(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6039871
(24)【登録日】2016年11月11日
(45)【発行日】2016年12月7日
(54)【発明の名称】空気調和機
(51)【国際特許分類】
F24F 1/00 20110101AFI20161128BHJP
F24D 3/00 20060101ALI20161128BHJP
F24F 11/02 20060101ALI20161128BHJP
【FI】
F24F1/00 331
F24D3/00 B
F24F11/02 102F
【請求項の数】1
【全頁数】8
(21)【出願番号】特願2013-143724(P2013-143724)
(22)【出願日】2013年7月9日
(65)【公開番号】特開2015-17724(P2015-17724A)
(43)【公開日】2015年1月29日
【審査請求日】2015年12月22日
(73)【特許権者】
【識別番号】000000538
【氏名又は名称】株式会社コロナ
(72)【発明者】
【氏名】中倉 俊和
(72)【発明者】
【氏名】山口 正巳
【審査官】
佐藤 正浩
(56)【参考文献】
【文献】
特開2012−141113(JP,A)
【文献】
特開2010−159926(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F24F 1/00
F24D 3/00
F24F 11/02
(57)【特許請求の範囲】
【請求項1】
圧縮機、四方弁、室内熱交換器、膨張弁、室外熱交換器等を冷媒配管で連結して冷凍回路を構成し、前記室内熱交換器と並列に水−冷媒熱交換器を接続し、この水−冷媒熱交換器と温水タンク、循環ポンプと床暖房等の暖房用熱交換器を温水配管で接続して温水回路を形成し、前記冷凍回路の切換によって室内機での冷房運転や暖房運転を行い、前記温水回路によって床暖房等の温水暖房を行う空気調和機に於いて、
前記室外熱交換器は上部冷媒流路と下部冷媒流路の2つの冷媒流路を設け、
前記冷凍回路は四方弁と室内熱交換器の間に二方弁Cを、
前記室内熱交換器と下部冷媒流路の間に膨張弁Bを、
前記水−冷媒熱交換器と下部冷媒流路の間に膨張弁Aを、
前記上部冷媒流路と下部冷媒流路を接続する冷媒配管に膨張弁Dを、
この膨張弁Dと上部冷媒流路の間の冷媒配管と圧縮機と四方弁の間の冷媒配管をバイパス管せ接続し、このバイパス管を開閉する二方弁Eを設け、
冷房運転では前記四方弁を冷房側に、膨張弁Aは全閉に、膨張弁Bは冷房能力に応じた開度に、二方弁Cは開き、膨張弁Dは全開に、二方弁Eは閉じることで、室内機にて冷房運転を行い、
室内機単独の暖房運転では前記四方弁を暖房側に、膨張弁Aは微開に、膨張弁Bは全開に、二方弁Cは開き、膨張弁Dは暖房能力に応じた開度に、二方弁Eは閉じることで、室内機にて暖房運転を行い、
床暖房単独の暖房運転では前記四方弁を暖房側に、膨張弁Aは全開に、膨張弁Bは全閉に、二方弁Cは閉じ、膨張弁Dは暖房能力に応じた開度に、二方弁Eは閉じることで、床暖房運転を行い、
室内機と床暖房の併用暖房運転では前記四方弁を暖房側に、膨張弁Aは暖房能力に応じた開度に、膨張弁Bも暖房能力に応じた開度に、二方弁Cは開き、膨張弁Dは暖房能力に応じた開度に、二方弁Eは閉じることで、室内機と床暖房の併用暖房運転を行い、
暖房運転での除霜運転では前記四方弁を暖房側に、膨張弁Aは暖房能力に応じた開度に、膨張弁Bも暖房能力に応じた開度に、二方弁Cは開き、膨張弁Dは暖房能力に応じた開度に、二方弁Eは開くことで、室内機と床暖房の併用暖房運転を継続しながら除霜を行うことを特徴とする空気調和機。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、夏期には冷媒循環による冷房運転を、冬期には冷媒循環による暖房運転と床暖房等の温水循環による温水暖房運転を同時に行う空気調和機に関するものである。
