【実施例1】
【0014】
本発明における第1の実施例について
図1から14を用いて説明する。
【0015】
図2はホログラフィを利用してデジタル情報を記録および/または再生する光情報記録媒体の記録再生装置を示すブロック図である。
【0016】
光情報記録再生装置10は、入出力制御回路90を介して外部制御装置91と接続されている。記録する場合には、光情報記録再生装置10は外部制御装置91から記録する情報信号を入出力制御回路90により受信する。再生する場合には、光情報記録再生装置10は再生した情報信号を入出力制御回路90により外部制御装置91に送信する。
【0017】
光情報記録再生装置10は、ピックアップ11、再生用参照光光学系12、キュア光学系13、ディスク回転角度検出用光学系14、及び回転モータ50を備えており、光情報記録媒体1は回転モータ50によって回転可能な構成となっている。
【0018】
ピックアップ11は、参照光と信号光を光情報記録媒体1に出射してホログラフィを利用してデジタル情報を記録媒体に記録する役割を果たす。この際、記録する情報信号はコントローラ89によって信号生成回路86を介してピックアップ11内の空間光変調器に送り込まれ、信号光は空間光変調器によって変調される。
【0019】
光情報記録媒体1に記録した情報を再生する場合は、ピックアップ11から出射された参照光を記録時とは逆の向きに光情報記録媒体に入射させる光波を再生用参照光光学系12にて生成する。再生用参照光によって再生される再生光をピックアップ11内の後述する光検出器によって検出し、信号処理回路85によって信号を再生する。
【0020】
光情報記録媒体1に照射する参照光と信号光の照射時間は、ピックアップ11内のシャッタの開閉時間をコントローラ89によってシャッタ制御回路87を介して制御することで調整できる。
【0021】
キュア光学系13は、光情報記録媒体1のプリキュアおよびポストキュアに用いる光ビームを生成する役割を果たす。プリキュアとは、光情報記録媒体1内の所望の位置に情報を記録する際、所望位置に参照光と信号光を照射する前に予め所定の光ビームを照射する前工程である。ポストキュアとは、光情報記録媒体1内の所望の位置に情報を記録した後、該所望の位置に追記不可能とするために所定の光ビームを照射する後工程である。
【0022】
ディスク回転角度検出用光学系14は、光情報記録媒体1の回転角度を検出するために用いられる。光情報記録媒体1を所定の回転角度に調整する場合は、ディスク回転角度検出用光学系14によって回転角度に応じた信号を検出し、検出された信号を用いてコントローラ89によってディスク回転モータ制御回路88を介して光情報記録媒体1の回転角度を制御する事が出来る。
【0023】
光源駆動回路82からは所定の光源駆動電流がピックアップ11、キュア光学系13、ディスク回転角度検出用光学系14内の光源に供給され、各々の光源からは所定の光量で光ビームを発光することができる。
【0024】
また、ピックアップ11、そして、ディスクキュア光学系13は、光情報記録媒体1の半径方向に位置をスライドできる機構が設けられており、アクセス制御回路81を介して位置制御がおこなわれる。
【0025】
ところで、ホログラフィの角度多重の原理を利用した記録技術は、参照光角度のずれに対する許容誤差が極めて小さくなる傾向がある。
【0026】
従って、ピックアップ11内に、参照光角度のずれ量を検出する機構を設けて、サーボ信号生成回路83にてサーボ制御用の信号を生成し、サーボ制御回路84を介して該ずれ量を補正するためのサーボ機構を光情報記録再生装置10内に備えることが必要となる。
【0027】
また、ピックアップ11、キュア光学系13、ディスク回転角度検出用光学系14は、いくつかの光学系構成または全ての光学系構成をひとつに纏めて簡素化しても構わない。
【0028】
図3は、光情報記録再生装置10におけるピックアップ11の基本的な光学系構成の一例における記録原理を示したものである。光源301を出射した光ビームはコリメートレンズ302を透過し、シャッタ303に入射する。シャッタ303が開いている時は、光ビームはシャッタ303を通過した後、例えば2分の1波長板などで構成される光学素子304によってp偏光とs偏光の光量比が所望の比になるようになど偏光方向が制御された後、PBS(Polarization Beam Splitter)プリズム305に入射する。
【0029】
