(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0015】
以下、図面を参照しながら、本発明の電気デバイス用負極およびこれを用いてなる電気デバイスの実施形態を説明する。但し、本発明の技術的範囲は、特許請求の範囲の記載に基づいて定められるべきであり、以下の形態のみには制限されない。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
【0016】
本発明の電気デバイス用負極は、集電体と、前記集電体の表面に配置された負極活物質、導電助剤及びバインダを含む電極層とを有するものである。更に前記負極活物質が下記式(1)で表される合金(以下、単に「合金」または「Si合金」とも称する)を含み、かつ電極層における伸び(δ)が、1.29<δ<1.70%の範囲であることを特徴とするものである。
【0018】
上記式(1)において、Mは、Al、V、C、およびこれらの組み合わせからなる群から選択される少なくとも1つの金属である。前記Aは、不可避不純物である。前記x、y、zおよびaは、質量%の値を表し、この際、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である。
【0019】
本発明によれば、SiとLiとが合金化する際、3元系のSi−Sn−M系の合金を適用することで、アモルファス−結晶の相転移を抑制しサイクル寿命を向上させるという作用が得られる。さらに、電極層の伸びを所定範囲に設定した。ここで、電極層の伸びを所定範囲の下限より大きくすることで、充放電による負極活物質の膨張・収縮による体積変化に対し、活物質以外の電極構成要素が追随することができ、電極全体の体積変化を抑制させることができる。また、電極層の伸びを所定範囲の上限より小さくすることで、電極層の伸びが充放電に伴う負極活物質へのリチウムイオンの反応(挿入・脱離)を阻害するのを抑制することができる。こうした複合的な作用の結果として、本発明に係る負極は、初期容量も高く、高容量・高サイクル耐久性、とりわけ高い放電容量向上率を有するという有用な効果が得られる。
【0020】
以下、本発明の電気デバイス用の負極が適用され得る電気デバイスの基本的な構成を、図面を用いて説明する。本実施形態では、電気デバイスとしてリチウムイオン二次電池を例示して説明する。なお、本発明において「電極層」とは、負極活物質、導電助剤、およびバインダを含む合剤層を意味するが、本明細書の説明では「負極活物質層」とも称することがある。同様に、正極側の電極層を「正極活物質層」とも称することがある。
【0021】
まず、本発明に係る電気デバイス用負極の代表的な一実施形態であるリチウムイオン二次電池用の負極およびこれを用いてなるリチウムイオン二次電池では、セル(単電池層)の電圧が大きく、高エネルギー密度、高出力密度が達成できる。そのため本実施形態のリチウムイオン二次電池用の負極を用いてなるリチウムイオン二次電池では、車両の駆動電源用や補助電源用として優れている。その結果、車両の駆動電源用等のリチウムイオン二次電池として好適に利用できる。このほかにも、携帯電話などの携帯機器向けのリチウムイオン二次電池にも十分に適用可能である。
【0022】
すなわち、本実施形態の対象となるリチウムイオン二次電池は、以下に説明する本実施形態のリチウムイオン二次電池用の負極を用いてなるものであればよく、他の構成要件に関しては、特に制限されるべきものではない。
【0023】
例えば、上記リチウムイオン二次電池を形態・構造で区別した場合には、積層型(扁平型)電池、巻回型(円筒型)電池など、従来公知のいずれの形態・構造にも適用し得るものである。積層型(扁平型)電池構造を採用することで簡単な熱圧着などのシール技術により長期信頼性を確保でき、コスト面や作業性の点では有利である。
【0024】
また、リチウムイオン二次電池内の電気的な接続形態(電極構造)で見た場合、非双極型(内部並列接続タイプ)電池および双極型(内部直列接続タイプ)電池のいずれにも適用し得るものである。
【0025】
リチウムイオン二次電池内の電解質層の種類で区別した場合には、電解質層に非水系の電解液等の溶液電解質を用いた溶液電解質型電池、電解質層に高分子電解質を用いたポリマー電池など従来公知のいずれの電解質層のタイプにも適用し得るものである。該ポリマー電池は、更に高分子ゲル電解質(単にゲル電解質ともいう)を用いたゲル電解質型電池、高分子固体電解質(単にポリマー電解質ともいう)を用いた固体高分子(全固体)型電池に分けられる。
【0026】
したがって、以下の説明では、本実施形態のリチウムイオン二次電池用の負極を用いてなる非双極型(内部並列接続タイプ)リチウムイオン二次電池につき図面を用いてごく簡単に説明する。但し、本実施形態のリチウムイオン二次電池の技術的範囲が、これらに制限されるべきものではない。
【0027】
<電池の全体構造>
図1は、本発明の電気デバイスの代表的な一実施形態である、扁平型(積層型)のリチウムイオン二次電池(以下、単に「積層型電池」ともいう)の全体構造を模式的に表した断面概略図である。
【0028】
図1に示すように、本実施形態の積層型電池10は、実際に充放電反応が進行する略矩形の発電要素21が、外装体であるラミネートシート29の内部に封止された構造を有する。ここで、発電要素21は、正極集電体11の両面に正極活物質層13が配置された正極と、電解質層17と、負極集電体12の両面に負極活物質層15が配置された負極とを積層した構成を有している。具体的には、1つの正極活物質層13とこれに隣接する負極活物質層15とが、電解質層17を介して対向するようにして、負極、電解質層および正極がこの順に積層されている。
【0029】
これにより、隣接する正極、電解質層、および負極は、1つの単電池層19を構成する。したがって、
図1に示す積層型電池10は、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。なお、発電要素21の両最外層に位置する最外層の正極集電体には、いずれも片面のみに正極活物質層13が配置されているが、両面に活物質層が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、
図1とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層の負極集電体が位置するようにし、該最外層の負極集電体の片面または両面に負極活物質層が配置されているようにしてもよい。
【0030】
正極集電体11および負極集電体12は、各電極(正極および負極)と導通される正極集電板25および負極集電板27がそれぞれ取り付けられ、ラミネートシート29の端部に挟まれるようにしてラミネートシート29の外部に導出される構造を有している。正極集電板25および負極集電板27は、それぞれ必要に応じて正極リードおよび負極リード(図示せず)を介して、各電極の正極集電体11および負極集電体12に超音波溶接や抵抗溶接等により取り付けられていてもよい。
【0031】
上記で説明したリチウムイオン二次電池は、負極活物質として、3元系のSi−Sn−M系の合金を含み、更に負極活物質層の伸び(δ)が1.29<δ<1.70%の範囲である負極に特徴を有する。以下、当該負極を含めた電池の主要な構成部材について説明する。
【0032】
<活物質層>
活物質層13または15は活物質を含み、必要に応じてその他の添加剤をさらに含む。
【0033】
[正極活物質層]
正極活物質層13は、正極活物質を含む。
【0034】
(正極活物質)
正極活物質としては、例えば、リチウム−遷移金属複合酸化物、リチウム−遷移金属リン酸化合物、リチウム−遷移金属硫酸化合物、固溶体系、3元系、NiMn系、NiCo系、スピネルMn系などが挙げられる。
【0035】
リチウム−遷移金属複合酸化物としては、例えば、LiMn
2O
4、LiCoO
2、LiNiO
2、Li(Ni、Mn、Co)O
2、Li(Li、Ni、Mn、Co)O
2、LiFePO
4及びこれらの遷移金属の一部が他の元素により置換されたもの等が挙げられる。
【0036】
固溶体系としては、xLiMO
2・(1−x)Li
2NO
3(0<x<1、Mは平均酸化状態が3+、Nは平均酸化状態が4+である1種類以上の遷移金属)、LiRO
2−LiMn
2O
4(R=Ni、Mn、Co、Fe等の遷移金属元素)等が挙げられる。
【0037】
3元系としては、ニッケル・コバルト・マンガン系(複合)正極材等が挙げられる。
【0038】
NiMn系としては、LiNi
0.5Mn
1.5O
4等が挙げられる。
【0039】
NiCo系としては、Li(NiCo)O
2等が挙げられる。
【0040】
スピネルMn系としてはLiMn
2O
4等が挙げられる。
【0041】
場合によっては、2種以上の正極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、リチウム−遷移金属複合酸化物が、正極活物質として用いられる。なお、上記以外の正極活物質が用いられてもよいことは勿論である。活物質それぞれの固有の効果を発現する上で最適な粒子径が異なる場合には、それぞれの固有の効果を発現する上で最適な粒子径同士をブレンドして用いればよく、全ての活物質の粒子径を必ずしも均一化させる必要はない。
【0042】
正極活物質層13に含まれる正極活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1〜30μmであり、より好ましくは5〜20μmである。なお、本明細書において、「粒子径」とは、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用いて観察される活物質粒子(観察面)の輪郭線上の任意の2点間の距離のうち、最大の距離を意味する。また、本明細書において、「平均粒子径」の値は、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数〜数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。他の構成成分の粒子径や平均粒子径も同様に定義することができる。
【0043】
(正極用バインダ)
正極活物質層は、バインダを含む。正極活物質層に用いられるバインダとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリアクリロニトリル、ポリイミド、ポリアミド、ポリアミドイミド、セルロース、カルボキシメチルセルロース(CMC)、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFP−TFE系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム(VDF−PFP系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−PFP−TFE系フッ素ゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム(VDF−PFMVE−TFE系フッ素ゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム(VDF−CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。中でも、ポリフッ化ビニリデン、ポリイミド、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリプロピレン、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリアミド、ポリアミドイミドであることがより好ましい。これらの好適なバインダは、耐熱性に優れ、さらに電位窓が非常に広く正極電位、負極電位双方に安定であり正極活物質層に使用が可能となる。これらのバインダは、1種単独で用いてもよいし、2種併用してもよい。
