(58)【調査した分野】(Int.Cl.,DB名)
掘削されたシアン化合物及びベンゼンに汚染された土壌に対して、水洗分級にて特定の粒子径を境に二つ以上の粒子群に分級する水洗分級工程と、該水洗分級工程で分級された各粒子群の全て又は一部に対して過硫酸塩からなる酸化剤と鉄粉を添加・混合して酸化分解を行う酸化分解工程と、該酸化分解工程の後、磁力選別機により添加された鉄粉を含む土壌中の鉄を回収する鉄回収工程とを備えてなることを特徴とする浄化方法。
【背景技術】
【0002】
都市ガス製造工場内の土地などではシアン化合物とベンゼンによる複合汚染が生じる。
昭和40年以前に稼動していた工場では石炭ガスを製造していたが、その製造過程で石炭中の化合物からベンゼンが生成され、炭素とアンモニアからシアン化合物が生成されていたため、これらが漏洩して土壌に浸透したものと考えられる。
これらのシアン化合物、ベンゼンに汚染された土壌を浄化する技術として、(a)水洗分級法、(b)加熱処理法、(c)バイオレメディエーション法が知られている。
【0003】
水洗分級法は、水洗・分塊、もしくは物理的な土壌研磨等により粗い土壌粒子表面から汚染物質または汚染物質を多量に含む微粒子を分離、濃集、捕捉する方法である。
水洗分級法の場合、土壌磨砕が不十分であると、粗い土壌粒子からの汚染物質または汚染物質を多量に含む微粒子が完全に除去されず、汚染物質を土壌指定基準値以下まで低減できない可能性がある。
また、土壌磨砕時間を長くしたり、粗い土壌粒子表面を完全に研磨する高度磨砕装置を適用したりすることにより、粗い土壌粒子からの汚染物質または汚染物質を多量に含む微粒子の除去率を向上させることは可能であるが、この場合においても高濃度に汚染された土壌では、汚染物質を土壌指定基準値以下まで確実に低減できるとは限らない。さらに、この場合、前者はランニングコストの増大,後者は装置イニシャルコストの増大となることが指摘されている。また、磨砕による微粒子量が増加し浄化土壌の歩留まりが低下させることとなる。
【0004】
加熱処理法は、土壌をロータリーキルンや電気抵抗炉等でシアン化合物、ベンゼンを揮発させる方法であるが、シアン化合物及びベンゼンの両方ともに揮発させるためには400〜600℃まで加熱する必要があり、大量の熱源を必要とし、ランニングコストの増大を招く。
さらに、加熱時に発生する排ガスに対しても適切に処理する付加設備等が必要となり、イニシャルコスト増大につながる。また、加熱処理により、土壌中に含まれるクロムや砒素等の他の重金属の形態が変化し、処理後の土壌に対して、他の重金属が溶出する可能性のあることが指摘されている。
【0005】
バイオレメディエーション法は、汚染された土壌に対して栄養剤やシアン化合物、ベンゼンの分解能を有した微生物からなるバイオ製剤を添加することにより、シアン化合物、ベンゼンを分解する方法であるが、浄化完了まで長時間を要するという問題がある。
また、バイオ製剤を添加した場合、バイオ製剤を構成している微生物が、当該土壌に土着している微生物と異なっている可能性が高く、外来微生物の導入によって自然環境が破壊される可能性がある。
上述したように、水洗分級法、加熱処理法、バイオレメディエーション法のいずれの方法にも欠点があるため、近年では薬剤による処理方法やバイオレメディエーション法を改良した方法、不溶化方法が提案されている。
【0006】
