の材質は、ガラス等の絶縁体である。
【0029】
〔X方向の加速度検出〕
静電容量Cは、誘電率をε、電極の対向面積をS、電極の対向ギャップをdとした場合、C=εS/dにより算出することができる。加速度により可動電極が回転すると、対向ギャップdが変化するため、静電容量Cが変化する。そこで、ASIC200により差分容量(C1−C2、C5−C6)をCV変換する。
【0030】
図4は、X方向の加速度が印加されていない状態におけるX検出部10の断面を示している。この場合、
図5に示すように、第1の可動電極11と第1の固定電極13a,13bとの間の静電容量C1,C2は等しくなる。ASIC200は、静電容量C1と静電容量C2の差分値(C1−C2=0)を算出し、X出力として出力する。
【0031】
図6は、X方向に1Gの加速度が印加された状態におけるX検出部10の断面を示している。この場合、
図7に示すように、第1の可動電極11と第1の固定電極13aとの間の静電容量C1は寄生容量+ΔCとなり、第1の可動電極11と第1の固定電極13bとの間の静電容量C2は寄生容量−ΔCとなる。ASIC200は、静電容量C1と静電容量C2の差分値(C1−C2=2ΔC)を算出し、X出力として出力する。
【0032】
このように、X検出部10は、静電容量の変化に基づいてX方向の加速度を検出するようになっている。Y検出部20がY方向の加速度を検出する原理も同様である。
【0033】
〔Z方向の加速度検出〕
図8は、Z方向に1Gの加速度が印加された状態におけるZ検出部30の断面を示している。この場合、
図9に示すように、第3の可動電極31と第3の固定電極33aとの間の静電容量C5は寄生容量+ΔCとなり、第3の可動電極31と第3の固定電極33bとの間の静電容量C6は寄生容量−ΔCとなる。ASIC200は、静電容量C5と静電容量C6の差分値(C5−C6=2ΔC)を算出し、Z出力として出力する。このように、Z検出部30は、静電容量の変化に基づいてZ方向の加速度を検出するようになっている。
【0034】
以上説明したように、本実施形態にかかる加速度センサでは、X検出部10、Y検出部20、及びZ検出部30を1チップ内に配置しているため、直交する3方向の加速度の検出感度を向上させることができる。すなわち、トーション及び平行移動の重りを採用しているため、特許文献1に記載されるような櫛歯状のセンサに比べて、同じ平面サイズでより重い重りを作成することができ、高い検出感度を得ることが可能となる。
【0035】
また、本実施形態にかかる加速度センサでは、XYZの3軸方向の加速度を検出する各重りを1軸の加速度のみを検出する各軸個別の重りとして形成している。そして、平面方向(XY方向)の加速度は、一対のねじりビームを軸にして重りをシーソー動作させることにより検出し、垂直方向(Z方向)の加速度は、一対以上のビームにより保持された重りを垂直方向に平行移動させることにより検出するようにしている。複数チップによる3軸検出では、全チップの合計サイズが大きくなり、また、複数個のチップを実装する必要がある。それに対して、3軸方向の各センサを1チップ内に配置すれば、各センサの周辺領域を共通化することができるため、チップサイズの小型化及び実装するチップ数の低減を図ることが可能である。
【0036】
また、本実施形態にかかる加速度センサでは、X検出部10は、一対のビーム部12a,12bを結ぶ直線を境界線として第1の可動電極11の表面の一方側及び他方側に対向させて第1の固定電極13a,13bを配置している。これにより、第1の可動電極11と第1の固定電極13a,13bとの間の静電容量の変化に基づいてX方向の加速度を検出することができる。また、Y検出部20は、一対のビーム部22a,22bを結ぶ直線を境界線として第2の可動電極21の表面の一方側及び他方側に対向させて第2の固定電極23a,23bを配置している。これにより、第2の可動電極21と第2の固定電極23a,23bとの間の静電容量の変化に基づいてY方向の加速度を検出することができる。更に、Z検出部30は、第3の可動電極31の表面及び裏面に対向させて第3の固定電極33a,33bを配置している。これにより、第3の可動電極31と第3の固定電極33a,33bとの間の静電容量の変化に基づいてZ方向の加速度を検出することができる。
【0037】
このような構成によれば、2電極配置により差分容量を検出することができるため、寄生容量をキャンセルすることが可能である。すなわち、差分容量を検出しない方法では、検出電極間の容量以外に周囲の寄生容量が付加される。そのため、寄生容量部のノイズ影響が発生し、加速度に対する出力の安定性が悪くなる。それに対して、差分容量を検出する方法では、寄生容量がキャンセルされるため、寄生容量の影響を低減することができる。さらに、感度容量の増加量と減少量の差分計算により、直線性の向上を図ることが可能である。
【0038】