【0044】
正極活物質層中に含まれるバインダの含有量は、正極活物質を結着することができる量であれば特に限定されるものではないが、好ましくは正極活物質層に対して、0.5〜15質量%であり、より好ましくは1〜10質量%である。
【0045】
正極活物質層に含まれうるその他の添加剤としては、例えば、導電助剤、電解質塩(リチウム塩)、イオン伝導性ポリマー等が挙げられる。
【0046】
(正極用導電助剤)
正極活物質層は、導電助剤を含む。ここでいう正極用導電助剤とは、正極活物質層の導電性を向上させるために配合される添加物をいう。この導電助剤としては、短鎖状カーボンブラック(短鎖状アセチレンブラック等)、長鎖状カーボンブラック(長鎖状アセチレンブラック)ケッチェンブラック(ファーネスブラック)、チャネルブラック、サーマルブラック等のカーボンブラック、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)等のカーボン粉末;気相法炭素繊維又は液相法炭素繊維(カーボンナノチューブ(CNT)、黒鉛ファイバー等)、カーボンナノファイバなどの炭素繊維(カーボンファイバ);バルカン、ブラックパール、カーボンナノホーン、カーボンナノバルーン、ハードカーボン、フラーレン、膨張黒鉛などの炭素材料が挙げられるが、これらに限定されないことはいうまでもない。尚、上記炭素繊維はCNTや炭素ファイバー(黒鉛状、ハードカーボン状等(合成時の燃焼温度によって変化))であるが、これらは液相法でも気相法でも合成可能である。正極活物質層が導電助剤を含むことで、正極活物質層の内部における3次元の電子(導電性)ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。
【0047】
正極活物質層へ混入されてなる導電助剤の含有量は、正極活物質層の総量に対して、1質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上の範囲である。また、正極活物質層へ混入されてなる導電助剤の含有量は、正極活物質層の総量に対して、15質量%以下、より好ましくは10質量%以下、さらに好ましくは7質量%以下の範囲である。活物質自体の電子導電性は低く導電助剤の量によって電極抵抗を低減できる正極活物質層での導電助剤の配合比(含有量)を上記範囲内に規定することで以下の効果が発現される。即ち、電極反応を阻害することなく、電子導電性を十分に担保することができ、電極密度の低下によるエネルギー密度の低下を抑制でき、ひいては電極密度の向上によるエネルギー密度の向上を図ることができる。
【0048】
また、上記導電助剤とバインダの機能を併せ持つ導電性結着剤をこれら導電助剤とバインダに代えて用いてもよいし、あるいはこれら導電助剤とバインダの一方ないし双方と併用してもよい。導電性結着剤としては、既に市販のTAB−2(宝泉株式会社製)を用いることができる。
【0049】
(正極活物質層の製法)
正極(正極活物質層)は、通常のスラリーを塗布(コーティング)する方法のほか、混練法、スパッタ法、蒸着法、CVD法、PVD法、イオンプレーティング法および溶射法のいずれかの方法によっても形成することができる。
【0050】
[負極活物質層]
負極活物質層15は、負極活物質として3元系のSi−Sn−M系の合金を含み、さらに負極活物質層の伸び(δ)が1.29<δ<1.70%の範囲であることを特徴とする。本実施形態の負極活物質層を適用することで、高容量・高サイクル耐久性を有する良好なリチウムイオン二次電池用負極となる。また、本実施形態の負極活物質層を有する負極を用いることで、高容量でサイクル耐久性、特に放電容量向上率に優れる良好な電池特性を有するリチウムイオン二次電池となる。
【0051】
(負極活物質)
本実施形態において、負極活物質として用いられる3元系のSi−Sn−M系の合金は、下記化学式(1)で表される。
【0053】
上記式(1)において、Mは、Al、V、C、およびこれらの組み合わせからなる群から選択される少なくとも1つの金属である。また、Aは、不可避不純物である。さらに、x、y、z、およびaは、質量%の値を表し、この際、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である。また、本明細書において、前記「不可避不純物」とは、Si合金において、原料中に存在したり、製造工程において不可避的に混入するものを意味する。当該不可避不純物は、本来は不要なものであるが、微量であり、Si合金の特性に影響を及ぼさないため、許容されている不純物である。
【0054】
本実施形態では、負極活物質として、第1添加元素であるSnと、第2添加元素であるM(Al、V、C、およびこれらの組み合わせからなる群から選択される少なくとも1つの金属)を選択したことによって、Li合金化の際に、アモルファス−結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
【0055】
ここでLi合金化の際、アモルファス−結晶の相転移を抑制するのは、Si材料ではSiとLiが合金化する際、アモルファス状態から結晶状態へ転移し大きな体積変化(約4倍)を起こすため、粒子自体が壊れてしまい活物質としての機能が失われるためである。そのためアモルファス−結晶の相転移を抑制することで、粒子自体の崩壊を抑制し活物質としての機能(高容量)を保持することができ、サイクル寿命も向上させることができるものである。かかる第1及び第2添加元素を選定することにより、高容量で高サイクル耐久性を有するSi合金負極活物質を提供できる。
【0056】
上述のように、Mは、Al、V、C、およびこれらの組み合わせからなる群から選択される少なくとも1つの金属である。よって、以下、Si
xSn
yAl
zA
a、Si
xSn
yV
zA
a、およびSi
xSn
yC
zA
aのSi合金について、それぞれ説明する。
【0057】
(Si
xSn
yAl
zA
aで表されるSi合金)
上記Si
xSn
yAl
zA
aは、上述のように、第1添加元素であるSnと、第2添加元素であるAlを選択したことによって、Li合金化の際に、アモルファス−結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
【0058】
上記合金の組成において、xが12以上100未満であり、前記yが0超45以下であり、前記zが0超43以下であることが好ましい。なお、当該合金の組成は、
図3の網掛け部分で表される。上記組成を有することにより、高容量を発現するのみならず、50サイクル後、100サイクル後も高い放電容量を維持しうる。
【0059】
なお、当該負極活物質の上記特性をより良好なものとする観点からは、
図4の網掛け部分に示すように、前記xが31以上であることが好ましい。また、より好ましくは、
図5の網掛け部分に示すように、さらに前記xを31〜50の範囲とする。さらに好ましくは、
図6の網掛け部分に示すように、さらに前記yを15〜45、前記zを18〜43%の範囲とする。最も好ましくは、さらに前記xを16%〜45%の範囲とする。
【0060】
なお、Aは上述のように、原料や製法に由来する上記3成分以外の不純物(不可避不純物)である。前記aは、0≦a<0.5であり、0≦a<0.1であることが好ましい。
【0061】
(Si
xSn
yV
zA
aで表されるSi合金)
上記Si
xSn
yV
zA
aは、上述のように、第1添加元素であるSnと、第2添加元素であるVを選択したことによって、Li合金化の際に、アモルファス−結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
【0062】
上記合金の組成において、前記xが27以上100未満であり、前記yが0超73以下であり、前記zが0超73以下であることが好ましい。なお、この数値範囲は、
図7の網掛け部分で示す範囲に相当する。上記組成を有することにより、高容量を発現するのみならず、50サイクル後、100サイクル後も高い放電容量を維持しうる。
【0063】
なお、当該負極活物質の上記特性をさらに良好なものとする観点からは、前記xが27〜84、前記yが10〜73、前記zが6〜73の範囲であることが好ましい。また、更に好ましくは、
図8の網掛け部分で示すように、前記xが27〜84、前記yが10〜63、前記zが6〜63の範囲である。そして、
図9の網掛け部分で示すように、より好ましくは、さらに前記xが27〜52の範囲とする。
図10の網掛け部分からわかるように、さらに前記yが10〜52、前記zが20〜63の範囲とすればより好ましく、最も好ましくは前記yが10〜40の範囲とする。
【0064】
なお、前記aは、0≦a<0.5であり、0≦a<0.1であることが好ましい。
【0065】
(Si
xSn
yC
zA
aで表されるSi合金)
上記Si
xSn
yC
zA
aは、上述のように、第1添加元素であるSnと、第2添加元素であるCを選択したことによって、Li合金化の際に、アモルファス−結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
【0066】
上記合金の組成において、前記xが29以上であることが好ましい。なお、この数値範囲は、
図11の符号Aで示す範囲に相当する。上記組成を有することにより、高容量を発現するのみならず、50サイクル後、100サイクル後も高い放電容量を維持しうる。
【0067】
なお、当該負極活物質の上記特性のさらなる向上を図る観点からは、前記xが29〜63、yが14〜48、前記zが11〜48の範囲であることが好ましい。なお、この数値範囲は
図12の符号Bで示す範囲に相当する。
【0068】
そして、より良好なサイクル特性を確保する観点からは、前記xが29〜44、前記yが14〜48、前記zが11〜48の範囲であることが好ましい。なお、この数値範囲は
図13の符号Cで示す範囲に相当する。
【0069】
さらには、前記xが29〜40、前記yが34〜48(したがって、12<z<37)の範囲とすることが好ましい。なお、この数値範囲は
図14の符号Dで示す範囲に相当する。
【0070】
なお、前記aは、0≦a<0.5であり、0≦a<0.1であることが好ましい。
【0071】
(Si合金の平均粒子径)
上記Si合金の平均粒子径は、既存の負極活物質層15に含まれる負極活物質の平均粒子径と同程度であればよく、特に制限されない。高出力化の観点からは、好ましくは1〜20μmの範囲であればよい。ただし、上記範囲に何ら制限されるものではなく、本実施形態の作用効果を有効に発現できるものであれば、上記範囲を外れていてもよいことは言うまでもない。なお、Si合金の形状としては、特に制限はなく、球状、楕円状、円柱状、多角柱状、鱗片状、不定形などでありうる。