PBSプリズム305を透過した光ビームは、信号光306として働き、ビームエキスパンダ308によって光ビーム径が拡大された後、位相マスク309、リレーレンズ310、PBSプリズム311を透過して空間光変調器312に入射する。
【0030】
空間光変調器312によって情報が付加された信号光は、PBSプリズム311を反射し、リレーレンズ313ならびに空間フィルタ314を伝播する。その後、信号光は対物レンズ315によって光情報記録媒体1に集光する。
【0031】
一方、PBSプリズム305を反射した光ビームは参照光307として働き、偏光方向変換素子316によって記録時または再生時に応じて所定の偏光方向に設定された後、ミラー317ならびにミラー318を経由してガルバノミラー319に入射する。ガルバノミラー319はアクチュエータ320によって角度を調整可能のため、レンズ321とレンズ322を通過した後に光情報記録媒体1に入射する参照光の入射角度を、所望の角度に設定することができる。なお、参照光の入射角度を設定するために、ガルバノミラーに代えて、参照光の波面を変換する素子を用いても構わない。
【0032】
このように信号光と参照光とを光情報記録媒体1において、互いに重ね合うように入射させることで、記録媒体内には干渉縞パターンが形成され、このパターンを記録媒体に書き込むことで情報を記録する。また、ガルバノミラー319によって光情報記録媒体1に入射する参照光の入射角度を変化させることができるため、角度多重による記録が可能である。
【0033】
以降、同じ領域に参照光角度を変えて記録されたホログラムにおいて、1つ1つの参照光角度に対応したホログラムをページと呼び、同領域に角度多重されたページの集合をブックと呼ぶことにする。
【0034】
図4は、光情報記録再生装置10におけるピックアップ11の基本的な光学系構成の一例における再生原理を示したものである。記録した情報を再生する場合は、前述したように参照光を光情報記録媒体1に入射し、光情報記録媒体1を透過した光ビームを、アクチュエータ323によって角度調整可能なガルバノミラー324にて反射させることで、その再生用参照光を生成する。
【0035】
この再生用参照光によって再生された再生光は、対物レンズ315、リレーレンズ313ならびに空間フィルタ314を伝播する。その後、再生光はPBSプリズム311を透過して光検出器325に入射し、記録した信号を再生することができる。光検出器325としては例えばCMOSイメージセンサーやCCDイメージセンサーなどの撮像素子を用いることができるが、ページデータを再生可能であれば、どのような素子であっても構わない。
【0036】
図5はピックアップ11の別の構成を示した図である。
図5において、光源501を出射した光ビームはコリメートレンズ502を透過し、シャッタ503に入射する。シャッタ503が開いている時は、光ビームはシャッタ503を通過した後、例えば1/2波長板などで構成される光学素子504によってp偏光とs偏光の光量比が所望の比になるように偏光方向を制御された後、PBSプリズム505に入射する。
【0037】
PBSプリズム505を透過した光ビームは、PBSプリズム507を経由して空間光変調器508に入射する。空間光変調器508によって情報を付加された信号光506はPBSプリズム507を反射し、所定の入射角度の光ビームのみを通過させるアングルフィルタ509を伝播する。その後、信号光ビームは対物レンズ510によってホログラム記録媒体1に集光する。
【0038】
一方、PBSプリズム505を反射した光ビームは参照光512として働き、偏光方向変換素子519によって記録時又は再生時に応じて所定の偏光方向に設定された後、ミラー513ならびにミラー514を経由してレンズ515に入射する。レンズ515は参照光512を対物レンズ510のバックフォーカス面に集光させる役割を果たしており、対物レンズ510のバックフォーカス面にて一度集光した参照光は、対物レンズ510によって再度、平行光となってホログラム記録媒体1に入射する。
【0039】
ここで、対物レンズ510又は光学ブロック521は、例えば符号520に示す方向に駆動可能であり、対物レンズ510又は光学ブロック521の位置を駆動方向520に沿ってずらすことにより、対物レンズ510と対物レンズ510のバックフォーカス面における集光点の相対位置関係が変化するため、ホログラム記録媒体1に入射する参照光の入射角度を所望の角度に設定することができる。なお、対物レンズ510又は光学ブロック521を駆動する代わりに、ミラー514をアクチュエータにより駆動することで参照光の入射角度を所望の角度に設定しても構わない。
