(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6035467
(24)【登録日】2016年11月11日
(45)【発行日】2016年11月30日
(54)【発明の名称】反射型エンコーダ
(51)【国際特許分類】
G01D 5/347 20060101AFI20161121BHJP
G01D 5/38 20060101ALI20161121BHJP
【FI】
G01D5/347 110U
G01D5/38 A
【請求項の数】1
【全頁数】8
(21)【出願番号】特願2014-71757(P2014-71757)
(22)【出願日】2014年3月31日
(65)【公開番号】特開2015-194365(P2015-194365A)
(43)【公開日】2015年11月5日
【審査請求日】2015年2月2日
【早期審査対象出願】
【前置審査】
(73)【特許権者】
【識別番号】000240477
【氏名又は名称】並木精密宝石株式会社
(73)【特許権者】
【識別番号】000101385
【氏名又は名称】アダマンド株式会社
(73)【特許権者】
【識別番号】514082309
【氏名又は名称】澤田 廉士
(72)【発明者】
【氏名】澤田 廉士
(72)【発明者】
【氏名】竹下 俊弘
(72)【発明者】
【氏名】岩崎 拓真
(72)【発明者】
【氏名】石川 正紀
(72)【発明者】
【氏名】岡本 千尋
(72)【発明者】
【氏名】青柳 智英
【審査官】
吉田 久
(56)【参考文献】
【文献】
特開2004−28776(JP,A)
【文献】
特開2008−249456(JP,A)
【文献】
特開2007−263711(JP,A)
【文献】
特開2007−232681(JP,A)
【文献】
特開2011−179938(JP,A)
【文献】
特開2011−99869(JP,A)
【文献】
特開2011−59004(JP,A)
【文献】
特開平10−38517(JP,A)
【文献】
特開平7−55424(JP,A)
【文献】
澤田 廉士 Renshi SAWADA,“MEMS技術を用いて開発した超小型レーザ変位センサとその応用 Micro Sensors Developed by Using Optical MEMS Technology and their Applications”,日本機械学会誌,一般社団法人日本機械学会,2013年 1月 5日,Vol.116, No.1130,p.37-42
(58)【調査した分野】(Int.Cl.,DB名)
G01D 5/26−5/38
(57)【特許請求の範囲】
【請求項1】
レーザー受光部と、当該受光部に対向配置され、スケールの移動又は回転に伴い当該受光部表面に対して平行に移動する回折格子とを有し、
別途設けたレーザー発振器から前記回折格子への単一の入射光を、当該回折格子を介して前記受光部に出射する反射型エンコーダであって、
前記受光部及びレーザー発振器と、回折格子と、の間及び前記入射光の光路上に複数の回折格子を有する干渉光学系を設けた反射型エンコーダ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、スケールの移動に伴い、当該スケールからの反射光を受光部が受けてスケールの変位を測定する反射型エンコーダに関する。
【0002】
現在、産業用ロボット等に搭載されているステッピングモータには、その回転角度等を高精度に測定する高分解能な光エンコーダが用いられている。これらのエンコーダはその構造から、スケールにスリット等を設けて出射光を変化させ、当該スケールを挟んで配置した受光部に入射する出射光の変化によってスケールの変位を測定する透過型エンコーダと、前記スケールに設けたミラーからの反射光を出射光と同じ側に設けて受光部に入射させ、当該測定を行う反射型エンコーダとに分けられる。これらのうち、先に述べた産業用ロボットの分野ではマニピュレータ部分等、小型化が要求される箇所に反射型エンコーダが多く用いられており、代表的な小型、高分解能の構造として特開平05−215515(以下特許文献1として記載)及び特許4008893(以下特許文献2として記載)がそれぞれ出願後、公開及び登録されている。
【0003】