【背景技術】
【0002】
従来の空気調和機では、室外機を水平仕切板で上下に分割し、この仕切板の下部に冷凍回路室を、上部に温水回路室を形成し、前記冷凍回路室には圧縮機、膨張弁、蒸発器、送風ファン等を備え、前記温水回路室には水−冷媒熱交換器、温水タンク、循環ポンプと温水ヘッダーを備え、この温水ヘッダーと室内熱交換器を備えた室内機を温水連絡配管にて接続し、前記圧縮機、水−冷媒熱交換器、膨張弁、蒸発器等を接続して冷媒循環回路を形成し、前記水−冷媒熱交換器、温水タンク、循環ポンプ、温水連絡配管、室内熱交換器を接続して温水循環回路を形成し、前記冷媒循環回路にて蒸発器から汲み上げた熱を、水−冷媒熱交換器で温水循環経路に伝達し、前記室内熱交換器にて室内へ放熱して暖房を行うヒートポンプ式温水暖房装置に於いて、前記蒸発器をフィンチューブ式の熱交換器で形成し、前記水−冷媒熱交換器と膨張弁の間の冷媒循環回路に放熱器を前記蒸発器と一体に設けると共に、前記放熱器を蒸発器の風下側下端に位置させたことによって、暖房運転時の除霜運転で霜の溶け残りを防止することができ、除霜の効率を向上させることができる。
また、吐出圧力の上昇を抑え、圧縮機の消費電力増加を抑えることができ、高COPを実現できるものだった。(例えば、特許文献1参照)
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2010-144965号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
この従来例のヒートポンプ式温水暖房装置の室外熱交換器は、暖房運転では圧縮機の消費電力増加を抑えることができ、高COPを実現できるものだったが、冷房運転を行うことができなかった。また、この冷凍回路を利用して、水−冷媒熱交換器に並列に室内熱交換器を接続して、夏期には冷却された室内熱交換器からの冷風によって室内の冷房運転を行い、冬期には加熱された室内熱交換器からの温風による暖房運転と、水−冷媒熱交換器を経由した温水回路からの温水で行う床暖房運転と、前記温風による暖房運転と熱交換温水で行う床暖房運転を同時に行う併用暖房運転が行うことができるが、室内熱交換器を通過する冷媒量と水−冷媒熱交換器を通過する冷媒量を適確に調整する必要があった。
【課題を解決するための手段】
【0005】
この発明はこの点に着目し上記欠点を解決する為、特にその構成を、圧縮機、四方弁、室内熱交換器、膨張弁、室外熱交換器等を冷媒配管で連結して冷凍回路を構成し、前記室内熱交換器と並列に水−冷媒熱交換器を接続し、この水−冷媒熱交換器と温水タンク、循環ポンプと床暖房等の暖房用熱交換器を温水配管で接続して温水回路を形成し、前記冷凍回路の切換によって室内機での冷房運転や暖房運転を行い、前記温水回路によって床暖房等の温水暖房を行う空気調和機に於いて、前記室外熱交換器は上部冷媒流路と下部冷媒流路の2つの冷媒流路を設け、前記冷凍回路は四方弁と室内熱交換器の間に二方弁Cを、前記室内熱交換器と下部冷媒流路の間に膨張弁Bを、前記水−冷媒熱交換器と下部冷媒流路の間に膨張弁Aを、前記上部冷媒流路と下部冷媒流路を接続する冷媒配管に膨張弁Dを、この膨張弁Dと上部冷媒流路の間の冷媒配管と圧縮機と四方弁の間の冷媒配管をバイパス管せ接続し、このバイパス管を開閉する二方弁Eを設け、冷房運転では前記四方弁を冷房側に、膨張弁Aは全閉に、膨張弁Bは冷房能力に応じた開度に、二方弁Cは開き、膨張弁Dは全開に、二方弁Eは閉じることで、室内機にて冷房運転を行い、室内機単独の暖房運転では前記四方弁を暖房側に、膨張弁Aは微開に、膨張弁Bは全開に、二方弁Cは開き、膨張弁Dは暖房能力に応じた開度に、二方弁Eは閉じることで、室内機