また、本実施形態にかかる加速度センサでは、第3の可動電極31の裏面に配置されている第3の固定電極33bが第3の可動電極31とは分離された柱状の固定電極34cを通して第3の可動電極31の上面(一方側)に引き出されているため、実装時の電気接続を容易にすることが可能となる。すなわち、第3の固定電極33bを下面から取り出す場合は、両面実装が必要となる。それに対して、第3の固定電極33bを上面に引き出せば、全電極を上部固定板2aの上面から取り出すことができるため、実装時の電気接続を容易にすることが可能となる。もちろん、加速度センサの小型化を図ることができるという効果もある。
【0039】
また、本実施形態にかかる加速度センサでは、X検出部10、Y検出部20、及びZ検出部30が直線状に配置されている。このような配置によれば、加速度センサの小型化を図ることができる。
【0040】
また、本実施形態にかかる加速度センサでは、Z検出部30が中央に配置され、その両側にX検出部10及びY検出部20が配置されているため、応力状態が安定した構造を作成することができる。すなわち、X検出部10とY検出部20は同形状であるのに対して、Z検出部30は別形状であるため、配置によっては応力状態が不安定になる。それに対して、X検出部10とY検出部20は互いに90°回転させただけの同形状とし、これらを別形状のZ検出部30の両側に配置すれば、応力状態が安定した構造を作成することができる。
【0041】
(第2実施形態)
ところで、Z検出部30に関しては対称構造になっていないため、温度が変化すると、異種材料である上部固定板2aとの結合部に非対称な応力が発生する場合がある。このような場合、非対称な応力によりビーム部32a,32cが変形するため、温度による特性変化が発生する可能性がある。そこで、第2実施形態では、温度による特性変化を低減するため、以下の構成を採用している。
【0042】
図10は、第2実施形態にかかる加速度センサの分解斜視図である。この図に示すように、Z検出部30とX検出部10及びY検出部20との間のフレーム部3のうち、Z検出部30の一対のビーム部32a,32cの付根領域35a,35bが他の領域と比較して僅かに低くなっている。そのため、フレーム部3を上部固定板2a及び下部固定板2bにより挟持しても、付根領域35a,35bが上部固定板2aと分離されることになる。付根領域35a,35bと上部固定板2aとの間の隙間のサイズは特に限定されるものではないが、温度が変化しても付根領域35a,35bと上部固定板2aとが結合しない程度のサイズになっている。このような構成によれば、付根領域35a,35bと上部固定板2aとが結合しないため、応力の影響が低減され、温度による特性変化を低減することが可能となる。
【0043】
図11は、第2実施形態にかかる他の加速度センサの分解斜視図である。この図に示すように、Z検出部30とX検出部10及びY検出部20との間のフレーム部3のうち、Z検出部30を基準として付根領域35a,35bに対称となる対称領域35c,35dが上部固定板2aと分離されていてもよい。対称領域35cの形状、面積、高さは付根領域35aと同程度であり、対称領域35dの形状、面積、高さは付根領域35bと同程度である。これにより、Z検出部30の周囲のフレーム部3が完全に対称構造になるため、上部固定板2aとの結合部に発生する応力のアンバランスを抑制することができ、更に温度による特性変化を低減することが可能となる。
【0044】
以上説明したように、本実施形態にかかる加速度センサでは、フレーム部3が上部固定板2a及び下部固定板2bに挟持された状態において、付根領域35a,35bが上部固定板2aと分離されている。これにより、付根領域35a,35bと上部固定板2aとが結合しないため、応力の影響が低減され、温度による特性変化を低減することが可能となる。このような付根領域35a,35bを形成しても、Z検出部30が中央に配置され、その両側にX検出部10及びY検出部20が配置されているため、矩形枠30a内の気密性を確保することができ、矩形枠30aにゴミ等が混入しない構成となっている。
【0045】
また、本実施形態における加速度センサでは、Z検出部30を基準として付根領域35a,35bに対称となる対称領域35c,35dが上部固定板2aと分離されている。これにより、Z検出部30の周囲のフレーム部3が完全に対称構造になるため、上部固定板2aとの結合部に発生する応力のアンバランスを抑制することができ、更に温度による特性変化を低減することが可能となる。このような対称領域35c,35dを形成しても、Z検出部30が中央に配置され、その両側にX検出部10及びY検出部20が配置されているため、矩形枠30a内の気密性を確保することができ、矩形枠30aにゴミ等が混入しない構成となっている。
【0046】
以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態には限定されず、種々の変形が可能である。例えば、上記各実施形態では、第3の可動電極31の四隅と矩形枠30aの側壁部とを二対のビーム部32a,32b,32c,32dで連結する構成を例示しているが、第3の可動電極31の二隅と矩形枠30aの側壁部とを一対のビーム部32a,32cで連結するようにしてもよい。また、上部固定板2a、下部固定板2b、センサ部1、その他細部のスペック(形状、大きさ、レイアウト等)も適宜変更することが可能である。