例えば、特許文献1には、遊離シアン、錯シアン及び難溶性シアン化合物を含む土壌のスラリー液をアルカリでpH10〜pH13とし、30分以上加熱撹拌後、次亜塩素酸ナトリウムをスラリー液に分割添加してpH10〜pH13の範囲及び80〜100℃の温度範囲で遊離シアン、錯シアン及び難溶性シアン化合物と反応させ、シアン酸を炭酸ガスと窒素に分解するようにしている。
【0007】
また、特許文献2ではシアン化合物及び鉄(II)を含有する汚染土壌に、溶存酸素、NOx−Nの少なくともいずれかを含有する水、又は溶存酸素及びアンモニア態窒素を含有する水を添加し、前記鉄(II)を鉄(III)に酸化するとともに、前記シアン化合物を溶解性のフェリシアン錯イオンに変換し、当該錯イオンを汚染土壌中の微生物により分解する方法が開示されている。
【0008】
また、特許文献3はシアンで汚染した土壌に酸化カルシウムを混合することにより、全シアンの溶出量を低減するとともに、酸化カルシウムの水和反応熱によりベンゼンなどの揮発性有機化合物も除去することができ、シアン化合物とベンゼンの複合汚染を一括して浄化する方法が開示されている。
【発明の概要】
【発明が解決しようとする課題】
【0010】
特許文献1では、土壌スラリーの加熱を伴うため多大なエネルギを必要とし、また、次亜塩素酸ナトリウムの投入量も反応状態を確認しながら制御する必要があり、処理が容易でないという問題がある。
また、特許文献2は、バイオレメディエーション法の一種であるため、浄化までに長時間を要してしまう。
また、特許文献3の方法では、シアン化合物に関しては不溶化処理であるため、処理後土壌の経時変化、酸性雨などの外部からの外乱因子による変化により再溶出する可能性がある。
【0011】
以上のように、従来提案されている方法はいずれも十分なものではなく、シアン化合物とベンゼンによる複合汚染土壌を、容易かつ長時間を要することなく浄化でき、更にコストパフォーマンスに優れた土壌浄化技術の開発が望まれていた。
【課題を解決するための手段】
【0012】
本発明者らは、シアン化合物、ベンゼンに汚染された土壌を浄化する方法について鋭意検討し、過硫酸塩からなる酸化剤と鉄粉を混合して浄化を行う土壌浄化技術を完成させた。ここで述べる過硫酸塩とは、ペルオキソ二硫酸塩であり、たとえば、ナトリウム、アンモニウム、カリウム塩などが挙げられる。
通常、酸化剤の触媒としては、酸化剤との反応の観点から、pH調整された鉄や銅、キレート等の金属触媒を使用するが、これらは非常に高価である。
また、pH調整された金属触媒は酸化等の反応が迅速に進行するため、粉体での保管、汚染サイトへの移動に長時間を要すると触媒表面の酸化等の反応により触媒効果を失ってしまう。このため、金属触媒は酸化防止を施した特殊な溶液で保管しなければならず、補完にコストがかかると言う問題がある。
【0013】
そこで、本発明者らは、図-6のように、酸化還元電位、すなわち、反応性に優れた過硫酸塩からなる酸化剤に着目し、この酸化剤が酸性領域であるが故に、触媒のpH調整無しで鉄粉の酸化、溶解が自発的に発生し、硫酸ラジカル反応に係わる二価の鉄イオン(II)を供給できることを見出した。
すなわち、土壌に鉄粉を混合し過硫酸塩からなる酸化剤を添加することにより、過硫酸塩からなる酸化剤は酸性領域であるため鉄粉が溶解して二価の鉄イオン(II)が溶出する。この二価の鉄イオンと過硫酸塩の反応により下記(1)式に示すように硫酸ラジカルが発生し、この硫酸ラジカルが原子移動によりシアン化合物、ベンゼンを分解する。
R−O−O−R + Fe(II) → RO・ + −OR + Fe(III)・・(1)
R:硫酸基
【0014】
