(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0021】
以下、本発明に係る各実施形態を、
図1ないし
図10を用いて説明する。
【0022】
〔実施形態1〕
先ず、
図1を用いて本発明の一実施形態に係る変位計測用センサノードを取り付けるための自動張力調整装置の構成について説明する。
図1は、自動張力調整装置の構成を示す図である。
【0023】
上述のように、鉄道路線の架線を維持するために、架線の終端部に自動張力調整装置(テンションバランサ)を設置し、これによって架線の伸縮を吸収し、張力が一定になるようにしている。
【0024】
自動張力調整装置の一つであるスプリング式自動張力調整装置は、スプリングの弾性を利用して架線の張力を調整するものであり、本実施形態の変位計測用センサノードは、このスプリング式の自動張力調整装置の応用したものである。
【0025】
本実施形態の自動張力調整装置100は、
図1に示されるように、スプリング101、スケール102、ゲージ103、スプリング101を収納する筒104で構成され、支柱106に取付けられて、架線を一定の張力に維持する装置である。ここで、スプリング101は、筒104に格納されており、外見上は見えない。
【0026】
また、使用環境に応じて、自動張力調整装置100は多種多様な種類が存在し、種類ごとに自動張力調整装置100、スプリング101、スケール102、ゲージ103のサイズが異なる。
【0027】
スプリング101は、架線105の終端と自動張力調整装置100の中の取り付け点で取り付けられており、張力に応じて伸縮することにより、架線105の張力が一定になるような機能を有する。ここで、自動張力調整装置100に異常がないかを検査するために、定期的にスプリング101の変位量702の最大値と最小値が正常な動作範囲に収まっていることを点検する必要がある。
【0028】
筒104は、スプリング101を格納するためのものである。また、筒104は支柱106に取り付けられているため、スプリング101の伸縮状態に係らず固定位置にある。
【0029】
前述したように、スプリング101は、筒104に格納されているため、点検員は、外見からスプリング101自体の伸縮状態を確認することができない。そこで、
図1に示すように、自動張力調整装置100には、スケール102が取り付けられている。スケール102は、スプリング101に接続されているのでスプリング101の伸縮状況に合わせて、矢印107が示すとおり筒104と水平方向に変位する。また、スケール102には、目盛りが振ってあり、筒104に固定されるゲージ103とスケール102の交差点の目盛りを読むことにより、点検員は、スプリング101の変位量を確認することができる。
【0030】
そして、点検作業においては、スプリング101がスケール102の中心位置を基準点として、どの程度変位したか(中心からの変位量)を計測する必要がある。したがって、スケール102に振られている目盛りは、中心位置が0点となる。
【0031】
図1に示すように、ゲージ103は、筒104に取り付けられているので、スプリング101の伸縮状況に係らず、常に固定位置にある。スプリング101の変位量720が0の場合、スケール102の中心701とゲージ103の位置が一致する。
【0032】
次に、
図2ないし
図5を用いて本発明の第一の実施形態に係る変位計測用センサノードの構成について説明する。
図2は、本発明の第一の実施形態の変位計測用センサノードを、自動張力調整装置に取り付けたときの様子を示す図である。
図3は、変位センサ、スケール、ゲージの位置関係を示した図である。
図4は、制御装置の機能ブロック図である。
図5は、変位センサのハードウェア構成図である。
【0033】
上述のように、従来技術では、作業員が目視により、スケール102に振られている目盛りを読み取って、スプリングの伸縮状況を把握していた。
【0034】
本実施形態では、このスプリング式の自動張力調整装置100に、変位センサを備えた変位計測用センサノードを用いて、電気的にスプリングの変位量を計測するものである。
【0035】