【0040】
このように、信号光と参照光をホログラム記録媒体1において、互いに重ね合うように入射させることで、記録媒体内には干渉縞パターンが形成され、このパターンを記録媒体に書き込むことで情報を記録する。また対物レンズ510又は光学ブロック521の位置を駆動方向520に沿ってずらすことによって、ホログラム記録媒体1に入射する参照光の入射角度を変化させることができるため、角度多重による記録が可能である。
【0041】
記録した情報を再生する場合は、前述したように参照光をホログラム記録媒体1に入射し、ホログラム記録媒体1を透過した光ビームをガルバノミラー516にて反射させることで、その再生用参照光を生成する。この再生用参照光によって再生された再生光は、対物レンズ510、アングルフィルタ509を伝播する。その後、再生光はPBSプリズム507を透過して光検出器518に入射し、記録した信号を再生することができる。
【0042】
図5で示した光学系は、信号光と参照光を同一の対物レンズに入射させる構成とすることで、
図3で示した光学系構成に比して、大幅に小型化できる利点を有する。
【0043】
図6は、光情報記録再生装置10における記録、再生の動作フローを示したものである。ここでは、特にホログラフィを利用した記録再生に関するフローを説明する。
【0044】
図6(a)は、光情報記録再生装置10に光情報記録媒体1を挿入した後、記録または再生の準備が完了するまでの動作フローを示し、
図6(b)は準備完了状態から光情報記録媒体1に情報を記録するまでの動作フロー、
図6(c)は準備完了状態から光情報記録媒体1に記録した情報を再生するまでの動作フローを示したものである。
【0045】
図6(a)に示すように媒体を挿入すると(601)、光情報記録再生装置10は、例えば挿入された媒体がホログラフィを利用してデジタル情報を記録または再生する媒体であるかどうかディスク判別を行う(602)。
【0046】
ディスク判別の結果、ホログラフィを利用してデジタル情報を記録または再生する光情報記録媒体であると判断されると、光情報記録再生装置10は光情報記録媒体に設けられたコントロールデータを読み出し(603)、例えば光情報記録媒体に関する情報や、例えば記録や再生時における各種設定条件に関する情報を取得する。
【0047】
コントロールデータの読み出し後は、コントロールデータに応じた各種調整やピックアップ11に関わる学習処理(604)を行い、光情報記録再生装置10は、記録または再生の準備が完了する(605)。
【0048】
準備完了状態から情報を記録するまでの動作フローは
図6(b)に示すように、まず記録するデータを受信して(611)、該データに応じた情報をピックアップ11内の空間光変調器に送り込む。
【0049】
その後、光情報記録媒体に高品質の情報を記録できるように、必要に応じて例えば光源301のパワー最適化やシャッタ303による露光時間の最適化等の各種記録用学習処理を事前に行う(612)。
【0050】
その後、シーク動作(613)ではアクセス制御回路81を制御して、ピックアップ11ならびにキュア光学系13の位置を光情報記録媒体の所定の位置に位置づけする。光情報記録媒体1がアドレス情報を持つ場合には、アドレス情報を再生し、目的の位置に位置づけされているか確認し、目的の位置に配置されていなければ、所定の位置とのずれ量を算出し、再度位置づけする動作を繰り返す。
【0051】
その後、キュア光学系13から出射する光ビームを用いて所定の領域をプリキュアし(614)、ピックアップ11から出射する参照光と信号光を用いてデータを記録する(615)。
【0052】
データを記録した後は、キュア光学系13から出射する光ビームを用いてポストキュアを行う(616)。必要に応じてデータをベリファイしても構わない。
【0053】
準備完了状態から記録された情報を再生するまでの動作フローは
図6(c)に示すように、まずシーク動作(621)で、アクセス制御回路81を制御して、ピックアップ11ならびに再生用参照光光学系12の位置を光情報記録媒体の所定の位置に位置づけする。光情報記録媒体1がアドレス情報を持つ場合には、アドレス情報を再生し、目的の位置に位置づけされているか確認し、目的の位置に配置されていなければ、所定の位置とのずれ量を算出し、再度位置づけする動作を繰り返す。
【0054】
その後、ピックアップ11から参照光を出射し、光情報記録媒体に記録された情報を読み出し(622)、再生データを送信する(613)。
【0055】