また、鉄粉の酸化、溶解の際に発生する反応熱によって土壌の温度が上昇することにより、硫酸ラジカル反応が促進され、前記の効果と合わせた二重の効果でシアン化合物、ベンゼンの分解を飛躍的に向上することができる。
本発明は以上のような知見に基づいてなされたものであり、具体的には以下の構成を備えてなるものである。
【0015】
(1)本発明に係る浄化方法は、シアン化合物及びベンゼンに汚染された土壌に対して、過硫酸塩からなる酸化剤と
、粒径が500μm以下の鉄粉を添加することを特徴とするものである。
【0016】
(2)また、本発明に係る他の浄化方法は、掘削されたシアン化合物及びベンゼンに汚染された土壌に対して、水洗分級にて特定の粒子径を境に二つ以上の粒子群に分級する水洗分級工程と、
該水洗分級工程で分級された各粒子群の全て又は一部に対して過硫酸塩からなる酸化剤と鉄粉を添加・混合して酸化分解を行う酸化分解工程と、
該酸化分解工程の後、磁力選別機により添加された鉄粉を含む土壌中の鉄を回収する鉄回収工程とを備えてなることを特徴とするものである。
【0017】
(3)また、上記(1)または(2)に記載のものにおいて、前記鉄粉として、鋼材及び/またはステンレス材を衝打した際に発生する鉄粉を用いることを特徴とするものである。
【発明の効果】
【0018】
本発明によれば、シアン化合物、ベンゼンに汚染された土壌を確実、且つ、迅速に浄化でき、また浄化効果を長期間に亘って維持することができ、さらに、安価であるため、産業上極めて有用である。
【発明を実施するための形態】
【0020】
[実施の形態1]
本発明の一実施の形態に係るシアン化合物、ベンゼンに汚染された土壌の浄化方法は、
図1に示すように、掘削された土壌に対して鉄粉を混合する鉄粉混合工程1と、鉄粉が混合された汚染土壌(鉄粉と汚染土壌の混合物)に過硫酸塩からなる酸化剤を混合する酸化剤混合工程2とを有し、係る工程を有することにより、硫酸ラジカルによるシアン化合物、ベンゼンの分解を行うものである。
以下、各工程を詳細に説明する。
【0021】
<鉄粉混合工程>
鉄粉混合工程1は、触媒としての鉄粉を汚染土壌に適量添加して混合機により均一になるように混合する。
この触媒に使用される鉄粉としては、通常の鉄粉、還元鉄粉、電解鉄粉、酸化鉄粉、アトマイズ鉄粉、海綿鉄粉、切削鉄粉などを使用することができ、特に限定されるものではない。
また、表面が酸化膜で覆われており触媒としての機能が著しく乏しい鉄粉の場合は、酸性溶液で表面の酸化膜を除去することにより使用できる。
鋼材、ステンレス材に鉄材を衝打して発生したショットブラストダストや破砕鉄材は安価で入手可能であり、浄化コストを低減できるので好ましい。特に、ステンレス鋼に鉄材を衝打して発生させた、鉄粉表面にステンレス鋼が部分的に圧縮付着しているショットブラストダストは、部分的に付着しているステンレス鋼と鉄粉との間に内部電池作用が働くため、ショットプラストダスト自体が優れた二価の鉄イオンの溶出能を保持しており、硫酸ラジカル反応の面からも非常に有益である。
【0022】
また、鉄粉粒径としては、土壌への移送、混合に使用する機器の特性、過硫酸塩との反応性より、500μm以下が望ましい。すなわち、500μm以上の粒径の場合、鉄粉を圧送する配管、移送機にて詰りや摩耗が発生するためである。
【0023】
<酸化剤混合工程>
酸化剤混合工程2は、鉄粉が混合された汚染土壌(鉄粉と汚染土壌の混合物)に過硫酸塩からなる酸化剤を混合する工程である。
酸化剤を添加して混合機により再度混合を行い、硫酸ラジカル反応が完了するまで養生(保管)する。