【0072】
(合金の製造方法)
本形態に係る組成式Si
xSn
yM
zA
aを有する合金の製造方法としては、特に制限されるものではなく、従来公知の各種の製造を利用して製造することができる。即ち、作製方法による合金状態・特性の違いはほとんどないので、ありとあらゆる作製方法が適用できる。
【0073】
具体的には、例えば、組成式Si
xSn
yM
zA
aを有する合金の粒子形態の製造方法としては、例えば、メカニカルアロイ法、アークプラズマ溶融法等を利用することができる。
【0074】
上記の粒子の形態に製造する方法では、該粒子にバインダ、導電助剤、粘度調整溶剤を加えてスラリーを調整し、該スラリーを用いてスラリー電極を形成することができる。そのため、量産化(大量生産)し易く、実際の電池用電極として実用化しやすい点で優れている。
【0075】
以上、負極活物質層に必須に含まれる所定のSi合金について説明したが、負極活物質層はその他の負極活物質を含んでいてもよい。上記所定の合金以外の負極活物質としては、天然黒鉛、人造黒鉛、カーボンブラック、活性炭、カーボンファイバ、コークス、ソフトカーボン、もしくはハードカーボンなどのカーボン等の炭素系材料;SiやSnなどの純金属;上記所定の組成比を外れる合金系活物質;あるいはTiO、Ti
2O
3、TiO
2、もしくはSiO
2、SiO、SnO
2などの金属酸化物;Li
4/3Ti
5/3O
4もしくはLi
7MnNなどのリチウムと遷移金属との複合酸化物;Li−Pb系合金、Li−Al系合金、Liなどが挙げられる。ただし、上記所定のSi合金を負極活物質として用いることにより奏される作用効果を十分に発揮させるという観点からは、負極活物質の全量100質量%に占める上記所定のSi合金の含有量は、好ましくは50〜100質量%であり、より好ましくは80〜100質量%であり、さらに好ましくは90〜100質量%であり、特に好ましくは95〜100質量%であり、最も好ましくは100質量%である。
【0076】
以下、本実施形態の一態様として、上記Si合金との組合せにおいて好適な炭素系材料につき、説明する。
【0077】
(炭素系材料)
本実施形態の一態様としては、負極活物質として、上記3元系のSi−Sn−M系のSi合金に加えて、更に炭素系材料を含むものである。
【0078】
本実施形態に用いられる炭素系材料は、特に制限されないが、特に制限されないが、天然黒鉛、人造黒鉛等の高結晶性カーボンである黒鉛(グラファイト);ソフトカーボン、ハードカーボン等の低結晶性カーボン;ケッチェンブラック、アセチレンブラック、チャンネルブラック、ランプブラック、オイルファーネスブラック、サーマルブラック等のカーボンブラック;フラーレン、カーボンナノチューブ、カーボンナノファイバ、カーボンナノホーン、カーボンフィブリル等の炭素材料が挙げられる。これらのうち、黒鉛を用いることが好ましい。
【0079】
本実施形態では、負極活物質が、上記Si合金とともに、炭素系材料と混合されてなることにより、より高いサイクル特性を維持しつつ、かつ、初期容量も高くバランスよい特性を示すことができる。
【0080】
上記Si合金を炭素系材料と混合することにより、負極活物質層内にSi合金をより均一に配置することが可能となりうる。その結果、負極活物質層内におけるSi合金はいずれも同等の反応性を示し、サイクル特性のさらなる向上を図ることができる。
【0081】
なお、炭素系材料が混合される結果、負極活物質層内におけるSi合金の含有量が低下することによって、初期容量は低下しうる。しかしながら、炭素系材料自体はLiイオンとの反応性を有するため、初期容量の低下の度合いは相対的に小さくなる。すなわち、Si合金および炭素系材料を併用する場合には、初期容量の低下の作用と比べて、サイクル特性の向上効果が大きいのである。
【0082】
また、炭素系材料は、Si合金と対比すると、Liイオンと反応する際の体積変化が生じにくい。そのため、上記Si合金と炭素系材料を併用する場合には、Si合金の体積変化が大きい場合であっても、負極活物質を全体としてみると、Li反応に伴う負極活物質の体積変化の影響を相対的に軽微なものとすることができる。なお、このようなSi合金および炭素系材料を併用する場合における効果は、炭素系材料の含有率が大きいほど(Si合金の含有率が小さいほど)、サイクル特性が高くなる実施例の結果からも理解することができる(表7及び
図21を参照)。
【0083】
また、上記Si合金と炭素系材料を併用することによって、消費電気量(Wh)を向上させることができる。より詳細には、炭素系材料は、Si合金と対比して相対的に電位が低い。その結果、上記Si合金と炭素系材料を併用する場合には、Si合金が有する相対的に高い電位を低減することができる。そうすると、負極全体の電位が低下するため、消費電力量(Wh)を向上させることができるのである。このようなSi合金および炭素系材料を併用する場合における作用、効果は、電気デバイスの中でも、例えば、車両の用途に使用する際に特に有利である。
【0084】
炭素系材料の形状としては、特に制限はなく、球状、楕円状、円柱状、多角柱状、鱗片状、不定形などでありうる。
【0085】
(炭素系材料の平均粒子径)
また、炭素系材料の平均粒子径としては、特に制限されないが、5〜25μmであることが好ましく、5〜10μmであることがより好ましい。この際、上述のSi合金との平均粒子径との対比については、炭素系材料の平均粒子径は、Si合金の平均粒子径と同一であっても、異なっていてもよいが、異なることが好ましい。特に、前記合金の平均粒子径が、前記炭素系材料の平均粒子径よりも小さいことがより好ましい。炭素系材料の平均粒子径が合金の平均粒子径よりも相対的に大きいと、均一に炭素系材料の粒子が配置され、当該炭素系材料の粒子間にSi合金が配置した構成を有するため、負極活物質層内においてSi合金が均一に配置されうる。
【0086】
上記Si合金および炭素系材料を併用する場合において、炭素系材料の平均粒子径とSi合金の平均粒子径との粒子径の比(Si合金の平均粒子径/炭素系材料の平均粒子径)は、1/250〜1未満であることが好ましく、1/100〜1/4であることがより好ましい。
【0087】
負極活物質のSi合金および炭素系材料を併用する場合の混合比は、特に制限はなく、所望の用途等に応じて適宜選択されうる。なかでも、Si合金および炭素系材料を併用する場合における前記負極活物質中のSi合金の含有率は、3〜70質量%であることが好ましい。一実施形態において、Si合金および炭素系材料を併用する場合における前記負極活物質中のSi合金の含有率は、30〜50質量%であることがより好ましい。また、別の一実施形態においては、Si合金および炭素系材料を併用する場合における前記負極活物質中のSi合金の含有率は、50〜70質量%であることがより好ましい。
【0088】
Si合金および炭素系材料を併用する場合における前記負極活物質中の前記Si合金の含有率が3質量%以上であると、高い初期容量が得られうることから好ましい。一方、前記Si合金の含有量が70質量%以下であると、高いサイクル特性が得られうることから好ましい。
【0089】
(負極活物質の製造方法)
負極活物質は、特に制限されず、公知の方法によって製造することができる。通常、負極活物質層は、上記Si合金の製造方法が用いられうる。具体的には、メカニカルアロイ法、アークプラズマ溶融法等を利用して、粒子形態のSi合金を製造した後、炭素系材料(Si合金および炭素系材料を併用する場合)、バインダ、導電助剤、および粘液調整剤を加えてスラリーを調製し、該スラリーを用いてスラリー電極を形成することができる。この際、Si合金および炭素系材料を併用する場合には、粒子形態のSi合金の量および炭素系材料の量を適宜変更することで、Si合金が所望の含有量となる負極活物質を製造することができる。
【0090】
(負極活物質層の伸び)
本実施形態では、負極活物質として上記した3元系のSi−Sn−M系の合金を含み、負極活物質層の伸び(δ)が、1.29<δ<1.70%の範囲であることを特徴とする。上記した3元系のSi−Sn−M系の合金を適用した上で負極活物質層の伸び(δ)を1.29%超にすることで、充放電による負極活物質の膨張・収縮による体積変化に対し、活物質以外の電極(負極活物質層)の構成要素が追従することができる。その結果、電極(負極活物質層)全体の体積変化を抑制することができ、放電容量の向上率を大幅に高めることができる。また、上記した3元系のSi−Sn−M系の合金を適用した上で負極活物質層の伸び(δ)を1.70%未満にすることで、負極活物質層の伸びが充放電に伴う負極活物質へのリチウムイオンの反応(挿入・脱離)を阻害するのを抑制することができる。その結果、高容量・高サイクル耐久性を有する良好なリチウムイオン二次電池用負極となる。また、本実施形態の負極活物質層を用いてなるリチウムイオン二次電池用負極を用いることで、高容量でサイクル耐久性、特に放電容量向上率に優れる良好な電池特性を有するリチウムイオン二次電池となる。即ち、上記した3元系のSi−Sn−M系の合金を適用した上で負極活物質層の伸び(δ)が、1.29以下、および1.70%以上の場合には、
図18に示すように、放電容量の向上率が不十分となる。また3元系のSi−Sn−M系の合金に代えて、高容量(3200mAh/g)の純Siを適用した場合には、負極活物質層の伸び(δ)を上記範囲内に調整しても、純Siの持つ大きな体積変化(約4倍)により、放電容量の向上率が著しく低下する(
図18の比較例1−4、1−5参照)。
【0091】
上記した3元系のSi−Sni−M系の合金を適用した上で負極活物質層の伸び(δ)は、好ましくは1.40≦δ<1.70%、より好ましくは1.40≦δ≦1.66%、更に好ましくは1.40≦δ≦1.57%、特に好ましくは1.47≦δ≦1.57%、なかでも好ましくは1.53≦δ≦1.57%の範囲である。負極活物質層の伸び(δ)を上記したより好適な範囲に調製すればするほど、より高い放電容量の向上率を達成することができる点で優れている(
図18参照)。
【0092】
負極活物質層の伸び(δ)は、JIS K 7163(1994年)の引張試験方法に準じて測定した値により測定することができる。
【0093】