本実施形態のスプリング変位の計測の考え方は、実運用上では、個々の時点における目盛りを読取らなくても、定期的にスプリングの変位量の最大値と最小値が正常な動作範囲に収まっているかを点検し、点検時と点検時の間に異常が発生していないかを確かめるというものである。
【0036】
変位計測用センサノード300は、
図2に示されるように、制御装置301と変位センサ201がケーブル502で接続された形態であり、変位センサ201は、
図2に示されるように、スプリングの変位量を計測するためにスケール102に敷設される。また、制御装置301を筒104の上部に設置する。ただし、これは、便宜上のものであり、変位センサ201とケーブル502が届き、かつ、ゲートウェイと通信できる範囲で任意の場所に敷設してよい。
【0037】
変位計測用センサノード300は、
図4に示されるように、制御装置301と変位センサ201がケーブル502で接続された形態であり、定期的に変位センサ201を用いて自動張力調整装置100のスプリングの伸縮状況を計測し、計測結果をゲートウェイに伝送する。ここで、変位計測用センサノード300とは通信機能を搭載したセンサデバイスであり、ゲートウェイとは変位計測用センサノード300が計測した計測情報を収集するものであり、例えば、各営業車両に搭載され、営業運行中に、変位計測用センサノード300からの計測結果を定期的に受信する。また、鉄道敷地内では、商用電源の確保が難しいため、変位計測用センサノード300は、ソーラバッテリで駆動するので省電力化が要求される。
【0038】
変位計測用センサノード300の制御装置301は、
図4に示されるように、制御部302、クロック303、記録部304、通信部305で構成される。なお、
図4では、太陽電池、キャパシタ等は省略している。
【0039】
制御部302は、制御装置301内のクロック303、記録部304、通信部305、および、接続された変位センサ201を制御する機能を有する。制御部302は、通常、マイクロプロセッサなどの半導体素子により実現される。
【0040】
クロック303は、制御部302に時刻情報を提供する機能を有する。制御部302は、クロック303から取得した時刻情報に基づいて、計測時刻の判定、計測情報の送信時刻の判定、間欠動作時刻の判定をおこなう。
【0041】
記録部304は、後述する計測処理により取得したスプリングの変位量702の最大値と最小値(以下、単に「計測データ」と記す)が記録されている。記録部304は、例えば、フラッシュメモリなどの半導体メモリである。
【0042】
通信部305は、記録部304に記録されている計測データを、ゲートウェイに伝送する機能を有する。
【0043】
本実施形態の変位センサ201は、可変長の構成を有しており、任意の長さで切断して使用することが可能になっている。そこで、スケール102のサイズに合わせて、変位センサ102を任意長で切断し、スケール102に敷設する。
【0044】
前述したように、使用環境に応じて自動張力調整装置100は、多種多様な種類が存在し、種類ごとに自動張力調整装置100、スプリング101、スケール102、ゲージ103のサイズが異なる。
【0045】
したがって、スプリング101の変位量702を計測するための変位センサ201も、自動張力調整装置100の種類に応じて複数種類を用意する必要があり、従来技術の変位センサでは、コストがかかる問題があった。本実施形態では、後に詳細に説明するように、自動張力調整装置100のサイズに合わせて、任意長で切断することができる構成にしたため、一種類の変位センサ201で対応することができ、コストを削減することができる。ただし、任意長で変位センサ201を切断することができるとした際も、計測の基準点として変位センサ201の中心位置701を把握している必要がある。
【0046】
本実施形態の変位センサ201は、
図2に示されるように、ベース210に、磁気センサ202を、一定間隔で線状に並べた構成である。
【0047】
一方、ゲージ103に永久磁石501が設置されており、変位センサ201内の磁気センサ素子202のうち、永久磁石501付近に存在する一個、あるいは数個の永久磁石501からの磁気を感知できるように、永久磁石501の磁力や設置位置が調整されている。
【0048】
基準点は、スケールの中心位置701であり、同時に、変位センサの中心位置にもなっている(以下、単に「中心位置701」ともいう)。ゲージ103が、中心位置701にあるときに、スプリング101の変位量が0であるとしているので、