土壌に鉄粉を混合し過硫酸塩からなる酸化剤を添加することにより、前述したように、過硫酸塩の作用により鉄粉が溶解して二価の鉄イオン(II)が溶出する。この二価の鉄イオンと過硫酸塩の反応により下記(1)式に示すように硫酸ラジカルが発生し、この硫酸ラジカルが原子移動によりシアン化合物、ベンゼンを分解する。
R−O−O−R + Fe(II) → RO・ + −OR + Fe(III)・・(1)
R:硫酸基
【0024】
鉄粉や酸化剤の添加率は、シアン化合物、ベンゼンの汚染濃度、汚染形態、土壌性質により適時決定すればよい。もっとも、土壌中に粉体状態での酸化剤、鉄粉を均一に分散させるためには、混合機や注入機の機器特性より、土壌重量に対して1重量%以上、望ましくは、3重量%以上が好ましい。
なお、酸化剤、鉄粉を水に溶解・懸濁させて溶液で供給する場合は、上記のように粉体状態の場合よりも分散性が向上することから、分散性の観点からはこの限りではない。
【0025】
なお、
図1では、鉄粉混合工程1の後、酸化剤混合工程2を行って保管する場合であるが、酸化剤混合工程の後に鉄粉混合工程を行っても良く、また同時であっても良い。また、鉄粉混合工程1と酸化剤混合工程2を連続して行うことにより、鉄粉の酸化、溶解に伴う発熱によって硫酸ラジカル反応が促進され、シアン化合物、ベンゼンの分解を飛躍的に向上することができるので好ましい。
【0026】
[実施の形態2]
本実施の形態は、鉄粉の酸化、溶解をさらに促進するためのものであり、
図2に示すように、掘削された土壌に対して鉄粉を混合する鉄粉混合工程1と、鉄粉が混合された汚染土壌(鉄粉と汚染土壌の混合物)にクエン酸、酒石酸、グルコン酸などの有機酸、塩酸、硫酸、硝酸、過塩素酸、燐酸などの無機酸、硫酸アルミニウム、硫酸鉄、硫酸マンガン、塩化アルミニウム、塩化鉄、塩化マンガン、硝酸アルミニウム、硝酸鉄、硝酸マンガンなどの酸性無機酸塩等の酸性物質を添加する酸性物質添加工程3と、鉄粉及び酸性物質が添加された汚染土壌(鉄粉、酸性物質、汚染土壌の混合物)に過硫酸塩からなる酸化剤を混合する酸化剤混合工程5とを有している。なお、鉄粉が混合された汚染土壌に添加する酸性物質は、クエン酸、酒石酸、グルコン酸などの有機酸は鉄とキレート化することで効果を長期間持続することと、酸性が無機酸に比べ強くないため、土壌へのダメージが少ないことから望ましい。
鉄粉混合工程1の後に、酸性物質添加工程3を行うことで、鉄粉の酸化、溶解をさらに促進することができ、浄化作用をさらに向上させることができる。
【0027】
実施の形態1,2において、硫酸ラジカル反応完了後のシアン化合物、ベンゼンが土壌の指定基準を超過している場合、鉄粉混合工程1から繰り返して同じ処理を行えばよい。
なお、土壌の含水率が低いと酸化剤の溶解が進行しないため、適時、水を添加した方がよい。
【0028】
また、実施の形態1,2に示した例は、掘削した土壌に対する浄化方法であるが、本発明はこれに限られるものではなく、土壌を掘削せずに、汚染範囲に対して鉄粉、酸化剤を注入するようにしてもよいし、オーガー等により土壌と鉄粉、酸化剤を直接混合するようにしてもよい。
【0029】
[実施の形態3]
上記実施の形態1、2に示したように、シアン化合物、ベンゼンの汚染土壌に対して酸化剤と鉄粉を混合して分解する方法の場合、土壌が単粒子に解砕されていないため、土壌固結物内に汚染物質が含有されている場合や炭ガラに汚染物質が吸着している場合等、シアン化合物、ベンゼンの分解が進行しにくい場合がある。このような場合、繰り返し処理を行ったり、酸化剤、鉄粉の添加量を増加させたりする等の方法もあるが、コストアップを招く恐れがある。