負極活物質層の伸び(δ)を上記範囲内に調整する手段としては特に制限されるものではなく、負極活物質層中の成分のうち、負極活物質層の伸び(δ)に寄与し得る導電助剤、バインダ等の種類や含有量を適宜調整することができる。なかでも負極活物質層中の各成分の配合比囲については、概ね最適とされる範囲があり、この最適な範囲を変更してまで導電助剤、バインダ等の配合比(含有量)を変更(変動)することは、電池性能を損なう恐れがある。そのため負極活物質層中の各成分の配合比の最適な範囲については変更することなく保持した状態で、導電助剤、バインダ等の種類(導電助剤とバインダの組み合わせ)を変えることで調整するのが望ましい。尚、バインダ等については、その種類を変えることで、その結着力等が変化することから、より好ましくは最適なバインダを用いた上で、導電性能に影響することなく、負極活物質層の伸び(δ)を調整可能な導電助剤の材料(種類)を適宜調整するのが望ましい。詳しくは、導電助剤として使用される炭素材料として、所定の嵩密度(体積)ないし所定の長さを有する短鎖状や繊維状のものを用いるのが望ましい。こうした短鎖状や繊維状の導電助剤を用いることで、充放電により、3元系のSi−Sn−M系の合金活物質が所定範囲の体積変化(膨張収縮)した際に、短鎖状や繊維状の導電助剤が合金活物質の所定範囲の体積変化に追従して導電性を確保できるためである。詳しくは、合金活物質が体積収縮した状態では、上記した短鎖状や繊維状の導電助剤が複数の合金活物質粒子に絡まった状態で接触しており、直線状に引き延ばされた状態に比べると十分な伸び代がある状態で3次元の電子(導電性)ネットワークを形成している。一方、合金活物質が所定の範囲内に体積膨張した状態では、上記した短鎖状や繊維状の導電助剤が複数の体積膨張した合金活物質粒子に絡まった状態を保持しながら、ある程度直線状に引きのばされた状態を維持できる(体積変化に追従できる)。そのため、合金活物質が体積膨張した場合でも3次元の電子(導電性)ネットワークを十分に保持できるものと言える。これは高容量かつ所定の範囲内の体積変化を持つ上記した3元系のSi−Sn−M系の合金活物質を用いた場合に実現し得る作用効果(メカニズム)といえる。逆に、所定の嵩密度ないし所定の長さを有しないバルーン状(ケッチェンブラック、フラーレン等)や鱗片状(黒鉛など)の導電助剤では、負極活物質層の伸び(δ)を上記範囲よりも小さくなる(比較例1−2、1−3参照)。こうした場合には、充放電により、3元系のSi−Sn−M系の合金活物質が所定範囲の体積変化(膨張収縮)した際に、バルーン状や鱗片状の導電助剤が合金活物質の所定範囲の体積変化に追従することが困難となり、導電性を確保し難くなる。詳しくは、合金活物質が収縮した状態では、上記したバルーン状や鱗片状の導電助剤が複数の合金活物質粒子表面を被覆するように接触している。しかしながら、体積膨張した状態では、合金活物質粒子の表面積が増大し、合金活物質粒子表面上の導電助剤粒子間に隙間が生じ、体積膨張した合金活物質粒子表面上に導電助剤粒子が分散した状態で担持されるようになる。その結果、バルーン状や鱗片状の導電助剤による3次元の電子(導電性)ネットワークを保持することができず、放電容量向上率の大幅な低下につながるものと言える(
図18の比較例1−2、1−3参照)。一方、所定の嵩密度ないし所定の長さを有しない長鎖状の導電助剤(長鎖状アセチレンブラックなど)では、負極活物質層の伸び(δ)を上記範囲よりも大きくなる(比較例1参照)。こうした場合には、合金活物質が収縮した状態では、上記した長鎖状の導電助剤が複数の体積膨張した合金活物質粒子に絡まった状態にある。そのため、充電時に合金活物質粒子に絡まった導電助剤(更にはバインダの結着力等)により、合金活物質粒子が体積膨張するのが阻害される。その結果、充放電に伴う負極活物質へのリチウムイオンの反応(挿入・脱離)が阻害され、放電容量向上率の大幅な低下につながるものと言える(
図18の比較例1−1参照)。また一部の長鎖状の導電助剤では、合金活物質粒子の体積膨張に追従できず、これらの導電助剤が複数の体積膨張した合金活物質粒子に絡まった状態を保持することができない。そのため、一部の長鎖状の導電助剤と接触する合金活物質粒子間に形成された3次元の電子(導電性)ネットワークが各所で途切れてしまい、放電容量向上率の大幅な低下につながるケースも生じていると言える(
図18の比較例1−1参照)。さらに、高容量である反面、非常に大きな体積変化(4倍)を伴う純Siでは、負極活物質層内で上記した短鎖状や繊維状の導電助剤が複数の体積膨張した純Si活物質粒子に絡まった状態にある。これは長鎖状の導電助剤を用いた場合にも同様である。そのため、充電時に純Si活物質粒子に絡まった導電助剤(更にはバインダの結着力等)により、純Siが体積膨張するのが阻害される。その結果、充放電に伴う負極活物質へのリチウムイオンの反応(挿入・脱離)が阻害され、放電容量向上率の大幅な低下につながるものと言える(
図18の比較例1−4、1−5参照)。また一部の短鎖状や繊維状の導電助剤では、純Si活物質粒子の体積膨張に追従できず、これらの導電助剤が複数の体積膨張した純Si活物質粒子に絡まった状態を保持することができない。そのため、一部の短鎖状や繊維状の導電助剤と接触する純Si活物質粒子間に形成された3次元の電子(導電性)ネットワークが各所で途切れてしまい、放電容量向上率の大幅な低下につながるケースも生じていると言える(
図18の比較例1−4、1−5参照)。
【0094】
上記した導電助剤が合金活物質の体積変化に追従して導電性を確保することができる作用機序(メカニズム)から言えば、バインダに関しても、合金活物質の所定範囲の体積変化に追従して、その結着力を確保することができるものを用いるのが望ましいといえる。即ち、好適なバインダとしては、合金活物質の所定範囲の体積変化に追従し得る弾性率(伸縮性)を有し、その結着力を保持できるものが望ましいといえる。以上の観点から、本実施形態に利用可能な導電助剤およびバインダにつき、説明する。
【0095】
(負極用導電助剤)
上記した3元系のSi−Sn−M系の合金活物質を含む負極活物質層は、導電助剤を含む。ここで、導電助剤とは、負極活物質層の導電性を向上させるために配合される添加物をいう。これは、負極活物質にLiの挿入・脱離が可能な既存のカーボン(炭素材料)を用いる場合には、導電助剤は特に必要ないが、3元系のSi−Sn−M系の合金活物質のように十分な導電性を有しない場合には、導電助剤が必要である。かかる導電助剤としては、短鎖状カーボンブラック(短鎖状アセチレンブラック等)、長鎖状カーボンブラック(長鎖状アセチレンブラック)ケッチェンブラック(ファーネスブラック)、チャネルブラック、サーマルブラック等のカーボンブラック、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)等のカーボン粉末;気相法炭素繊維又は液相法炭素繊維(カーボンナノチューブ(CNT)、黒鉛ファイバー等)、カーボンナノファイバなどの炭素繊維(カーボンファイバ);バルカン、ブラックパール、カーボンナノホーン、カーボンナノバルーン、ハードカーボン、フラーレン、膨張黒鉛などの炭素材料が挙げられるが、これらに限定されないことはいうまでもない。尚、上記炭素繊維はCNTや炭素ファイバー(黒鉛状、ハードカーボン状等(合成時の燃焼温度によって変化))であるが、これらは液相法でも気相法でも合成可能である。上記した3元系のSi−Sn−M系の合金活物質を含む負極活物質層が導電助剤を含むことで、当該負極活物質層の内部における3次元の電子(導電性)ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。
【0096】
とりわけ、負極活物質層の伸び(δ)を上記範囲内に調整するのに導電助剤を用いる場合には、3元系のSi−Sn−M系の合金活物質の所定範囲の体積変化に追従して導電性を確保することができる細長い形状や繊維形状の導電助剤を用いるのが特に望ましい。かかる観点から、負極活物質層の伸び(δ)を上記範囲内に調整するのに用いることのできる導電助剤としては、上記した短鎖状や繊維状の導電助剤が望ましい。例えば、短鎖状カーボンブラック(短鎖状アセチレンブラック等);気相法炭素繊維又は液相法炭素繊維(カーボンナノチューブ(CNT)、黒鉛ファイバー等)、カーボンナノファイバなどの炭素繊維(カーボンファイバ)などが挙げられるが、これらに何ら制限されるものではない。尚、上記炭素繊維についても、CNTや炭素ファイバー(黒鉛状、ハードカーボン状等(合成時の燃焼温度によって変化))であるが、これらは液相法でも気相法でも合成可能である。これらの導電助剤を用いことで、負極活物質層の伸び(δ)を上記範囲内に調整することができ、3元系のSi−Sn−M系の合金活物質の所定範囲の体積変化に追従して導電性を確保することができる。なお、本実施形態では負極活物質層の伸び(δ)を上記範囲内に調整するのに、上記導電助剤以外にもバインダを組み合わせてもよい。そうした場合には上記に例示した導電助剤以外であっても、負極活物質層の伸び(δ)を上記範囲内できるものであれば利用可能である。こうした導電助剤とバインダとの組み合わせとしては、例えば、上記した短鎖状や繊維状の導電助剤と、以下に説明する所定の弾性率(1GPa超、7.4GPa未満)を有するバインダとを組み合わせるのが望ましいといえる。
【0097】
負極活物質層へ混入されてなる導電助剤の含有量としては、3元系のSi−Sn−M系の合金活物質を用いる場合には、正極活物質層へ混入されてなる導電助剤の含有量と同程度の含有量とするのが望ましい。即ち、負極活物質層へ混入されてなる導電助剤の含有量も、負極側の電極構成材料の総量に対して、好ましくは1〜10質量%、より好ましくは2〜8質量%、特に好ましくは3〜7質量%の範囲とするのが望ましい。これは、負極活物質に上記した3元系のSi−Sn−M系の合金活物質を用いることから、正極活物質と同様に電子導電性が低く導電助剤を配合することによって電極抵抗を低減できるためである。なお、負極活物質自体が優れた電子導電性を有する、グラファイト(黒鉛)、ソフトカーボン、ハードカーボン等の炭素系材料を併用する場合には、負極活物質層への導電助剤の含有量は、上記範囲内であればよいが、上記範囲を外れても導電助剤の添加目的を達成し得るものであれば、本実施形態の範囲に含まれるものとする。
【0098】
また、上記導電助剤とバインダの機能を併せ持つ導電性結着剤をこれら導電助剤とバインダに代えて用いてもよいし、あるいはこれら導電助剤とバインダの一方ないし双方と併用してもよい。導電性結着剤としては、既に市販のTAB−2(宝泉株式会社製)を用いることができる。
【0099】
(負極用バインダ)