図3に示されるように、計測されるスプリング101の変位量702は、ゲージ103と中心位置701の距離となる。
【0049】
次に、変位センサ201のハードウェア構成を詳細に説明する。
【0050】
変位センサ201は、既に説明したように、ベース210に、一定の間隔で、磁気を読取るための磁気センサ202が配された形態である。そして、ゲージ103に取り付けられた永久磁石501の磁気を読取ることより、スプリング101の変位量を算出するものである。
【0051】
変位センサ201は、
図5に示されるように、磁気センサ素子202と、磁気センサ素子202に選択的に電源を供給するためのデマルチプレクサ203、抵抗208からなる。
【0052】
デマルチプレクサ203は、選択線207からの信号に従い、一つ以上の磁気センサ素子202のうち、使用する磁気センサ素子202を選択し、電力を供給する回路である。
【0053】
デマルチプレクサ203には、外部の太陽電池などの電源からの電力を供給するために電力供給線204が接続されており、そして、デマルチプレクサ203とi番目(i=1,2,…,N)の磁気センサ素子202(i)は、電力供給線204(i)により、個々に接続されている。そして、選択線207が、i番目の磁気センサ素子202(i)を選択したときには、電力供給線204(i)より、その磁気センサ素子202(i)に電力が供給される。
【0054】
また、磁気センサ素子202の一方には、接地線206と、磁気感知線205が接続されており、i番目の磁気センサ素子202(i)に接続された電力供給線204(i)と、磁気感知線205の間に、抵抗208(i)が磁気センサ素子202(i)と並列に接続されている。
【0055】
磁気センサ素子202は、制御部302がデマルチプレクサ203を制御し、電力供給線204を介して磁気センサ素子202に電力が供給され、かつ、永久磁石501からの磁気を感知した際、磁気感知線205より通知信号を出力する。そして、制御部302は、磁気センサ素子202からの通知信号を受信することにより、当該磁気センサ素子202が磁気を感知したことを把握できる。
【0056】
さらに、磁気センサ素子202は、上述のように、抵抗208(i)が磁気センサ素子202(i)と並列に接続されているため、制御部302が磁気センサ素子202(i)を選択して、電力が供給されたときには、磁気を感知したかに係らず、磁気センサ素子202が存在する場合は、磁気感知線205に電圧が生じる。
【0057】
この電圧は、磁気を感知したときの電圧よりも大きくはなく、互いの状態は区別できるものとする。これにより、磁気感知線205に出力される信号を検知することにより、磁気センサ素子202(i)が磁気を感知した状態と、磁気センサ素子202(i)が磁気を感知していないが、そこに存在する状態、磁気センサ素子202がそこに存在しない状態の三種類の状態を判定することができる。
【0058】
なお、本実施形態では、上記のように、管理番号Nの磁気センサ素子202の電源を投入した際、磁気センサ素子202が存在する場合は、磁気感知線205に電圧が生じ、それにより、磁気センサ素子202の存在の有無を確認にするようにしたが、磁気センサ素子201の有無を確認できるのであれば、この方法に限定されるものではない。
【0059】
次に、
図6ないし
図8Bを用いて本発明の一実施形態に係る変位計測用センサノードの変位計測処理について説明する。
図6は、本発明の第一の実施形態に係る変位計測用センサノードの変位計測の処理を示すゼネラルチャートである。
図7は、変位センサにより、スプリング変位量と変位センサの長さを測定する処理を示すフローチャートである。
図8A,
図8Bは、磁気センサ素子202がゲージ102の永久磁石501に反応しているときの様子を示す図である。
【0060】
変位計測用センサノードは、
図6に示されるように、間欠動作として変位計測をおこない、その結果をゲートウェイに報告する。
【0061】