【0030】
また、前記の方法ではシアン化合物と鉄イオンの反応による、毒性の弱いフェロシアン錯体やフェリシアン錯体の中間体が形成され残存する可能性があるため、これら中間体を完全に分解すべく、事前の試験で決定した酸化剤、鉄粉よりも添加量を増加させる必要がある。
そこで、本発明者らは、シアン化合物、ベンゼンの汚染土壌に対して、水洗分級と酸化剤、鉄粉による酸化分解を組み合わせることにより、互いの工法の長所、短所を補う、安価な浄化方法を確立するに至った。
以下、本実施の形態の具体的な工程を用いて詳細に説明する。
【0031】
本実施の形態に係る浄化方法は、
図3に示すように、掘削されたシアン化合物、ベンゼン汚染土壌を、単体粒子に解砕して水洗し、分級機により特定の粒子径を境に複数の粒子群に分級する水洗分級工程11と、水洗分級工程11により解砕・分級された各粒子群(粒子群-A、粒子群-B)に対して鉄粉、酸化剤を添加して混合してシアン化合物、ベンゼンを分解する酸化分解工程12(酸化分解工程A、B)と、酸化分解工程12の後、磁力選別機により添加された鉄粉を含む鉄を回収する鉄回収工程13(鉄回収工程A、B)を有している。
以下、各工程を詳細に説明する。
【0032】
<水洗分級工程>
水洗分級工程11は、掘削された重金属汚染土壌を解砕手段により、土壌粒子が凝集し、塊状となった状態から単粒子にときほぐし、特定の粒子径を境に粒子群毎に分級する工程である。
水洗分級工程11により、単体粒子にときほぐされた土壌は、土壌粒子の大きさごとに分級が可能となる。また、単体粒子にときほぐすことで、次に続く酸化分解工程12において、土壌粒子と酸化剤、鉄粉および硫酸ラジカルとの接触性が増大し、汚染物質を除去する効率が向上する。
【0033】
なお、土壌解砕機は、ドラムウオッシャー、パドルミキサー、ロットミル、アトライター、ボールミルなど既存の装置を利用すればよい。
また、分級は振動スクリーン、クラシファイア、スパイラル分級機、遠心分離機、サイクロン、フィルタプレスなどを単独または組み合わせて行えばよい。
【0034】
これら分級においては、粒子径0.075mm以下はシルト・粘土質、粒子径0.075mm超え2.0mm以下は砂質で土壌の性質が異なり、シアン化合物、ベンゼンの汚染濃度、汚染形態の条件が大きく相違する。このため、粒子径0.075mm以下と粒子径0.075mm超え2.0mm以下の少なくとも2種類の粒子群に分級することが、次に続く酸化分解工程12でのシアン化合物、ベンゼンの分解を効率的に行うために好ましい。
なお、粒子径0.075mm以下と粒子径0.075mm超え2.0mm以下のそれぞれを更に分級しても良い。
【0035】
なお、解砕する前、又は解砕後の土壌から、シアン化合物、ベンゼンが付着しやすい炭ガラなどの異物を比重選別機、浮遊選別機で取り除いたり、大きな土粒子を振動スクリーンで取り除いたりすることが望ましい。
【0036】
<酸化分解工程>
酸化分解工程12は、水洗分級工程11により解砕・分級された各粒子群(粒子群-A、粒子群-B)に対して鉄粉、酸化剤を添加、混合してシアン化合物、ベンゼンを分解する工程である。
水洗分級工程11により、シアン化合物、ベンゼンが土壌から洗浄水に移行しているため、鉄粉、酸化剤の添加量を低減することができ、さらに、粒子群毎に分級されているため、各粒子群は汚染濃度、汚染形態が比較的似た状態であり、その粒子群に適した酸化剤、鉄粉添加量でのシアン化合物、ベンゼンの分解が可能となる。
【0037】