負極活物質層15は、バインダを含む。負極用のバインダは、活物質同士または活物質と集電体とを結着させて電極構造を維持する目的で添加される。負極活物質層に用いられるバインダとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリアクリロニトリル、ポリイミド、ポリアミド、ポリアミドイミド、セルロース、カルボキシメチルセルロース(CMC)、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFP−TFE系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム(VDF−PFP系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−PFP−TFE系フッ素ゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム(VDF−PFMVE−TFE系フッ素ゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム(VDF−CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。中でも、ポリフッ化ビニリデン、ポリイミド、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリプロピレン、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリアミド、ポリアミドイミドであることがより好ましい。これらの好適なバインダは、耐熱性に優れ、さらに電位窓が非常に広く正極電位、負極電位双方に安定であり負極活物質層に使用が可能となる。また、ポリアミドのような相対的に結着力が強いバインダは、Si合金を炭素系材料に好適に保持することができる。更に負極活物質層に用いられるバインダとしては、上記したように3元系のSi−Sn−M系の合金活物質の所定範囲の体積変化に追従し得る弾性率(伸縮性)を有し、その結着力を確保することができるものを用いるのが特に望ましい。充電時にSiの中にLiが入っていくことで合金活物質が膨張する。その場合に膨張した活物質粒子間に挟まれて存在するバインダは圧縮されるが、その圧縮力に抗することができる弾性率を有する必要がある。逆に膨張した活物質粒子間を繋ぎとめる位置に存在するバインダは引き伸ばされるが、この場合にも弾性を保持する必要がある。引き伸ばされすぎて弾性体として機能しなくなった場合には、収縮時に引き伸ばされたバインダが元に戻らなくなるため、バインダとして機能しなくなる。従って、バインダの弾性率が以下に規定する下限側の1GPa超であれば、合金活物質の膨張に対してバインダが圧縮されて損傷したり、引き伸ばされて弾性を損なうことなく、高い放電容量の向上率を発現することができる。またバインダのE弾性率が以下に規定する上限側の7.4GPa未満であれば、バインダが硬すぎることもなく、充電時にSiの中にLiが容易に挿入することができる。即ち、バインダの弾性率が高すぎなければ、充放電電時に伴う負極活物質へのLiの挿入・脱離を阻害することなく最適な範囲まで体積変化(膨張収縮)することができる。その結果、負極活物質(Si)へのLiイオンの反応を阻害するのを抑制することができ、高い放電容量の向上率を発現することができる。かかる観点から、上記弾性率を有する、ポリアミド、ポリイミド、ポリアミドイミドを用いるのが好ましい。これらのバインダは、1種単独で用いてもよいし、2種併用してもよい。特に、上記したように3元系のSi−Sn−M系の合金活物質の所定範囲の体積変化に追従し得るバインダのE弾性率(伸縮性)については、以下に説明する好適な態様にて、説明する。
【0100】
本実施形態の他の態様としては、上記した負極用バインダが、1.00GPa超7.40GPa未満のE弾性率を有する樹脂を含むのが望ましい。これは、バインダのE弾性率が1.00GPa以下であっても7.40以上であっても、Si合金の体積変化にバインダが追随することができず、十分な放電容量を達成することができない虞があるためである。すなわち、バインダは、Si合金を接着する機能を有するが、バインダのE弾性率が1.00GPa以下であると、バインダが柔らかいため、Si合金の膨張時にバインダに対して印加される圧力に耐えることができない。一方、バインダのE弾性率が7.40GPa以上であると、バインダが固いため、Liイオンの挿脱時におけるSi合金の膨張が抑制され、十分なLiイオンをSi合金に導入できない。ここで、上記所定の範囲のE弾性率を有する樹脂は、ポリイミド、ポリアミドイミド、およびポリアミドからなる群から選択される1種または2種以上であることが好ましく、ポリイミドであることが特に好ましい。なお、E弾性率の値は、JIS K 7163(1994年)の引張試験方法に準じて測定した値を採用するものとする。また、複数のバインダが使用される場合には、上記所定のE弾性率を有する樹脂が少なくとも1つ含まれていればよい。
【0101】
ここで、バインダのE弾性率の値は、バインダの材質、スラリーの濃度(固液比)、架橋の程度、ならびに乾燥温度、乾燥速度および乾燥時間などの熱履歴に依存する。本実施形態では、これらを調整することにより、バインダのE弾性率を上述した所望の範囲に調節することができる。
【0102】
ここで、上記所定のE弾性率を有する樹脂をバインダとして用いることにより奏される作用効果を十分に発揮させるという観点からは、バインダの全量100質量%に占める上記所定のE弾性率を有する樹脂の含有量は、好ましくは50〜100質量%であり、より好ましくは80〜100質量%であり、さらに好ましくは90〜100質量%であり、特に好ましくは95〜100質量%であり、最も好ましくは100質量%である。
【0103】
なお、負極活物質層中に含まれるバインダ量は、体積変化の大きな3元系のSi−Sn−M系の合金を含む負極活物質を結着することができる量であれば特に限定されるものではないが、好ましくは活物質層に対して、0.5〜15質量%であり、より好ましくは1〜10質量%である。
【0104】
(正極及び負極活物質層13、15に共通する要件)
以下に、正極及び負極活物質層13、15に共通する要件につき、説明する。
【0105】
正極活物質層13および負極活物質層15に含まれうるその他の添加剤としては、例えば、電解質塩(リチウム塩)、イオン伝導性ポリマー等が挙げられる。
【0106】
(電解質塩)
電解質塩(リチウム塩)としては、Li(C
2F
5SO
2)
2N、LiPF
6、LiBF
4、LiClO
4、LiAsF
6、LiCF
3SO
3等が挙げられる。
【0107】
(イオン伝導性ポリマー)
イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。
【0108】
(各活物質層中に含まれる成分配合比)
正極活物質層および負極活物質層中に含まれる成分の配合比は、特に限定されない。配合比は、非水溶媒系二次電池についての公知の知見を適宜参照することにより、調整されうる。
【0109】
(各活物質層の厚さ)
各活物質層(集電体片面の活物質層)の厚さについても特に制限はなく、電池についての従来公知の知見が適宜参照されうる。一例を挙げると、各活物質層の厚さは、電池の使用目的(出力重視、エネルギー重視など)、イオン伝導性を考慮し、通常1〜500μm程度、好ましくは2〜100μmである。
【0110】
[集電体]
(正極集電体)
正極集電体11は導電性材料から構成される。集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。集電体の厚さについても特に制限はない。集電体の厚さは、通常は1〜100μm程度である。集電体の形状についても特に制限されない。
図1に示す積層型電池10では、集電箔のほか、網目形状(エキスパンドグリッド等)等を用いることができる。なお、負極活物質をスパッタ法等により薄膜合金を負極集電体12上に直接形成する場合には、集電箔を用いるのが望ましい。
【0111】
集電体を構成する材料に特に制限はない。例えば、金属や、導電性高分子材料または非導電性高分子材料に導電性フィラーが添加された樹脂が採用されうる。具体的には、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属の組み合わせのめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性や電池作動電位、集電体へのスパッタリングによる負極活物質の密着性等の観点からは、アルミニウム、ステンレス、銅、ニッケルが好ましい。
【0112】
また、導電性高分子材料としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、およびポリオキサジアゾールなどが挙げられる。かような導電性高分子材料は、導電性フィラーを添加しなくても十分な導電性を有するため、製造工程の容易化または集電体の軽量化の点において有利である。
【0113】
非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン−ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、またはポリスチレン(PS)などが挙げられる。かような非導電性高分子材料は、優れた耐電位性または耐溶媒性を有しうる。
【0114】
上記の導電性高分子材料または非導電性高分子材料には、必要に応じて導電性フィラーが添加されうる。特に、集電体の基材となる樹脂が非導電性高分子のみからなる場合は、樹脂に導電性を付与するために必然的に導電性フィラーが必須となる。導電性フィラーは、導電性を有する物質であれば特に制限なく用いることができる。例えば、導電性、耐電位性、またはリチウムイオン遮断性に優れた材料として、金属および導電性カーボンなどが挙げられる。金属としては、特に制限はないが、Ni、Ti、Al、Cu、Pt、Fe、Cr、Sn、Zn、In、Sb、およびKからなる群から選択される少なくとも1種の金属もしくはこれらの金属を含む合金または金属酸化物を含むことが好ましい。また、導電性カーボンとしては、特に制限はない。好ましくは、アセチレンブラック、バルカン、ブラックパール、カーボンナノファイバ、ケッチェンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン、およびフラーレンからなる群より選択される少なくとも1種を含むものである。導電性フィラーの添加量は、集電体に十分な導電性を付与できる量であれば特に制限はなく、一般的には、5〜35質量%程度である。
【0115】
(負極集電体)
負極集電体12は導電性材料から構成される。集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。
【0116】
集電体の形状についても特に制限されない。
図1に示す積層型電池10では、集電箔のほか、網目形状(エキスパンドグリッド等)等を用いることができるが、本実施形態では集電箔を用いるのが望ましい。
【0117】
集電体を構成する材料に特に制限はない。例えば、金属や、導電性高分子材料または非導電性高分子材料に導電性フィラーが添加された樹脂が採用されうる。
【0118】
具体的には、金属としては、銅、アルミニウム、ニッケル、鉄、ステンレス、チタン、など、またはこれらの合金が挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属の組み合わせのめっき材などが用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。電子伝導性や電池作動電位、集電体へのスパッタリングによる負極活物質の密着性等の観点から、後述のように銅が好ましく用いられうる。
【0119】
また、導電性高分子材料としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、およびポリオキサジアゾールなどが挙げられる。かような導電性高分子材料は、導電性フィラーを添加しなくても十分な導電性を有するため、製造工程の容易化または集電体の軽量化の点において有利である。
【0120】
非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン−ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、またはポリスチレン(PS)などが挙げられる。かような非導電性高分子材料は、優れた耐電位性または耐溶媒性を有しうる。