ここで、ゲートウェイが移動する営業車両に搭載されることを前提とすると、変位計測処理(S401〜S405)は、例えば、1時間に1回程度実行され、ゲートウェイへの測定結果の送信処理は、例えば、4秒ごとに1回程度実行されるものとする。ゲートウェイへの測定結果の送信処理が、変位計測処理に比べて頻繁におこなわれるのは、営業車両が常時移動していることと高速で移動しているので、ゲートウェイに確実に受信させるためである。
【0062】
先ず、変位計測用センサノード300の電源が投入された際など変位計測用センサノード300が初期化された後に、制御部302は、クロック303から時刻情報を取得し、スプリング101の変位を計測する時刻であるか否かを判定する(S401)。
【0063】
次に、制御部302は、記録部304に記録されている計測データ(スプリング101の変位の最大値と最小値)を読み込む(S402)。
【0064】
次に、制御部302は、変位センサ201を用いてスプリング101の変位量702の変位と、スプリング101の長さを計測する。計測の一連の詳細な動作は、
図7を用いて後述する(S403)。
【0065】
次に、制御部302は、S402において記録部304から読み取った計測データ(スプリング101の変位の最大値と最小値)と、S403の手順により取得したスプリング101の変位量702を比較する(S404)。
【0066】
そして、その結果、S402において記録部304から読み取った計測データの最大値より、S402の手順により測定したスプリング101の変位量の方が大きい場合、あるいは、S402において記録部304から読み取った計測データの最小値より、S402の手順により測定したスプリング101の変位量の方が小さい場合には、記録部に計測値を書き込んで、最大値、最小値の更新をおこない(S405)、スリープ処理に移行する(S406)。
【0067】
S402において記録部304から読み取った計測データの最大値、最小値がこれまでの値に収まっているときには、なにもせず変位計測用センサノード300は、自身の消費電力を抑えるためにスリープ状態に遷移する(S406)。ここで言う「スリープ状態」とは、変位計測用センサノード300の記録部304、通信部305、変位センサ201の各々の電源を切断し、消費電力を極力抑えた状態のことである。
【0068】
予め決められた時刻の間、スリープ状態経過後、変位計測用センサノード300は、アクティブ状態に遷移する(S407)。ここで言う「アクティブ状態」とは、変位計測用センサノード300と変位センサ201の各機能が直ちに使用できる状態にあることを言う。
【0069】
次に、制御部302は、クロック303から時刻情報を取得することにより、ゲートウェイに計測データを送信する時刻であるか否かを判定する(S408)。S409において、制御部302が計測データを送信する時刻であると判定した場合は、制御部302は、記録部304から計測データを読み込み(S409)、次に、通信部305を制御することにより、ゲートウェイに計測データを送信する(S410)。
【0071】
S409において、制御部302が計測データを送信する時刻でないと判定した場合は、S409とS410の処理をおこなわずに、S401に戻る。
【0072】
次に、
図7ないし
図8Bを用いて変位センサにより、スプリングの変位量と変位センサの長さを測定する処理について説明する。
【0073】
これは、
図6に示したS403の処理を詳細に説明するものである。
【0074】
先ず、スプリング101の変位量702と変位センサ201の長さを計測する処理の概要について説明する。
【0075】
スプリング101の変位量702を計測する際、制御部302は、
図3に示した変位センサ201の左端の磁気センサ素子202の電源を投入する。次に、電源を投入した磁気センサ素子202が、永久磁石501からの磁気を感知するか判定し、磁気を感知した場合は当該磁気センサ素子202の付近に、永久磁石501があるものと判定する。これにより、ゲージ103と変位センサ201の位置関係が分かり、スプリング101の変位量702を求めることができる。
【0076】
一方、当該磁気センサ素子202が磁気を感知しない場合は、付近に永久磁石501がなかったために磁気を感知しなかったのか、任意長で変位センサ201が切断されていたために、当該磁気センサ素子202自身が存在しなかったのかを判定する。すなわち、