なお、混合機としては、通常の土壌改良や薬剤混合に使用される機器を用いればよく、バケットミキシング、スタビライザ、パドルミキサやリテラ等の土質改良機を単独または組み合わせて使用する。
また、事前の試験により、酸化分解反応完了まで時間を要する場合は、酸化分解工程12完了後、パイル状、または、山積み等により反応完了まで養生を行い、反応完了後に次の工程を開始するものとする。
【0038】
<鉄回収工程>
鉄回収工程13は、酸化分解工程12の後、磁力選別機により添加された鉄粉を含む鉄を回収する工程である。
前述したように、仮に、毒性の弱いフェロシアン錯体やフェリシアン錯体の中間体が形成され残存している場合でも、磁力選別機で鉄を回収することにより、土壌中のシアン化合物を除去することが可能となる。
なお、回収された鉄粉を含む鉄は、酸性溶液等による洗浄、加熱処理による脱離、分解等により、完全にシアン化合物、ベンゼンを除去した後、再利用することができる。
【0039】
以上の説明は、解砕後に土壌を大小二つの粒子径に分級する場合について述べたが、本発明は解砕後の分級する粒子群の数を限定するものでなく、
図4に示すように、解砕後、土壌を3つ粒子径群に分級して酸化分解工程12、鉄回収工程13を行ってもよいし、4つ以上の粒子群に分級して同様の処理を行ってもよい。
また、水洗分級工程11後の土壌粒子群の中で、既に、指定基準以下まで汚染濃度が低減された粒子群があれば、その粒子群については酸化分解工程12以降の工程を省略してもよい。
【0040】
また、
図5に示すように、水洗分級工程11後の土壌粒子群の一部に対して、酸化分解処理以外の熱処理や不溶化処理等の異なる処理を行ってもよい。
図5に示す例では、粒子群-Aに対しては、水洗分級工程11後に、酸化分解工程12、鉄回収工程13を実施し、粒子群-Bには不溶化処理工程14を、粒子群-Cには熱処理工程15を実施した。
【実施例1】
【0041】
本発明の効果を確認する実験を行ったので、これについて以下説明する。
工場跡地より砂質混じり粘土の、シアン化合物、ベンゼン汚染土壌(以下、「土壌A」という)を採取した。
(1)事前分析
採取した土壌Aを、環境省告示第18号に規定される溶出試験を行った。シアン化合物、ベンゼンの溶出量を表1に示す。
【0042】
【表1】
【0043】
(2)酸化剤混合処理
土壌A100gをビニール袋に入れ、過硫酸ナトリウム3質量%及びショットブラストダスト3質量%を添加してよく混合したもの(発明例)と、硫酸鉄触媒溶液(Fe:3%含有)3質量%を添加してよく混合したものとを準備し、それぞれをPTFE栓付褐色ガラスバイアル瓶に入れ密栓してから、室温で暗所に静値保管した。
0日(混合直後)、3日、7日後に環境省告示第18号法により溶出試験を行いシアン化合物、ベンゼン溶出量を測定した。測定結果を表2、表3に示す。
【0044】
【表2】
【表3】
【0045】
シアン化合物に関しては、表2に示すように、ショットブラストダストを混合した発明例に係る土壌では3日後では溶出が見られたが7日後には溶出が検出されなくなった。
一方、硫酸鉄触媒溶液を混合した土壌では、3日で1/10以下まで低減し、発明例よりも高い効果が見られたが、その後は低減傾向が見られなかった。
【0046】
ベンゼンに関しては、表3に示すように、発明例では、3日後では0.2mg/lの溶出量が見られたが7日後には環境基準値以下まで低減した。
一方、硫酸鉄触媒溶液を混合した土壌では、3日後ではショットブラストダストより低値を示したが、その後は低減せず7日経過後にも環境基準を上回る溶出が見られた。
【0047】