【0121】
上記の導電性高分子材料または非導電性高分子材料には、必要に応じて導電性フィラーが添加されうる。特に、集電体の基材となる樹脂が非導電性高分子のみからなる場合は、樹脂に導電性を付与するために必然的に導電性フィラーが必須となる。
【0122】
導電性フィラーは、導電性を有する物質であれば特に制限なく用いることができる。例えば、導電性、耐電位性、またはリチウムイオン遮断性に優れた材料として、金属および導電性カーボンなどが挙げられる。金属としては、特に制限はないが、Ni、Ti、Al、Cu、Pt、Fe、Cr、Sn、Zn、In、Sb、およびKからなる群から選択される少なくとも1種の金属もしくはこれらの金属を含む合金または金属酸化物を含むことが好ましい。また、導電性カーボンとしては、特に制限はない。好ましくは、アセチレンブラック、バルカン、ブラックパール、カーボンナノファイバ、ケッチェンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン、およびフラーレンからなる群より選択される少なくとも1種を含むものである。
【0123】
導電性フィラーの添加量は、集電体に十分な導電性を付与できる量であれば特に制限はなく、一般的には、5〜35質量%程度である。
【0124】
本実施形態の負極は、集電体の平面方向への弾性伸びが、1.30%以上であることを特徴とする。ここで集電体の弾性伸び(%)は、引張方向への比例限度までの弾性伸びの大きさの、元の大きさに対する割合(%)である。
【0125】
本実施形態の負極は、負極活物質として特定の三元系Si合金を適用することで、Si負極と同様の高い初期放電容量が得られると同時に、SiとLiとが合金化する際のアモルファス−結晶の相転移を抑制しサイクル寿命を向上させるという作用が得られる。
【0126】
しかしながら、上記の特定の三元系Si合金をバインダ、導電助剤と共に有する負極活物質層を負極集電体上に塗布した負極を用いて電池を作製した場合、電池の充放電に伴って負極活物質の膨張・収縮が生じうる。これに伴って、負極活物質層が体積変化し、負極活物質層に密着している集電体に応力が働く。このとき、負極活物質層の体積変化に集電体が追随できないと、集電体が塑性変形してしまい、集電体にしわが生じてしまう。集電体にしわが生じると、負極活物質層がゆがんでしまい、正極との電極間距離が不均一になってしまうため、Li反応性が低下したり、電極集中が生じうる。さらには、集電体の塑性変形によって集電体に亀裂、破断が生じたり、負極活物質層の直接的な破壊につながる可能性もある。その結果、電池の放電容量の低下が生じてしまう。
【0127】
本実施形態の負極は、このような問題を解決するものであって、弾性伸びが1.30%以上の負極を用いることにより、充放電による負極活物質の膨張・収縮による負極活物質層の体積変化に対して、集電体が弾性的に追随しうる。そのため、負極活物質層と密着している集電体に応力が働くことで生じうるしわを抑制することができるため、負極活物質層のゆがみや、負極活物質層または集電体の破断を防ぐことができる。その結果、正極との電極間距離が均一に保たれる。さらに、副反応も生じにくくなる。そのため、高い放電容量が得られうる。さらに、充放電を繰り返しても集電体の塑性変形が起こりにくいため、サイクル耐久性も向上しうる。
【0128】
また、弾性伸びが1.30%以上の集電体であれば、仮に充放電に伴う負極活物質の膨張・収縮によって負極活物質層の弾性が失われた場合であっても集電体が負極活物質層に密着して弾性変形するため、容量やサイクル耐久性の低下を最小限に抑えることができる。
【0129】
本実施形態の負極に用いられる集電体の弾性伸びは、好ましくは1.40%以上である。集電体の弾性伸びが1.40%以上であれば、本実施形態で用いられる負極活物質の充放電に伴う体積変化の程度を考慮すると、より追随しやすい。そのため、放電容量の向上率が高く、サイクル特性がより改善されうる。さらに、集電体の弾性伸びが1.50%以上であると、本実施形態の負極活物質を用いた場合、より高い効果が得られうる。
【0130】
前記集電体の弾性伸びが大きいほど負極活物質層の体積変化に弾性的に追随することができるため、弾性伸びの上限値は、特に限定されない。
【0131】
本実施形態で用いられる負極活物質は、黒鉛などの炭素材料と比較すると充放電に伴う体積変化が大きいが、上記のような集電体を用いることで集電体の塑性変形を抑えることができ、負極活物質層のゆがみ、およびこれに起因する放電容量の低下を抑えることができる。しかしながら、純Siを負極活物質として用いた場合、充放電に伴う体積変化がさらに大きいため、上記のような集電体を用いても負極活物質層の体積変化に十分に追随できず、放電容量の低下を防ぐことが難しい場合がある。本実施形態で用いられる三元系Si合金の活物質の場合、集電体の弾性伸びが1.30%以上であればよく、放電容量およびサイクル特性に優れた電池が得られる(
図20参照)。
【0132】
なお、本明細書中、集電体の弾性伸び(%)は、JIS K 6251(2010年)の引張試験方法に準じて測定した値を用いるものとする。また、集電体の弾性伸び(%)は、25℃において測定した時の値である。
【0133】
本実施形態における集電体は、引張強度が、150N/mm
2以上であることが好ましい。引張強度が150N/mm
2以上であれば、集電体の破断を防止する効果が高い。
【0134】
なお、本明細書中、集電体の引張強度(N/mm
2)は、JIS K 6251(2010年)の引張試験方法に準じて測定した値を用いるものとする。また、集電体の引張強度(N/mm
2)は、25℃において測定した時の値である。
【0135】
本実施形態における集電体は、弾性伸びが1.30%以上であれば、上述したように集電体を構成する材料に特に制限はなく、好ましくは銅、アルミニウム、ニッケル、鉄、ステンレス鋼、チタン、コバルトなどの金属、またはこれらの金属の合金が用いられうる。
【0136】
上記の金属の中でも、銅、ニッケル、ステンレス、またはこれらに他の金属を添加した合金を用いた金属箔が機械的強度、活物質層との密着性、化学的安定性、電池反応が進行する電位における電気化学的な安定性、導電性、コスト等の観点から好ましい。特に銅または銅の合金は、標準酸化還元電位の理由から特に好ましい。
【0137】
銅箔は、圧延銅箔(圧延法によって得られる銅箔)または電解銅箔(電解法によって得られる銅箔)を用いることができる。銅合金箔についても、電解銅合金箔または圧延銅合金箔のいずれも用いることができる。本実施形態の負極においては、引張強度が大きいこと、屈曲性に優れることから、圧延銅箔または圧延銅合金箔を用いることが好ましい。
【0138】
銅の合金としては、銅に、例えば、Zr、Cr、Zn、Snなどの元素を添加した合金が好ましく用いられうる。このような合金は、純銅と比較して、弾性率が高く、負極活物質層の体積変化に追随しやすく塑性変形が生じにくい。このため、集電体のしわや破断が生じにくい。また、銅にZr、Cr、Zn、Snなどの元素を添加した合金は純銅と比較して耐熱性が向上しうる。特に、軟化点が、負極の製造工程において負極活物質を含むスラリーを集電体上に塗布して乾燥する際の熱処理温度(約300℃)よりも高い合金であれば、熱処理後も弾性が維持されうるため好ましい。中でも、Cr、Zn、Snを添加した合金が、熱処理後の弾性維持の理由で好ましい。これらの合金元素は、1種類でも、2種類以上含まれてもよい。これらの合金元素の含有量は、合計で、例えば、0.01〜0.9質量%であり、好ましくは0.03〜0.9質量%であり、さらに好ましくは0.3〜0.9質量%である。合金元素の含有量が0.03質量%以上であれば、熱処理後の弾性維持の理由で好適である。
【0139】
弾性伸びが1.30%以上である集電体を得る方法は特に制限されない。本実施形態の集電体が金属箔からなるものである場合、加熱、冷却、圧力、不純物元素添加により機械的特性を変化させることができる。なお、上記の伸びを有する市販の金属箔を用いてもよい。
【0140】
負極の集電体の厚さについても特に限定されないが、本実施形態の負極においては、5〜15μmであることが好ましく、5〜10μmであることがより好ましい。負極の集電体の厚さが5μm以上であれば、十分な機械的強度が得られるため好ましい。また負極の集電体の厚さが15μm以下であれば、電池の薄型化の点で好ましい。
【0141】
なお、双極型電極用の集電体についても、負極集電体と同様のものを用いればよい。特に正極電位および負極電位に対する耐性を有するものを用いるのが望ましい。
【0142】
[電解質層]
電解質層17を構成する電解質としては、液体電解質またはポリマー電解質が用いられうる。
【0143】
液体電解質は、可塑剤である有機溶媒に支持塩であるリチウム塩が溶解した形態を有する。可塑剤として用いられうる有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)等のカーボネート類が例示される。また、支持塩(リチウム塩)としては、LiBETI等の電極の活物質層に添加されうる化合物が同様に採用されうる。
【0144】
一方、ポリマー電解質は、電解液を含むゲル電解質と、電解液を含まない真性ポリマー電解質に分類される。
【0145】
ゲル電解質は、イオン伝導性ポリマーからなるマトリックスポリマーに、上記の液体電解質(電解液)が注入されてなる構成を有する。マトリックスポリマーとして用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、およびこれらの共重合体等が挙げられる。かようなポリアルキレンオキシド系ポリマーには、リチウム塩などの電解質塩がよく溶解しうる。
【0146】
ゲル電解質中の上記液体電解質(電解液)の割合としては、特に制限されるべきものではないが、イオン伝導度などの観点から、数質量%〜98質量%程度とするのが望ましい。本実施形態では、電解液の割合が70質量%以上の、電解液が多いゲル電解質について、特に効果がある。
【0147】
なお、電解質層が液体電解質やゲル電解質や真性ポリマー電解質から構成される場合には、電解質層にセパレータを用いてもよい。セパレータ(不織布を含む)の具体的な形態としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィンからなる微多孔膜や多孔質の平板、更には不織布が挙げられる。
【0148】
真性ポリマー電解質は、上記のマトリックスポリマーに支持塩(リチウム塩)が溶解してなる構成を有し、可塑剤である有機溶媒を含まない。したがって、電解質層が真性ポリマー電解質から構成される場合には電池からの液漏れの心配がなく、電池の信頼性が向上しうる。
【0149】
ゲル電解質や真性ポリマー電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。
【0150】
[集電板およびリード]
電池外部に電流を取り出す目的で、集電板を用いてもよい。集電板は集電体やリードに電気的に接続され、電池外装材であるラミネートシートの外部に取り出される。
【0151】