にて暖房運転を行い、床暖房単独の暖房運転では前記四方弁を暖房側に、膨張弁Aは全開に、膨張弁Bは全閉に、二方弁Cは閉じ、膨張弁Dは暖房能力に応じた開度に、二方弁Eは閉じることで、床暖房運転を行い、室内機と床暖房の併用暖房運転では前記四方弁を暖房側に、膨張弁Aは暖房能力に応じた開度に、膨張弁Bも暖房能力に応じた開度に、二方弁Cは開き、膨張弁Dは暖房能力に応じた開度に、二方弁Eは閉じることで、室内機と床暖房の併用暖房運転を行い、暖房運転での除霜運転では前記四方弁を暖房側に、膨張弁Aは暖房能力に応じた開度に、膨張弁Bも暖房能力に応じた開度に、二方弁Cは開き、膨張弁Dは暖房能力に応じた開度に、二方弁Eは開くことで、室内機と床暖房の併用暖房運転を継続しながら除霜を行うものである。
【発明の効果】
【0006】
この発明によれば、夏期には冷却された室内熱交換器からの冷風によって室内の冷房運転を行い、冬期には加熱された室内熱交換器からの温風による暖房運転と、水−冷媒熱交換器を経由した温水回路からの温水で行う床暖房運転と、前記温風による暖房運転と熱交換温水で行う床暖房運転を同時に行う併用暖房運転が行い、室内熱交換器を通過する冷媒量と水−冷媒熱交換器を通過する冷媒量を適確に調整することができ、暖房運転時の除霜運転では暖房運転および床暖房運転を停止する必要がなく、極端な室温低下を防止することができる。また、室内機の単独暖房運転時には膨張弁Aが少しだけ開くことで水−冷媒熱交換器に冷媒が溜まり込み、冷凍回路内を循環する冷媒量が減少することで冷凍回路内のバランスが崩れて能力不足等の不具合が発生することを防止できるものである。
【発明を実施するための形態】
【0008】
次に、この発明に係る空気調和機を図面に示された一実施例で説明する。
1は空気調和機の室外機で、水平仕切板2にて上下2室に分けられ、下部には冷凍回路室3を、上部には温水回路室4を備え、冷媒連絡配管5によって室内機6と、温水連絡配管7によって床暖房パネル8と接続されている。
前記冷凍回路室3の内部には圧縮機9、四方弁10、室外熱交換器11、各種弁装置12、送風ファン13と冷凍回路制御部14等を設けている。
前記温水回路室4の内部には、水−冷媒熱交換器15、補助ヒータ16、温水タンク17、循環ポンプ18、温水ヘッダー19と温水回路制御部20等を設けている。
前記室内機6内にはフィンチューブ式の室内熱交換器21と室内送風ファン22と室内制御部23を備えている。
【0009】
24は前記圧縮機9と四方弁10、水−冷媒熱交換器15、各種弁装置12、室外熱交換器11を冷媒配管25で連通した冷凍回路で、前記四方弁10と水−冷媒熱交換器15の間には水−冷媒熱交換器15側と室内熱交換器21側に冷媒を分岐する分岐管26を、水−冷媒熱交換器15と室外熱交換器11の間にも同じく分岐管27を設けている。
前記分岐管26と分岐管27は冷媒接続バルブ28と前記冷媒連絡配管5を介して室内熱交換器21と接続される。
【0010】
前記室外熱交換器11は多数の薄板状アルミニューム製フィンを銅管で貫通したフィンチューブ式の熱交換器で、冷媒流路を上下に分割し、上部冷媒流路29は大きく、その下部に比較的小さな下部冷媒流路30を設けている。
【0011】
前記各種弁装置12は膨張弁A、膨張弁B、二方弁C、膨張弁D、二方弁Eの3個の膨張弁と2個の二方弁から成り、後述するそれぞれの位置に設けられている。
前記水−冷媒熱交換器15と分岐管27の間には膨張弁Aを、前記分岐管27と冷媒接続バルブ28の間には膨張弁Bを、前記分岐管26と冷媒接続バルブ28の間には二方弁Cを、前記室外熱交換器11の上部冷媒流路29と下部冷媒流路30を接続する接続管31には膨張弁Dを設けている。
【0012】