これら2件のうち、特許文献1記載のエンコーダはスケールとして反射型回折格子を用いており、出射光用光源として使用する半導体レーザーを横配置としたことをその技術的特徴としている。この為、特許文献1記載のエンコーダでは半導体レーザーの両端から出る出射光用いて複数のスケールを同時に測定することが可能となっている。また、特許文献2記載のエンコーダでは同様の基本構造を用いた上で、前記出射光の光強度分布が一定値となるように半導体レーザーを配置し、スケールの移動に対して高精度の回折光を得ることを可能にしている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平05−215515
【特許文献2】特許4008893
【発明の概要】
【発明が解決しようとする課題】
【0005】
上述した従来の発明は、それぞれ独自の技術的特徴及びそれによる効果を有している反面、1つの出射光によって移動量と移動方向とを検出することができず、当該検出にはスケールに用いる反射型回折格子を2列構成としなければならない。この為、上記構造をロータリーエンコーダとして使用する際には、その内外周差から、ピッチ間隔が狭い内周側コードホイールのピッチによって分解能の上限が規定されてしまうという課題を有していた。
【0006】
加えて、特許文献1及び2記載の反射型エンコーダでは、シリコン単結晶基板等を使用しており、半導体レーザーからの出射光を反射する反射部を形成する手段として、異方性エッチングによる加工が多く用いられる。この為、特許文献1及び2記載の反射型エンコーダの多くは結晶方位によって規定される角度から前記反射部の反射角が決定される構造となっている。これに伴い、当該反射型エンコーダの多くはスケールに用いる反射型回折格子のピッチが当該反射角に対応したピッチに限定されると共に、検出部―移動側回折格子間の距離もまた当該角度によって決定され、結果として設計の自由度低下という課題が発生してしまう。また、前記反射型エンコーダでは、当該距離の変化によって回折格子の移動を検出するための干渉もまた変化してしまう為、実際の使用に際して当該距離の変動に弱い構造となり、計測時に於ける信頼性が低下するという課題も有している。更に、上述した構造の為、当該エンコーダを取り付ける対象は、測定する部分のガタツキが無く、高精度なものに限定される。加えて、上記従来の反射型エンコーダを実際に動作させるためには複雑な配線・三次元構造としなければならず、作製には極めて高度な技術が必要になると共に、前記マニピュレータ部分等の用途に対応した小型化が難しくなってしまう。
【0007】
上記課題に対して本願記載の発明では、1つの出射光によって移動量と移動方向との双方を検出可能で、簡単な構造により信頼性が高く小型化が容易な反射型エンコーダの提供を目的としている。
【課題を解決するための手段】
【0008】
上記目的のために本発明に於ける第1の態様記載の発明は、レーザー受光部と、当該受光部に対向配置され、スケールの移動又は回転に伴い当該受光部表面に対して平行に移動する回折格子とを有し、別途設けたレーザー発振器から前記回折格子への入射光を、当該回折格子を介して前記受光部に出射する反射型エンコーダに於いて、前記受光部−回折格子間に干渉光学系を設けたことを特徴としている。より具体的には、前記干渉光学系によってスケール側に設けた反射型回折格子が反射する2つの回折光間に位相差を与え、当該回折光と出射光とを干渉させることを可能にする構成としたことをその技術的特徴としている。
【0009】
また、本発明に於ける第2の態様記載の発明は、前記干渉光学系に複数の回折格子を有する部材を用いたことをその技術的特徴としている。
【発明の効果】
【0010】
上述した技術的特徴によって本願記載の発明は、1つの出射光による移動量と移動方向の双方を検出すると共に、簡単な構造により小型化が容易となる反射型エンコーダを提供することができる。これは、本願記載の反射型エンコーダが受光部−回折格子間に干渉光学系を設けたことによる効果となっている。即ち、本願記載の反射型エンコーダは当該干渉光学系を用いることによって、前記反射型回折格子から反射される2つの回折光に位相差を与える構成とすることを可能にしている。この為、本願記載の反射型エンコーダでは前記反射型回折格子によって回折された2つの回折光に位相差を与え、当該位相差を加えた2つの回折光と光源からの出射光とを干渉させることで、1つの出射光から移動量と移動方向の双方を検出することができる。