集電板を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましく、より好ましくは軽量、耐食性、高導電性の観点からアルミニウム、銅などが好ましい。なお、正極集電板と負極集電板とでは、同一の材質が用いられてもよいし、異なる材質が用いられてもよい。
【0152】
正極端子リードおよび負極端子リードに関しても、必要に応じて使用する。正極端子リードおよび負極端子リードの材料は、公知のリチウムイオン二次電池で用いられる端子リードを用いることができる。なお、電池外装材29から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆するのが好ましい。
【0153】
[電池外装材]
電池外装材29としては、公知の金属缶ケースを用いることができるほか、発電要素を覆うことができる、アルミニウムを含むラミネートフィルムを用いた袋状のケースが用いられうる。該ラミネートフィルムには、例えば、PP、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに何ら制限されるものではない。高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点から、ラミネートフィルムが望ましい。
【0154】
なお、上記のリチウムイオン二次電池は、従来公知の製造方法により製造することができる。
【0155】
<リチウムイオン二次電池の外観構成>
図2は、積層型の扁平なリチウムイオン二次電池の外観を表した斜視図である。
【0156】
図2に示すように、積層型の扁平なリチウムイオン二次電池50では、長方形状の扁平な形状を有しており、その両側部からは電力を取り出すための正極集電板58、負極集電板59が引き出されている。発電要素57は、リチウムイオン二次電池50の電池外装材52によって包まれ、その周囲は熱融着されており、発電要素57は、正極集電板58および負極集電板59を外部に引き出した状態で密封されている。ここで、発電要素57は、
図1に示すリチウムイオン二次電池(積層型電池)10の発電要素21に相当するものである。発電要素57は、正極(正極活物質層)13、電解質層17および負極(負極活物質層)15で構成される単電池層(単セル)19が複数積層されたものである。
【0157】
なお、上記リチウムイオン二次電池は、積層型の扁平な形状のもの(ラミネートセル)に制限されるものではない。巻回型のリチウムイオン電池では、円筒型形状のもの(コインセル)や角柱型形状(角型セル)のもの、こうした円筒型形状のものを変形させて長方形状の扁平な形状にしたようなもの、更にシリンダー状セルであってもよいなど、特に制限されるものではない。上記円筒型や角柱型の形状のものでは、その外装材に、ラミネートフィルムを用いてもよいし、従来の円筒缶(金属缶)を用いてもよいなど、特に制限されるものではない。好ましくは、発電要素がアルミニウムラミネートフィルムで外装される。当該形態により、軽量化が達成されうる。
【0158】
また、
図2に示す正極集電板58、負極集電板59の取り出しに関しても、特に制限されるものではない。正極集電板58と負極集電板59とを同じ辺から引き出すようにしてもよいし、正極集電板58と負極集電板59をそれぞれ複数に分けて、各辺から取り出しようにしてもよいなど、
図2に示すものに制限されるものではない。また、巻回型のリチウムイオン電池では、集電板に変えて、例えば、円筒缶(金属缶)を利用して端子を形成すればよい。
【0159】
上記したように、本実施形態のリチウムイオン二次電池用の負極活物質を用いてなる負極並びにリチウムイオン二次電池は、電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの大容量電源として、好適に利用することができる。即ち、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に好適に利用することができる。
【0160】
なお、上記実施形態では、電気デバイスとして、リチウムイオン電池を例示したが、これに制限されるわけではなく、他のタイプの二次電池、さらには一次電池にも適用できる。また電池だけではなくキャパシタにも適用できる。
【実施例】
【0161】
本発明を、以下の実施例を用いてさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。
【0162】
はじめに、参考例として、本発明に係る電気デバイス用負極を構成する化学式(1)で表されるSi合金についての性能評価を行った。
【0163】
(参考例A):Si
xSn
yAl
zA
aについての性能評価
[1]負極の作製
スパッタ装置として、独立制御方式の3元DCマグネトロンスパッタ装置(大和機器工業株式会社製、コンビナトリアルスパッタコーティング装置、ガン−サンプル間距離:約100mm)を使用し、厚さ20μmのニッケル箔から成る基板(集電体)上に、下記の条件のもとで、各組成を有する負極活物質合金の薄膜をそれぞれ成膜することによって、都合23種の負極サンプルを得た(参考例1〜14および比較参考例1〜9)。
【0164】
(1)ターゲット(株式会社高純度化学研究所製、純度:4N)
Si:50.8mm径、3mm厚さ(厚さ2mmの無酸素銅製バッキングプレート付)
Sn:50.8mm径、5mm厚さ
Al:50.8mm径、3mm厚さ。
【0165】
(2)成膜条件
ベース圧力:〜7×10
−6Pa
スパッタガス種:Ar(99.9999%以上)
スパッタガス導入量:10sccm
スパッタ圧力:30mTorr
DC電源:Si(185W)、Sn(0〜40W)、Al(0〜150W)
プレスパッタ時間:1min.
スパッタ時間:10min.
基板温度:室温(25℃)。
【0166】
すなわち、上記のようなSiターゲット、Snターゲット及びAlターゲットを使用し、スパッタ時間を10分に固定し、DC電源のパワーを上記の範囲でそれぞれ変化させることによって、Ni基板上にアモルファス状態の合金薄膜を成膜し、種々の組成の合金薄膜を備えた負極サンプルを得た。
【0167】
ここで、サンプル作製の数例を示せば、参考例4では、DC電源1(Siターゲット):185W、DC電源2(Snターゲット):25W、DC電源3(Alターゲット):130Wとした。また、比較参考例2では、DC電源1(Siターゲット):185W、DC電源2(Snターゲット):30W、DC電源3(Alターゲット):0Wとした。さらに、比較参考例5では、DC電源1(Siターゲット):185W、DC電源2(Snターゲット):0W、DC電源3(Alターゲット):78Wとした。
【0168】
これら合金薄膜の成分組成を表1及び
図3〜6に示す。なお、得られた合金薄膜の分析は、下記の分析法、分析装置によった。
【0169】
(3)分析方法
組成分析:SEM・EDX分析(JEOL社)、EPMA分析(JEOL社)
膜厚測定(スパッタレート算出のため):膜厚計(東京インスツルメンツ)
膜状態分析:ラマン分光測定(ブルカー社)。
【0170】
[2]電池の作製
上記により得られた各負極サンプルとリチウム箔(本城金属株式会社製、直径15mm、厚さ200μm)から成る対極とをセパレータ(セルガード社製セルガード2400)を介して対向させたのち、電解液を注入することによってCR2032型コインセルをそれぞれ作製した。
【0171】
なお、上記電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を1:1の容積比で混合した混合非水溶媒中に、LiPF
6(六フッ化リン酸リチウム)を1Mの濃度となるように溶解させたものを用いた。
【0172】
[3]電池の充放電試験
上記により得られたそれぞれの電池に対して下記の充放電試験を実施した。この結果を表1−1、表1−2に併せて示す。
【0173】
すなわち、充放電試験機(北斗電工株式会社製HJ0501SM8A)を使用し、300K(27℃)の温度に設定された恒温槽(エスペック株式会社製PFU−3K)中にて、充電過程(評価対象である負極へのLi挿入過程)では、定電流・定電圧モードとして、0.1mAにて2Vから10mVまで充電した。その後、放電過程(上記負極からのLi脱離過程)では、定電流モードとし、0.1mA、10mVから2Vまで放電した。以上の充放電サイクルを1サイクルとして、これを100回繰り返した。
【0174】
そして、50サイクル及び100サイクル目の放電容量を求め、1サイクル目の放電容量に対する維持率を算出した。この結果を表1に併せて示す。この際、放電容量は、合金重量当りで算出した値を示している。なお、「放電容量(mAh/g)」は、pure Si又は合金重量当りのものであり、Si−Sn−M合金(Si−Sn合金、pure SiまたはSi−Sn合金)へLiが反応する時の容量を示す。なお、本明細書中で「初期容量」と表記しているものが、初期サイクル(1サイクル目)の「放電容量(mAh/g)」に相当するものである。
【0175】
また、50サイクル目、100サイクル目の「放電容量維持率(%)」は、「初期容量からどれだけ容量を維持しているか」の指標を表す。放電容量維持率(%)の計算式は下記の通りである。
【0176】
【数1】
【0177】
【表1-1】
【0178】
【表1-2】
【0179】
表1−1、表1−2より、参考例1〜14の電池は、1サイクル目放電容量、50サイクル目放電容量維持率及び100サイクル目放電容量維持率のバランスが優れていることがわかった。すなわち、Siが12質量%以上100質量%未満、Snが0質量%超45質量%以下、及びAlが0質量%超43質量%以下であるとき、上記のバランスが優れていることが判明した。これに対し、比較参考例1〜9の電池は、参考例の電池に比べて、1サイクル目の放電容量が大きいことがあっても、放電容量維持率の低下が著しいことがわかった。
【0180】
以上の結果をまとめると、各成分が本発明の特定範囲内にあるSi−Sn−Al系合金を負極活物質として用いた参考例の電池においては、以下のことが確認された。すなわち、このような電池では、1700mAh/gを超える高い初期容量を有し、50サイクル目で92%以上、100サイクル目でも55%以上の放電容量維持率を示し、容量とサイクル耐久性のバランスに優れていることが確認された。これに対し、比較参考例の電池においては、初期容量、サイクル耐久性いずれにおいても、参考例における上記数値を下回る結果となった。特に、純Siに近い合金では、高容量ではあるものの、サイクル特性に劣る傾向があることが判明した。また、Sn含有量の高い合金では、サイクル特性には比較的優れるものの、初期容量に劣る傾向があることが判明した。
【0181】
(参考例B):Si
xSn
yV
zA
aについての性能評価
[1]負極の作製
参考例Aの(1)におけるターゲットの「Al:50.8mm径、3mm厚さ」を「V:50.8mm径、3mm厚さ」に変更し、(2)におけるDC電源の「Sn(0〜40W)、Al(0〜150W)」を「Sn(0〜50W)、V(0〜150W)」に変更したことを除いては、参考例Aと同様の方法で、都合32種の負極サンプルを作製した(参考例Bの参考例15〜27および比較参考例10〜28参照)。
【0182】