図9は、記録、再生時のデータ処理フローを示したものであり、
図9(a)は、入出力制御回路90において記録データ受信611後、空間光変調器312上の2次元データに変換するまでの信号生成回路86での記録データ処理フローを示しており、
図9(b)は光検出器325で2次元データを検出後、入出力制御回路90における再生データ送信624までの信号処理回路85での再生データ処理フローを示している。
【0056】
図9(a)を用いて記録時のデータ処理について説明する。ユーザデータを受信(901)すると、複数のデータ列に分割、再生時エラー検出が行えるように各データ列をCRC化(902)し、オンピクセル数とオフピクセル数をほぼ等しくし、同一パターンの繰り返しを防ぐことを目的にデータ列に擬似乱数データ列を加えるスクランブル(903)を施した後、再生時エラー訂正が行えるようにリード・ソロモン符号等の誤り訂正符号化(904)を行う。次にこのデータ列をM×Nの2次元データに変換し、それを1ページデータ分繰返すことで1ページ分の2次元データ(905)を構成する。このように構成した2次元データに対して再生時の画像位置検出や画像歪補正での基準となるマーカーを付加(906)し、空間光変調器312にデータを転送(907)する。
【0057】
次に
図9(b)を用いて再生時のデータ処理フローについて説明する。光検出器325で検出された画像データが信号処理回路85に転送(911)される。この画像データに含まれるマーカーを基準に画像位置を検出(912)し、画像の傾き・倍率・ディストーションなどの歪みを補正(913)した後、2値化処理(914)を行い、マーカーを除去(915)することで1ページ分の2次元データを取得(916)する。このようにして得られた2次元データを複数のデータ列に変換した後、誤り訂正処理(917)を行い、パリティデータ列を取り除く。次にスクランブル解除処理(918)を施し、CRCによる誤り検出処理(919)を行ってCRCパリティを削除した後にユーザデータを入出力制御回路90経由で送信(920)する。
【0058】
図7は、光情報記録再生装置10の信号生成回路86のブロック図である。
【0059】
出力制御回路90にユーザデータの入力が開始されると、入出力制御回路90はコントローラ89にユーザデータの入力が開始されたことを通知する。コントローラ89は本通知を受け、信号生成回路86に入出力制御回路90から入力される1ページ分のデータを記録処理するよう命ずる。コントローラ89からの処理命令は制御用ライン708を経由し、信号生成回路86内サブコントローラ701に通知される。本通知を受け、サブコントローラ701は各信号処理回路を並列に動作させるよう制御用ライン708を介して各信号処理回路の制御を行う。先ずメモリ制御回路703に、データライン709を介して入出力制御回路90から入力されるユーザデータをメモリ702に格納するよう制御する。メモリ702に格納したユーザデータが、ある一定量に達すると、CRC演算回路704でユーザデータをCRC化する制御を行う。次にCRC化したデータに、スクランブル回路705で擬似乱数データ列を加えるスクランブル化を施し、誤り訂正符号化回路706でパリティデータ列を加える誤り訂正符号化する制御を行う。最後にピックアップインターフェース回路707にメモリ702から誤り訂正符号化したデータを空間光変調器312上の2次元データの並び順で読み出させ、再生時に基準となるマーカーを付加した後、ピックアップ11内の空間光変調器312に2次元データを転送する。
【0060】
図8は、光情報記録再生装置10の信号処理回路85のブロック図である。
【0061】
コントローラ89はピックアップ11内の光検出器325が画像データを検出すると、信号処理回路85にピックアップ11から入力される1ページ分のデータを再生処理するよう命ずる。コントローラ89からの処理命令は制御用ライン811を経由し、信号処理回路85内サブコントローラ801に通知される。本通知を受け、サブコントローラ801は各信号処理回路を並列に動作させるよう制御用ライン811を介して各信号処理回路の制御を行う。先ず、メモリ制御回路803に、データライン812を介して、ピックアップ11からピックアップインターフェース回路810を経由して入力される画像データをメモリ802に格納するよう制御する。メモリ802に格納されたデータがある一定量に達すると、画像位置検出回路809でメモリ802に格納された画像データ内からマーカーを検出して有効データ範囲を抽出する制御を行う。