図5に示した磁気感知線205で磁気を感知しなかったときでも、一定の信号が計測できるので、磁気センサ素子202の存在を判定することができる。磁気センサ素子202の有無を判定することにより、変位センサ201の長さを求めることができる。
【0077】
判定後、当該磁気センサ素子202の電源を切断し、一つ右隣の磁気センサ素子202の電源を投入し同様の処理をおこなう。
【0078】
以上のように、左端の磁気センサ素子202から順番に、永久磁石501からの磁気を感知するか、さらに変位センサ201がどこで切断されているかの調査をおこなう。
【0079】
ただし、本実施形態は、便宜上、左端の磁気センサ素子202から一つずつ磁気感知処理を行うが、ひとつずつ電源を投入するのであれば、任意の磁気センサ素子202から磁気感知を開始してもよい。
【0080】
ここで磁気センサ素子202には、一意に管理番号が割り振られているものとし、ここでは、便宜上、左端の磁気センサ素子202の管理番号を1、右隣の磁気センサ素子202の管理番号を2とし、以下、1ずつ増加するものとする。そして、磁気センサ素子202のとりうる管理番号の最大値をMとする。これは、変位センサ201を切断しないときの磁気センサ素子202がちょうどM個で構成されていることを意味する。
【0081】
先ず、制御部302は、管理番号Nに1をセットする(S601)。
【0082】
次に、制御部は、管理番号Nが磁気センサ素子202の総数であるM以下であるかを判定する(S602)。ここで、管理番号NがMを超えたときには計測を終了する。
【0083】
次に、制御部302は、管理番号Nの磁気センサ素子202の電源を投入する(S603)。初回は、管理番号Nが1であるから、左端の磁気センサ素子202(1)の電源を投入することとなる。
【0084】
次に、制御部302は、管理番号Nの磁気センサ素子202(N)が永久磁石501からの磁気を感知したか否かを判定する(S604)。ここで、磁気センサ素子202が磁気を感知した場合、磁気感知線205を介して制御部302に磁気を感知したことを通知するので、制御部302は磁気センサ素子202が磁気を感知したか否かを判定することができる。
【0085】
判定の結果、S604において、管理番号Nの磁気センサ素子202(N)が永久磁石501からの磁気を感知した場合は、制御部302は、記録部304にそのNを記録する(S605)。
【0086】
磁気センサ素子202がゲージ102の永久磁石501に反応しているときの様子を、場合に分けて示すと、
図8Aおよび
図8Bに示されるようになる。
【0087】
ここで、磁気センサ素子202と磁気センサ素子202の間の距離をδ、永久磁石501が磁気センサ素子202に磁気を感じさせることのできる距離をDとする。ただし、この距離は、磁気センサ素子202の横の長さに半分の位置に来たときに、その磁気センサ素子202に磁気を感じさせることができるものとする。
【0088】
実用上のスケールとしては、例えば、変位センサ201の全長が100[mm]〜、δ=20[mm]で、磁気センサ素子202の一辺は、0.5[m]程度である。
【0089】
ここで、D=δとすると、
図8A(a)のように、N−1番目の磁気センサ素子220(N−1)と、N番目の磁気センサ素子220(N)が磁気を感じるときと、
図8A(b)のように、N番目の磁気センサ素子220(N)だけが磁気を感じるときがある。
【0090】
図8A(a)のときは、永久磁石501が磁気センサ素子220(N−1)と、N番目の磁気センサ素子220(N)のちょうど中点にきたときであり、永久磁石501の変位センサ201の端からの距離Ltは、以下の(式1)で表される。ただし、変位センサ201の左端と左端の磁気センサ素子220(1)の距離は無視できるものとする。
【0091】
Lt=(N−2)δ+(δ/2)=(N−3/2)δ …(式1)
図8A(b)のときは、永久磁石501がN番目の磁気センサ素子220(N)の近傍にあるときであり、永久磁石501の変位センサ201の端からの距離Ltは、以下の(式2)で表される。
【0092】
(N−3/2)δ<Lt<(N+3/2)δ …(式2)
また、別の場合として、D=2δとすると、
図8B(a)のように、N−2番目の磁気センサ素子220(N−2)と、N−1番目の磁気センサ素子220(N−1)と、N番目の磁気センサ素子220(N)が磁気を感じるときと、