32は前記圧縮機9と四方弁10の間と、前記膨張弁Dと上部冷媒流路29の間を接続するバイパス管で、このバイパス管32に備えた二方弁Eによって暖房運転の除霜時に開放され、圧縮機1のホットガスが上部冷媒流路29に送られるものである。
【0013】
冷房運転では前記四方弁10を冷房側に切換え、膨張弁Aは全閉に、膨張弁Bは冷房能力に応じた開度に、二方弁Cは開き、膨張弁Dは全開に、二方弁Eは閉じることで、圧縮機1にて加圧され高温の冷媒は、四方弁10、上部冷媒流路29、膨張弁D、下部冷媒流路30を通過することで放熱し、膨張弁Bで減圧し、室内熱交換器21で低温になり室内送風ファン22にて冷風を室内に送ることで冷房が行われる。
【0014】
室内機単独の暖房運転では前記四方弁10を暖房側に切換え、膨張弁Aは微開に、膨張弁Bは全開に、二方弁Cは開き、膨張弁Dは暖房能力に応じた開度に、二方弁Eは閉じることで、圧縮機1にて加圧され高温の冷媒は、四方弁10、二方弁C、室内熱交換器21で室内を加熱して暖房を行い、膨張弁Dは全開で通過し、下部冷媒流路30を加熱した後、膨張弁Dで絞られて減圧することで低温になった冷媒が上部冷媒流路29を低温にして空気から吸熱し圧縮機9へ送られる。ここでは、下部冷媒流路30によって吐出圧力の上昇を抑えことができるので、圧縮機9の消費電力増加を抑えることができ、高COPを実現できる。また、除霜運転での溶け残りを防止することができ、除霜の効率を向上させることができるものである。また、室内機の単独暖房運転時には膨張弁Aが少しだけ開くことで水−冷媒熱交換器に冷媒が溜まり込み、冷凍回路内を循環する冷媒量が減少することで冷凍回路内のバランスが崩れて能力不足等の不具合が発生することを防止できるものである。
【0015】
床暖房単独の暖房運転では前記四方弁10を暖房側に、膨張弁Aは全開に、膨張弁Bは全閉に、二方弁Cは閉じ、膨張弁Dは暖房能力に応じた開度に、二方弁Eは閉じることで、圧縮機1にて加圧され高温の冷媒は、四方弁10、水−冷媒熱交換器15で温水回路33を加熱して床暖房パネル8による暖房を行うものである。
【0016】
室内機と床暖房の併用暖房運転では前記四方弁10を暖房側に、膨張弁Aは暖房能力に応じた開度に、膨張弁Bも暖房能力に応じた開度に、二方弁Cは開き、膨張弁Dは暖房能力に応じた開度に、二方弁Eは閉じることで、室内機での暖房と床暖房の重要度や使用者の好みに応じて膨張弁Aと膨張弁Bの開度を調整して室内機側と床暖房側の熱の分配量を調整した後、膨張弁Dによって上部冷媒流路29にて適切な冷媒の蒸発が行われるように開度を調整する。
【0017】
暖房運転での除霜運転では前記四方弁10を暖房側に、膨張弁Aは出力を下げた暖房能力の開度に、膨張弁Bも出力を下げた暖房能力の開度に、二方弁Cは開き、膨張弁Dも出力を下げた暖房能力の開度に、二方弁Eは開くことでバイパス管32を通って圧縮機9から高温の冷媒が直接上部冷媒流路29に流れて、室内機と床暖房の併用暖房運転を継続しながら除霜を行うことができるものである。
【0018】
前記温水回路33は水−冷媒熱交換器15と補助ヒータ16、温水タンク17、循環ポンプ18とを、前記温水ヘッダー19と温水連絡配管7を介して床暖房パネル8に温水配管34で連通した温水回路で、前記循環ポンプ18と温水ヘッダー19の間と、温水ヘッダー19と水−冷媒熱交換器15の間を温水バイパス回路35で接続して温水の循環量を調整している。36は温水接続バルブで、前記温水連絡配管7と床暖房パネル8を接続するものである。
【0019】
前記室内熱交換器21と水−冷媒熱交換器15は冷凍回路24に対して並列に接続されており、二つの膨張弁A・Bと二方弁C、四方弁10の切換で、冷房運転時には室内熱交換器21側のみに冷媒を循環させて室内を冷房し、暖房運転時には室内熱交換器21と水−冷媒熱交換器15の両方に冷媒を循環させて室内機6では温風による暖房運転を、床暖房パネル8では温水循環による床暖房運転を同時又はどちらか一方のみで暖房運転を行うものである。