次に検出されたマーカーを用いて画像歪み補正回路808で、画像の傾き・倍率・ディストーションなどの歪み補正を行い、画像データを期待される2次元データのサイズに変換する制御する。サイズ変換された2次元データを構成する複数ビットの各ビットデータを、2値化回路807において“0”、“1”判定する2値化し、メモリ802上に再生データの出力の並びでデータを格納する制御を行う。次に誤り訂正回路806で各データ列に含まれる誤りを訂正し、スクランブル解除回路805で擬似乱数データ列を加えるスクランブルを解除した後、CRC演算回路804でメモリ802上のユーザデータ内に誤りが含まれない確認を行う。その後、入出力制御回路90にメモリ802からユーザデータを転送する。
【0062】
図10は、反射層を有する光情報記録媒体の層構造を示す図である。(1)は光情報記録媒体へ情報を記録している状態を示し、(2)は光情報記録媒体から情報を再生している状態を示している。
【0063】
光情報記録媒体1は、光ピックアップ11側から、透明カバー層1000、記録層1002、光吸収/光透過層1006、光反射層1010、そして第3透明保護層1012と、を備えている。参照光10Aと信号光10Bとの干渉パターンは、記録層1002に記録される。
【0064】
光吸収/光透過層1006は、情報記録時には参照光10Aと信号光10Bとを吸収し、情報再生時には参照光を透過するように物性が変換する。例えば、光記録媒体1に電圧を印加することによって光吸収/光透過層1006の着色、消色状態が変化し、すなわち、情報記録時には光吸収/光透過層1006は着色状態となって、記録層1002を通過した参照光10Aと信号光10Bとを吸収し、情報再生時には消色状態になって参照光を透過させる(T.Ando et. al. : Technical Digest ISOM(2006)、 Th−PP−10)。光吸収/光透過層1006を通過した参照光10Aは光反射層1010で反射されて再生用参照光10Cとなる。
【0065】
また、A.Hirotsune et. al. : Technical Digest ISOM(2006)、 Mo−B−04に記載された、エレクトロクロミック(EC)材料としてのWO3を光吸収/光透過層1006に用いることができる。
【0066】
この材料に電圧を加えることにより可逆的に着色、消色を生じさせ、情報記録時には着色させて光を吸収し、情報再生時には消色させて光を透過させる。
【0067】
図10の構成により再生用参照光光学系が不要となり、ドライブの小型化が可能となる。
【0068】
ここで、発明者は、ホログラフィックメモリにおいてページ内の既知パターンを高精度に検出する技術について詳細に説明する。
【0069】
図12はページの実施例を表す概略図を示している。ページ421内には、四隅にシンクマーク422が配置されている。該シンクマーク422は、ページの位置ずれ、回転、倍率ずれの補正に利用するものであり、ピックアップによるページ検出後、最初に該シンクマーク422の位置検出を行う。ページ421内のデータ部424の中には、マーカー423が配置されている。該マーカー423は、シンクマーク422を利用した補正で取り除けなかった位置ずれに対処するためのものであり、該マーカー423の位置情報に基づいてデータ部の位置ずれを算出し、データ部の検出を行う。ピックアップ内のカメラのピクセルピッチは空間光変調器のピクセルピッチより小さなものを使用する場合があり、この場合は、データ部の検出時は、データ部の位置ずれの情報を基に、空間光変調器のピクセルサイズに戻すオーバーサンプリング解除処理を行う。
【0070】
図11は、光情報記録再生装置内の信号処理回路の実施例を表す概略図を示している。ピックアップ11は検出した再生ページをページ歪み調整回路401に出力する。ページ歪み調整回路401は入力した再生ページ内のシンクマークを検出し、該シンクマークの位置情報に基づき、位置ずれ量、回転量、倍率ずれ量を算出し、これらのずれの補正を行ったページデータを、信号位置検出回路402に出力する。ずれ量の補正には、例えば、画像処理分野で利用されるアフィン変換を利用する。信号位置検出回路402は補正済みのページデータを入力し、各信号の位置情報を後述する方法で検出し、オーバーサンプリング解除回路403にページデータ及び各信号の位置情報を出力する。オーバーサンプリング解除回路403は、ページデータ及び各信号の位置情報を入力し、ページデータのピクセル数が空間光変調器のピクセル数と同数となるようにページデータのオーバーサンプリングを解除し、オーバーサンプリング解除後のページデータを等化回路404に出力する。オーバーサンプリングの方法については、例えば、予め算出した各位置ずれ量でのオーバーサンプリング解除のためのフィルタ係数を使用しFIRフィルタ処理を施す方法を用いる。等化回路404は、オーバーサンプリング解除後のページデータを入力し、ピクセル間干渉をFIRフィルタ処理することで除去し、フィルタ処理後のページデータを2値化回路405に出力する。2値化回路405はフィルタ処理後のページデータを入力し、例えば閾値や最尤復号やビタビ復号を用いて2値化し、2値化後の情報をコントローラ89に出力する。