図8B(b)のように、N−1番目の磁気センサ素子220(N−1)と、N番目の磁気センサ素子220(N)が磁気を感じるときが磁気を感じるときがある。
【0093】
図8B(a)のときは、永久磁石501がN−1番目の磁気センサ素子220(N−1)のちょうど真ん中にきたときであり、永久磁石501の変位センサ201の端からの距離Ltは、以下の(式3)で表される。
【0094】
Lt=(N−2)δ …(式3)
図8B(b)のときは、永久磁石501がN−1番目の磁気センサ素子220(N−1)と、N番目の磁気センサ素子220(N)の中点の近傍にあるときであり、永久磁石501の変位センサ201の左端からの距離Ltは、以下の(式4)で表される。
【0095】
(N−2)δ<Lt<(N−1)δ …(式4)
また、Dが他の値であっても永久磁石501が磁気を感じる素子の管理番号を記録することにより、距離Ltを算出しうる。
【0096】
次に、管理番号Nの磁気センサ素子202(N)が磁気を感知しなかった場合には、磁気センサ素子202(N)の電圧を検知するか否かを判定する(S608)。
【0097】
S605において、磁気センサ素子202が磁気を感知しなかった場合、付近に永久磁石501がなかったため磁気を感知しなかったのか、変位センサ201が切断されているために磁気センサ素子202自体がなかったのか分からない。
【0098】
しかしながら、前述したとおり磁気センサ素子202には、電力供給線204と磁気感知線205を接続するように抵抗208が接続されているために、磁気センサ202自体が存在する場合は、磁気感知線205に電圧が生じる。そこで、制御部302は磁気感知線205の電圧を計測することにより、磁気センサ素子202の有無を検出することができる。
【0099】
磁気センサ素子202(N)の電圧を検知するか否かを判定し(S608)、磁気センサ素子202(N)の電圧を検知されないときには、制御部302は、変位センサ202の中心位置を算出する(S609)。
【0100】
磁気センサ素子202(N)の電圧を検知されないときは、管理番号Nの磁気センサ素子202(N)が存在せず、右端が管理番号N−1の磁気センサ素子202(N−1)の場合なので、変位センサの長さLsは、磁気センサ素子202の設置間隔δと(N−2)を乗算したものが変位センサの長さとなる。ただし、変位センサ201の左端と左端の磁気センサ素子220(1)の距離と、変位センサ201の右端と右端の磁気センサ素子220(N−1)の距離は無視できるものとする。
【0101】
したがって、それに2で除算したものが変位センサ201の中心701となる。すなわち、変位センサ201の両端からの中心701の距離Lcは、以下の(式5)で表される。
【0102】
Lc=(N−2)δ/2 …(式5)
そして、制御部302は、スプリング101の中心からの変位量702を求め(S610)、処理を終了する。
【0103】
スプリング101の中心からの変位量702をΔとすると、変位センサ201の両端からの中心701の距離Lcと、永久磁石501の変位センサ201の左端からの距離Ltにより、以下の(式6)により表される。
【0104】
Δ=Lt−Lc …(式6)
(式6)では、左方向の変位をプラス、右方向の変位をマイナスとしている。
【0105】
一方、磁気センサ素子202(N)の電圧を検知するか否かを判定し(S608)、磁気センサ素子202(N)の電圧を検知されたときには、管理番号Nの磁気センサ素子202(N)が存在するときなので、管理番号Nの磁気センサ素子202(N)の電源を遮断し(S606)、管理番号Nを1加算して(S607)、S602に戻り、次の磁気センサ素子202の計測をおこなう。
【0106】
本実施形態では、変位計測時において、全ての磁気センサ素子202の電源を投入するのではなく、左端の磁気センサ素子202から、一つずつ電源を投入し磁気計測をおこなう例を説明した。その際、自動張力調整装置100やスケール102のサイズに合わせて、変位センサ201は途中で切断されているために、磁気を検出すると共に、変位センサ201の長さも求める一連の動作例を説明した。
【0107】