【0011】
より具体的には、本願記載の反射型エンコーダは、受光部−回折格子間に干渉光学系を設けることで、前記反射型回折格子によって回折された2つの回折光に位相差を与え、当該各回折光と光源からの出射光とを干渉させて、単一の光源及び反射型回折格子から移動量と移動方向の双方を検出する構成としている。この為、前記反射型回折格子への入射光について、前記出射光をレンズで平行光とした後に前記反射型回折格子に対して垂直な方向に入射させることにより、前記回折格子ピッチの限定に起因する距離の制限を無くし、前記反射型回折格子からの回折光が受光部の受光範囲に入射することを動作の条件とする、より広い自由度での設計と共に本願記載の反射型エンコーダを機能させることが可能となる。
【0012】
また、上記構成とすることによって、本願記載の反射型エンコーダは前記反射型回折格子への入射光を1本のみとすることが可能となり、前記スケール側に設ける反射型回折格子についてもまた、1列のみの構成とすることができる。この為、当該構成によって上記従来の反射型エンコーダの構造を簡略化すると共に、搭載するモータ及び各種アクチュエータに合わせて容易に小型化することができる。加えて、前記反射型回折格子への入射光を1本のみとすることによって、本願記載の反射型エンコーダでは回折格子に対する入射光の入射方向を垂直にする事ができる。この為、本願記載の反射型エンコーダを用いることで、前述した反射部を異方性エッチングによって形成した際に生じる信頼性の低下という課題を解決することが可能となっている。
【0013】
また、本発明第2の態様を用いることで、前記干渉光学系とは別に前記位相差を加えた回折光と光源からの出射光との干渉を高い精度と少ない部品点数によって構成することができる。
【0014】
以上述べたように、本願請求項記載の構造を用いることによって、1つの出射光によって移動量と移動方向との双方を検出可能で、簡単な構造により信頼性が高く小型化が容易な反射型エンコーダを提供することができる。
【図面の簡単な説明】
【0015】
【
図1】本発明の実施形態に於いて用いる反射型エンコーダの透過斜視図
【
図2】
図1に於いて示した反射型エンコーダの光路を示す説明図
【
図3】
図1に於いて示した反射型エンコーダの基本光路を示す説明図
【
図4】
図1に於いて示した反射型エンコーダのモニタ信号に関わる光路を示す説明図
【
図5】
図1に於いて示した反射型エンコーダのZ信号に関わる光路を示す説明図
【
図6】
図1に於いて示した反射型エンコーダの基本原理を示す説明用側面図
【発明を実施するための形態】
【0016】
以下に、
図1、
図2、
図3、
図4、
図5及び
図6を用いて、本発明に於ける最良の実施形態を示す。尚、図中の記号及び部品番号について、同じ部品として機能するものには共通の記号又は番号を付与している。
【0017】
図1に本実施形態に於いて用いる反射型エンコーダの透過斜視図を、
図2−
図5に同反射型エンコーダの全体及び各光路を示す説明図を、そして
図6に当該反射型エンコーダの基本原理を示す説明用側面図を、それぞれ示す。尚、各素子の回路、ロータとして機能するスケール9、エンコーダ全体の支持構造及び、スケール上に設けた反射型回折格子4の全体については、図中での記載を省略している。
【0018】
図1及び
図2及び
図3から解るように、本実施形態ではサブマウント8上に配置した半導体レーザー1及び4個の受光部7a−7dと、ロータとして機能する円板形状のスケール9上に設けた反射型回折格子4及び反射体6aとの間に、レンズ2、透過型回折格子3a−c、位相シフタ5、反射体6b、6cを有する干渉光学系10を設けた構造となっている。尚、反射型回折格子4は円環状に形成されており、図中ではその一部のみを記載している。
【0019】
図2及び
図3、
図6から解るように、本実施形態では半導体レーザー1から出射した出射光をレンズ2で平行光とし、透過型回折格子3aを介した3本の一次回折光のうち中心の一次回折光がスケール9の反射型回折格子4及び反射体6aに入射させる構成となっている。尚、