【0071】
図1は、光情報記録再生装置内の信号位置検出回路の実施例を表す概略図を示している。マーカー検出回路411は、ページデータを入力し、ページ内の各マーカーの位置を検出し、ページデータ及びマーカー位置情報を検出誤り位置推定回路412に出力する。マーカーの位置検出では、例えば、既知のマーカーパターンとページデータの信号との相互相関係数を算出し、最大値となる位置をマーカー位置と特定する。検出誤り位置推定回路412は、ページデータ及びマーカー位置情報を入力し、マーカー位置の検出誤り位置を推定し、マーカー位置の検出誤り位置とページデータをマーカー位置修正回路413に出力する。マーカー位置の検出誤り位置の推定には、例えばマーカー位置のずれ量を、近傍のマーカー位置のずれ量の平均値との差分を計算し、差分値が所定値以上の場合は、検出誤りが発生したと判断することで、マーカー位置の検出誤り位置を特定する。マーカー位置修正回路413はマーカー位置の検出誤り位置とページデータを入力し、検出誤り位置のマーカー位置を例えば、隣接マーカー位置からの線形補間により修正し、修正したマーカー位置情報とページデータを信号位置算出回路414に出力する。信号位置算出回路414は修正したマーカー位置情報とページデータを入力し、各マーカーの近傍にある信号群の位置を近傍のマーカー位置から例えば、線形補間することで算出し、各信号位置とページデータを出力する。
【0072】
図13は、(a)マーカー検出時のマーカー位置ずれ量、(b)検出誤差推定値、(c)マーカー位置ずれ量(補正後)の例を表す模式図を示している。
図13(a)に示すように、各マーカーに対するマーカー位置ずれdxが算出される。
図13(b)に示す検出誤差推定値Erは、例えば下の式(1)のように近傍のマーカーの位置ずれ量の平均値との差分を計算することで算出できる。
【0073】
Er=|dx−dxの平均値| ・・・式(1)
例えば、所定の閾値を上回る検出誤差推定値Erを示すマーカーは、検出誤差が発生していると推定し、図(c)に示すように隣接マーカーの位置ずれ量から式(2)を用いて線形補間することで、マーカー位置ずれ量を修正する。ここで、dx
nはn番目のマーカーの位置ずれ量を示しており、式(2)はn番目のマーカーにおいて検出誤差がおきている場合の例を示している。なお、検出誤差が連続して発生している場合は、例えば検出誤差が発生していない周辺マーカーから線形補間により算出する。
dx
n=(dx
n−1+dx
n+1)/2
【0074】
図14は、光情報記録再生装置における信号位置検出の動作フローの実施例を表す概略図を示している。信号位置検出時は、まず431により相互相関係数等を利用しマーカーの位置を検出する。その後、432によりマーカー検出誤り位置を推定する。433により、検出誤り位置のマーカーの位置を隣接マーカーの位置から補正する。最後に、434により、マーカー位置の情報を利用して各信号の位置を算出する。なお、図示していないが、例えば、修正したマーカー位置情報を基にオーバーサンプリング解除し、SNRの値からマーカーの位置情報の修正が正しかったかの判断をしても良い。また、例えばSNRが低い場合は、異なるマーカーの情報を利用して補間する等の処理を継続しても構わない。
【0075】
なお、マーカー検出誤差の判断に用いる閾値は、予め装置が持つ値を用いても良いし、最初にSNR等を指標にして閾値の学習を行っても良い。また、マーカーの信頼性を判断する手法としては、マーカーのSNRを使用するという他の構成も考えうる。本実施例では、マーカーそのものの信頼性を判断する点が殊に特徴的であり、判断手法としては本実施例以外にもあることは言うまでもない。
【0076】
本実施例の方法では、マーカー位置の修正が同一ページ内の情報のみで実現可能なため、装置構成が簡素化可能という利点がある。
【0077】
以下の記述において、本実施例と共通する内容は説明を省略する。