スプリング101の変位量702を計測していない間は、変位センサ201の電源を切断することが可能であり、さらに、変位量702を計測中であっても、一つの磁気センサ素子202の電源を投入するだけなので、変位計測用センサノード300の省電力化が可能となる。
【0108】
さらに、変位センサ201は任意の長さで切断することが可能であり、自動張力調整装置100やスケール102のサイズに係らず一種類の変位センサ201で対応可能となり、大幅なコスト削減をすることが可能となる。
【0109】
〔実施形態2〕
以下、本発明に係る第二の実施形態を、
図9および
図10を用いて説明する。
図9は、本発明の第二の実施形態に係る変位計測用センサノードの変位計測の処理を示すゼネラルチャートである。
図10は、初回計測時に変位センサにより、変位センサの長さを測定する処理を示すフローチャートである。
【0110】
第一の実施形態では、変位計測する度に全ての磁気センサ素子202の電源を一つずつ投入し、磁気を感知するか、さらに磁気センサ素子202の有無の確認作業処理を実施した。実運用では、一度、スケール102に変位センサ102を敷設した後は、変位センサ201を再び切断することはない。したがって、本実施形態では、初回計測のみ磁気センサの有無を確認することにより磁気センサの長さを算出する方法について説明する。
【0111】
本実施形態では、初回計測のみ磁気センサ素子202の有無の確認をおこなうので、変位計測処理をより高速化することができる。
【0112】
本実施形態は、第一の実施形態の変位計測用センサノードのシステム構成は、同じであり、計測処理が異なるものであり、計測処理の相違点を中心に説明する。
【0113】
図9は、本発明の第二の実施形態に係る変位計測用センサノードの変位計測の処理を示したゼネラルチャートであるが、第一の実施形態の
図7と比較して、S604で、磁気検出があるか否かを判定した後、磁気検出がされなかったときに、S608の電圧検知をおこなわず、S606に行くことが異なっている。
【0114】
そして、管理番号Nを記録し、処理の終了前に、スプリング101の変位量を算出する(S610)。
【0115】
また、ここで与える最大値のMは、
図10に示された初回計測時に求められる磁気センサ素子202の管理番号である。
【0116】
初回の計測時には、管理番号Nを1にセットし、Mに初期値として、0をセットする(S901)。
【0117】
制御部302は、管理番号Nの磁気センサ素子202(N)の電源を投入する(S902)。最初は、管理番号Nは、1であるから、左端の磁気センサ素子202(1)の電源を投入することとなる。
【0118】
次に、制御部302は、管理番号Nの磁気センサ素子202(N)の電圧を検知するか否かを判定する(S903)。
【0119】
第一の実施形態でも説明したように、磁気センサ素子202が存在する場合は、磁気感知線205に電圧が生じる。制御部302は、この電圧を感知することにより、磁気センサ素子202の存在の有無を確認にすることができる。
【0120】
制御部302は、管理番号Nの磁気センサ素子202(N)の電圧を検知したときには、記憶部304に、Nを記憶する(S904)。
【0121】
次に、制御部302は、Mに、Nの値を代入する(S905)。
【0122】
次に、制御部302は、管理番号Nの磁気センサ素子202(N)の電源を遮断する(S906)。
【0123】
そして、次に管理番号の磁気センサ素子202の存在を判定するために、Nに1を加算し(S907)、S903に戻る。
【0124】
制御部302は、管理番号Nの磁気センサ素子202(N)の電圧を検知しなかったときには、処理を終了する。
【0125】
このときのMの値が、変位センサ201の磁気センサ素子202の個数であり、
図9の処理に渡される値である。
【0126】
第一の実施形態では、変位量の計測をする度に全ての磁気センサ素子202の電源を一つずつ投入し、磁気を感知するか、さらに磁気センサ素子202の有無の確認作業処理を実施した。
【0127】
実運用では、一度、スケール102に変位センサ201を敷設した後は、変位センサ201を再び切断することはない。したがって、本実施形態のように、初回の計測のみ変位センサ201の長さ(磁気センサ素子202の総数M)を求め、2回目以降の変位計測では上記の処理を省略することにより、より高速化することができる。