図2、
図3及び
図6から解るように、透過型回折格子3aを透過した
図2中左側の一次回折光はその一部が反射体6bによって反射され、受光部7cに入射することでモニター信号としての機能を付与されると共に、反射されなかった部分についても反射体6cによって反射され、透過型回折格子3aに入射する構成となっている。また、
図6中右側の一次回折光については反射体6dによって反射され、前記左側と同様に透過型回折格子3aに入射する。
【0020】
続いて
図2、
図3及び
図6に示すスケール9の反射型回折格子4から他の受光部への光路について、本実施形態では反射型回折格子4から反射された2本の二次回折光のうち、一方は位相シフタ5によって90度位相をずらされた後、透過型回折格子3bを介して再度透過型回折格子3aに入射し、前記反射体6cによって反射された一次回折光と干渉して受光部7aに入射する。当該2本の二次回折光のうち、もう一方は透過型回折格子3cを介して再度透過型回折格子3aに入射し、前記反射体6dによって反射された一次回折光と干渉して受光部7bに入射する為、受光部7aと7bの出力からスケール9の回転量と回転方向とを得ることができる。
【0021】
この様な構造を用いたことで本実施形態記載の反射型エンコーダは、1つの出射光によって移動量と移動方向との双方を検出可能で、簡単な構造により信頼性が高く容易に小型化することが可能となった。即ち、本実施形態ではスケール9に入射するレーザーは1本のみとなっている。この為、当該スケール9に設ける反射型回折格子4は1列のみの構成となり、先に述べた分解能の上限といった制限を課せられる事無く、スケール9の変位を測定することができた。
【0022】
加えて、
図2、
図4及び
図5から解るように、本実施形態ではスケール9及び干渉光学系10について、それぞれ入射光の一部のみを反射する反射体6a及び6bを設けている。これに伴い、反射体6bによって反射された一次回折光は受光部7cに、反射体6aによって反射された一次回折光は受光部7dに、それぞれ入射する構造となる。ここで、反射体6bからの信号は半導体レーザー1の動作中、受光部7cへと出力され、反射体6aからの信号はスケール9が1回転する毎に受光部7dへ出力される。この為、本実施形態では前記変位の測定という機能を保ったまま、受光部7cから得られるモニター信号による動作状況の確認と、受光部7dから得られるZ信号の検出による回転回数のカウントとを行うことが可能となった。
【0023】
また、本実施形態では全ての光学要素を基板上に構成しており、干渉光学系もまた、各光学要素を構成する基板11を用いて側壁を兼ねたスペーサ12上に構築されている。これらの要素の配置は原則的に二次元的な位置調整だけで光学系の調心を行うことができる為、光学系の構築を容易に行うことが可能となる。加えて、本実施形態では発光素子となる半導体レーザー1及び受光部7a−7dを全て同じ層に配置した構造となっている。この為、本実施形態に於いて、電気的な配線は三次元的な取り回しを必要とせず、それに伴う複雑な構成もまた必要としない為、光学系のみならず、回路系も含めて簡単な構造とすることができた。
【0024】
加えて、
図6から解るように、本実施形態では発光素子である半導体レーザー1から出射したレーザーは、レンズ2で平行光とされた後、反射型回折格子4に対して垂直な方向に入射する。この為、本実施形態記載のエンコーダでは検出部(受光部7a−7d)−移動側回折格子(反射型回折格子4)間の距離について制限が無く、回折光が受光部7a−7dの受光範囲面に入射することを動作の条件とする、より広い自由度での設計と共に本実施形態記載の反射型エンコーダを機能させることが可能となる。
【0025】
以上述べたように、本願実施形態記載の構造を用いることによって、1つの出射光によって移動量と移動方向との双方を検出可能で、簡単な構造により信頼性が高く小型化が容易な反射型エンコーダを提供することができた。
【符号の説明】
【0026】
1 半導体レーザー
2 レンズ
3a、3b、3c 透過型回折格子
4 反射型回折格子
5 位相シフタ
6a、6b、6c、6d 反射体
7a、
7b、7c、7d 受光部
8 サブマウント
9 スケール
10 干渉光学系
11 基板
12 スペーサ