なお、前記(2)について、サンプル作製の数例を示せば、参考例25では、DC電源1(Siターゲット):185W、DC電源2(Snターゲット):30W、DC電源3(Vターゲット):140Wとした。また、比較参考例19では、DC電源1(Siターゲット):185W、DC電源2(Snターゲット):30W、DC電源3(Vターゲット):0Wとした。さらに、比較参考例25では、DC電源1(Siターゲット):185W、DC電源2(Snターゲット):0W、DC電源3(Vターゲット):80Wとした。
【0183】
これら合金薄膜の成分組成を表2−1、表2−2及び
図7〜10に示す。なお、得られた合金薄膜の分析は、参考例Aと同様の分析法、分析装置によった。
【0184】
[2]電池の作製
参考例Aと同様の方法でCR2032型コインセルを作製した。
【0185】
[3]電池の充放電試験
参考例Aと同様の方法で電池の充放電試験を行った。この結果を表2−1、表2−2に併せて示す。
【0186】
【表2-1】
【0187】
【表2-2】
【0188】
表2−1、表2−2より、参考例Bの参考例15〜27の電池は、1サイクル目放電容量、50サイクル目放電容量維持率及び100サイクル目放電容量維持率のバランスが優れていることがわかった。すなわち、Siが27質量%以上100質量%未満、Snが0質量%超73質量%以下、及びVが0質量%超73質量%以下であるとき、上記のバランスが優れていることが判明した。これに対し、参考例Bの比較参考例10〜28の電池は、参考例の電池に比べて、1サイクル目の放電容量が大きいことがあっても、放電容量維持率の低下が著しいことがわかった。
【0189】
以上の結果をまとめると、参考例Bの参考例15〜27の電池においては次のことが確認された。すなわち、このような電池では、712mAh/g以上の初期容量と、50サイクル後では92%以上、100サイクル後では44%以上の放電容量維持率を示すことが確認された。
【0190】
(参考例C):Si
xSn
yC
zA
aについての性能評価
[1]負極の作製
参考例Aの(1)におけるターゲットの「Al:50.8mm径、3mm厚さ」を「C:50.8mm径、3mm厚さ(厚さ2mmの無酸素銅製バッキングプレート付)」に変更し、(2)におけるDC電源の「Al(0〜150W)」を「C(0〜150W)」に変更したことを除いては、参考例Aと同様の方法で、都合34種の負極サンプルを作製した(参考例Cの参考例28〜49および比較参考例29〜40参照)。
【0191】
なお、前記(2)について、サンプル作製の数例を示せば、参考例43では、DC電源1(Siターゲット)を185W、DC電源2(Snターゲット)を35W、DC電源3(Cターゲット)を110Wとした。また、比較参考例30では、DC電源1(Siターゲット)を185W、DC電源2(Snターゲット)を22W、DC電源3(Cターゲット)を0Wとした。さらに、比較参考例35では、DC電源1(Siターゲット)を185W、DC電源2(Snターゲット)を0W、DC電源3(Cターゲット)を30Wとした。
【0192】
これら合金薄膜の成分組成を表3−1、表3−2及び
図11に示す。なお、得られた合金薄膜の分析は、参考例Aと同様の分析法、分析装置によった。
【0193】
[2]電池の作製
参考例Aと同様の方法でCR2032型コインセルを作製した。
【0194】
[3]電池の充放電試験
参考例Aと同様の方法で電池の充放電試験を行った。この結果を表3−1、表3−2に併せて示す。
【0195】
【表3-1】
【0196】
【表3-2】
【0197】
以上の結果、29質量%以上のSiを含有し、残部がSn、C及び不可避不純物であるSi−Sn−C系合金を負極活物質として用いた参考例Cの参考例28〜49の電池においては、少なくとも1000mAh/gを超える初期容量を備え、50サイクル後では92%以上、100サイクル後でも45%以上の放電容量維持率を示すことが確認された。(参考例Cの比較参考例29〜40と対比参照のこと)。
【0198】
次に、以下の実施例1では、上記Si合金のうちSi
41Sn
16Al
43(参考例4に相当)を負極活物質として用い、負極活物質層の伸びを替えた(詳しくは、導電助剤等の種類を替えた負極活物質層を有する)電気デバイス用負極についての性能評価を行った。
【0199】
なお、前記Si
41Sn
16Al
43以外のその他の本発明に用いられる合金(Si
xSn
yAl
zA
a、Si
xSn
yV
zA
a、およびSi
xSn
yC
zAのうち、Si
41Sn
16Al
43以外のもの)についてもSi
41Sn
16Al
43を用いた以下の実施例1〜4と同一または類似する結果が得られる。この理由は、参考例A〜Cに示されるように、前記その他の本発明に用いられる合金は、Si
41Sn
16Al
43と同様の特性を有するためである。すなわち、同様の特性を有する合金を用いた場合には、合金の種類を変更したとしても同様の結果が得られうる。
【0200】
(実施例1−1)
[Si合金の製造]
Si合金は、メカニカルアロイ法(または、アークプラズマ溶融法)により製造した。具体的には、ドイツ フリッチュ社製遊星ボールミル装置P−6を用いて、ジルコニア製粉砕ポットにジルコニア製粉砕ボールと各合金の各原料粉末を投入し、600rpm、48hかけて合金化させた。
【0201】
[負極の作製]
負極活物質90質量部と、導電助剤5質量部と、バインダ5質量部とを混合し、N−メチル−2−ピロリドン(NMP)に分散させて負極スラリーを得た。ここで、負極活物質には、上記で製造したSi合金(Si
41Sn
16Al
43、平均粒子径0.3μm)を用いた。また導電助剤には短鎖状カーボンブラックとして短鎖状アセチレンブラックを用い、バインダにはポリイミド(E弾性率2.1GPa)を用いた。次いで、得られた負極スラリーを、厚さ10μmの銅箔(弾性伸び1.4%)よりなる負極集電体の両面にそれぞれ負極活物質層の厚さが30μmとなるように均一に塗布し、真空中で24時間乾燥させて、負極を得た。
【0202】
[正極の作製]
正極活物質90質量部と、導電助剤5質量部と、バインダ5質量部とを混合し、NMPに分散させて正極スラリーを得た。ここで、正極活物質には、Li
1.85Ni
0.18Co
0.10Mn
0.87O
3を、特開2012−185913号公報の実施例1(段落0046)に記載の手法により作製した。また導電助剤にはアセチレンブラックを用い、バインダにはポリフッ化ビニリデン(PVdF)を用いた。次いで、得られた正極スラリーを、厚さ20μmのアルミニウム箔よりなる正極集電体の両面にそれぞれ正極活物質層の厚さが30μmとなるように均一に塗布し、乾燥させて、正極を得た。
【0203】
[電池の作製]
上記で作製した正極と、負極とを対向させ、この間にセパレータ(ポリプロピレン製の微多孔膜、膜厚20μm)を配置した。次いで、負極、セパレータ、および正極の積層体をコインセル(CR2032、材質:ステンレス鋼(SUS316))の底部側に配置した。さらに、正極と負極との間の絶縁性を保つためガスケットを装着し、下記電解液をシリンジにより注入し、スプリング及びスペーサを積層し、コインセルの上部側を重ねあわせ、かしこめることにより密閉して、リチウムイオン二次電池を得た。
【0204】
なお、上記電解液としては、エチレンカーボネート(EC)およびジエチルカーボネート(DEC)を、EC:DC=1:2(体積比)の割合で混合した有機溶媒に、支持塩である六フッ化リン酸リチウム(LiPF
6)を、濃度が1mol/Lとなるように溶解させたものを用いた。
【0205】
(実施例1−2)
負極の導電助剤を液相法炭素繊維であるカーボンナノチューブに変更したことを除いては、実施例1−1と同様の方法で負極および電池を作製した。
【0206】
(実施例1−3)
負極の導電助剤を気相法炭素繊維である黒鉛ファイバーに変更したことを除いては、実施例1−1と同様の方法で負極および電池を作製した。
【0207】
(比較例1−1)
負極の導電助剤を長鎖状カーボンブラックである長鎖状アセチレンブラックに変更したことを除いては、実施例1−1と同様の方法で負極および電池を作製した。
【0208】
(比較例1−2)
負極の導電助剤を人造黒鉛に変更したことを除いては、実施例1−1と同様の方法で負極および電池を作製した。
【0209】
(比較例1−3)
負極の導電助剤をケッチェンブラックに変更したことを除いては、実施例1−1と同様の方法で負極および電池を作製した。
【0210】
(比較例1−4)
負極の導電助剤を気相法炭素繊維である黒鉛ファイバーに変更し、負極活物質を純Si(純度99.999%)に変更したことを除いては、実施例1−1と同様の方法で負極および電池を作製した。
【0211】
(比較例1−5)
負極活物質を純Si(純度99.999%)に変更し、負極のバインダをPVdFに変更したことを除いては、実施例1−1と同様の方法で負極および電池を作製した。
【0212】
[負極活物質層の伸び(%)の測定]
上記で作製した各リチウムイオン二次電池について以下の方法で負極活物質層の伸び(%)の測定を行った。詳しくは、JIS K 7163(1994年)の引張試験方法に準じて測定した値により、負極活物質層の伸び(%)を測定した。なお、以下の実施例及び比較例で作製した各リチウムイオン二次電池についても上記と同様にして負極活物質層の伸び(%)の測定を行った。
【0213】
<性能評価>
[サイクル特性の評価]
上記で作製した各リチウムイオン二次電池について以下の方法でサイクル特性評価を行った。各電池について、30℃の雰囲気下、定電流方式(CC、電流:0.1C)で2.0Vまで充電し、10分間休止させた後、定電流(CC、電流:0.1C)で0.01Vまで放電し、放電後10分間休止させた。この充放電過程を1サイクルとし、100サイクルの充放電試験を行い、1サイクル目の放電容量に対する100サイクル目の放電容量の割合(放電容量維持率[%])を求めた。比較例1−1の放電容量維持率を100として、他の実施例及び比較例の放電容量維持率の割合を放電容量向上率(%)とした。得られた結果を下記の表4および
図18に示す。
【0214】
【表4】
【0215】
上記表4および
図18の結果から、3元系のSi−Sn−M系の合金を負極活物質に適用し、更に適切なバインダ種および導電助剤種を組み合わせることで、負極活物質層の伸びを所定範囲に設定できる。負極活物質層の伸び(δ)は1.29<δ<1.70%の範囲とすることで、放電容量向上率の改善を図ることができることがわかった。伸び(δ)を1.40≦δ<1.70%、好ましくは1.40≦δ≦1.66%、より好ましくは1.40≦δ≦1.57%、更に好ましくは1.47≦δ≦1.57%、特に好ましくは1.53≦δ≦1.57%の範囲とすることで放電容量向上率をより改善できる。実施例1−1〜1−3と比較例1−1〜1−3を対比参照のこと)。
【0216】
特に、負極活物質として純Siに代えて、3元系のSi−Sn−M系の合金を用いることで、格段に放電容量向上率の改善を図ることができることも確認できた。(
図18の実施例1−1〜1−3及び比較例1−1〜1−3のグラフと比較例1−4〜1−5のデータとが乖離している点を対比参照のこと)。
【0280】
本出願は、2012年11月22日に出願された日本国特許出願第2012−256930号に基づいており、その開示内容は、参照により全体として引用されている。