【0020】
前記圧縮機9は冷凍回路制御部14に備えたインバータ駆動回路(図示せず)にて必要な熱量に応じて多段階に回転数を変化するものである。
前記膨張弁A・B・Dは電子式の膨張弁で圧縮機9の回転数や冷凍回路の各部温度等によって、冷凍回路制御部14にて開度が制御され、前記二方弁C・Eは運転モードに応じて、同じく冷凍回路制御部14にて開閉されるものである。
前記送風ファン13は樹脂製のプロペラファンで、回転数可変の送風モータ(図示せず)によって回転し、前記室外熱交換器11に送風して熱交換を行うものである。
【0021】
前記室内機6は室内送風ファン22の駆動で、前面及び上面に備えた吸込口(図示せず)から室内の空気を吸い込んで、前記室内熱交換器21で熱交換した後、前面下部に備えた吹出口(図示せず)から室内へ温度調整された空気を送風するものである。
37は室内機6と冷媒連絡配管5を接続する冷媒接続バルブである。
【0022】
前記水−冷媒熱交換器15は、外管の内部に内管を挿入した二重管で構成されている。内管の外表面は、多数のフィンを立設し、内管の内外における熱交換効率を高めるように構成されている。この二重管の内管内部を水が通過する温水経路(図示せず)とし、内管と外管との間を冷媒が通過する冷媒経路(図示せず)とすることにより、冷媒と水との間で熱交換して通過する水を加熱することが可能となる。
【0023】
38は前記圧縮機9吐出側の冷媒配管に取り付けられた吐出温センサで、圧縮機9の吐出温度を測定し、前記冷凍回路制御部14へ信号を送る。39は冷凍回路室3内の室外送風経路(図示せず)の上流側に設けられた外気温センサで、外気温を測定する。40は前記室外熱交換器11に取り付けられ室外熱交換器11の温度を測定して、除霜運転を制御するための熱交センサである。41は水−冷媒熱交換器15の中程に取り付けられ、冷媒の温度を測定する冷媒中間センサである。
【0024】
42は前記水−冷媒熱交換器15と補助ヒータ16の間の温水配管に取り付けられ配管温度を測定する往き温水センサ。43は前記補助ヒータ16と温水タンク17の間の温水配管に取り付けられ配管温度を測定するヒータ配管センサ。44は床暖房パネル8と水−冷媒熱交換器15の間の温水配管に取り付けられ配管温度を測定する戻り温水センサである。45は補助ヒータ16の過熱を検知する安全サーモで、補助ヒータ16の上面に2つ取り付けられている。46は室内空気の吸込側に設けた室温センサ。
【0025】
このように、夏期には冷却された室内熱交換器からの冷風によって室内の冷房運転を行い、冬期には加熱された室内熱交換器からの温風による暖房運転と、水−冷媒熱交換器を経由した温水回路からの温水で行う床暖房運転と、前記温風による暖房運転と熱交換温水で行う床暖房運転を同時に行う併用暖房運転が行い、室内熱交換器を通過する冷媒量と水−冷媒熱交換器を通過する冷媒量を適確に調整することができ、暖房運転時の除霜運転では暖房運転および床暖房運転を停止する必要がなく、極端な室温低下を防止することができる。
また、暖房運転では除霜運転での溶け残りを防止することができ、除霜の効率を向上させることができる。また、吐出圧力の上昇を抑え、圧縮機の消費電力増加を抑えることができ、高COPを実現できる。また、室内機の単独暖房運転時には膨張弁Aが少しだけ開くことで水−冷媒熱交換器に冷媒が溜まり込み、冷凍回路内を循環する冷媒量が減少することで冷凍回路内のバランスが崩れて能力不足等の不具合が発生することを防止できるものである。
【符号の説明】
【0026】
1 室外機
6 室内機
8 床暖房パネル
9 圧縮機
11 室外熱交換器
15 水−冷媒熱交換器
21 室内熱交換器
29 上側冷媒流通経路
30 下側冷媒流通経路
A 膨張弁
B 膨張弁
C 二方弁
D 膨張弁
E 二方弁