以上の結果から、過硫酸ナトリウム溶液は強酸性であり、ショットブラストダストの鉄を溶解させ、硫酸鉄触媒溶液と同様の作用を示すことが確認された。また、ショットブラストダストは、固体のため鉄の溶解が長時間継続し、過硫酸の酸化反応の持続性を高めているものと推察される。
【実施例2】
【0048】
実施例1で使用したのと同じ土壌A100gをビニール袋に入れ、過硫酸ナトリウム3質量%及びショットブラストダスト3質量%を添加してよく混合したもの(発明例)と、硫酸鉄触媒溶液(Fe:3%含有)3質量%を添加してよく混合したものとを準備し、それぞれをPTFE栓付褐色ガラスバイアル瓶に入れ密栓してから、室温で暗所に静値保管した。
7日養生後に試薬のシアン化ナトリウム、ベンゼンを各々土壌重量に対し30mg/kgを添加混合し、密栓して室温で暗所に静値保管し、10日、14日目に環境省告示第18号に規定する方法により溶出試験を行いシアン化合物、ベンゼン溶出量を測定した。
測定結果を、表4、表5及び
図7、
図8に示す。表4及び
図7がシアン化合物溶出量に関し、表5及び
図8がベンゼン溶出量に関するものである。
【0049】
【表4】
【表5】
【0050】
表4、表5、
図7、
図8からわかるように、7日の養生後、シアン化合物、ベンゼンを再度土壌に添加してもショットブラストダストを加えた発明例の系では、その後、再溶出は確認できなかった。一方、硫酸鉄触媒を添加した系においては再溶出が確認された。
このことから、ショットブラストダストを加えた発明例ではシアン化合物、ベンゼンの長期不溶化、分解が可能であることがわかる。
【実施例3】
【0051】
工場跡地よりシアン化合物、ベンゼン汚染土壌を採取した。
(1)水洗分級工程
採取した土壌を篩って2mm以下とした。土壌を500g秤り取り1リットルの水を入れ、回転数300rpmで15分間攪拌した。粒子がある程度均一になったのを目視で確認し、0.075mmの篩いを用いて粒子径0.075mm以下と0.075mm超に分けた。
篩上の土壌は更に1リットルの水で濯ぎ、水を切ってから環境省告示第18号に規定する方法にて溶出試験を行った。篩下の土壌は3500rpmで遠心分離を行い、固形分を回収し環境省告示第18号法にて溶出試験を行った。別途、未洗浄の土壌でも溶出試験を実施した。その結果を表6に示す。
【0052】
【表6】
【0053】
(2)酸化剤混合工程
0.075μm以下土壌中のベンゼン濃度が低かったため、標準液を添加して溶出量が5ppm程度になるよう調整した。水洗分級工程で得られた0.075mm以下の土壌100gをビニール袋に入れ、以下に示す表7に示す水準(1-1〜1-6、BL)で過硫酸ナトリウム3質量%、鉄源1〜3質量%を添加してよく混合した後、PTFE栓付褐色ガラスバイアル瓶に入れ密栓してから、室温で暗所に静値保管した。なお、水準1-1、1-2は鉄源として還元鉄粉を用いたものであり(発明例1)、水準1-3、1-4は鉄源としてショットブラストダストを用いたもの(発明例2)であり、これらが本発明の範囲のものである。
【0054】
【表7】
0日(混合直後)、3日、7日後に環境省告示第18号に規定する方法により溶出試験を行いシアン、ベンゼン溶出量を測定した。結果を
図9、
図10に示す。
図9がシアン溶出量のグラフであり、
図10がベンゼン溶出量のグラフである。
【0055】
表6より水洗と分級により粗粒部である0.075超〜2mmの土壌はシアン化合物およびベンゼン溶出量を環境基準以下に低減することが可能であることがわかる。
一方、細粒部である0.075mm以下の土壌はシアン化合物溶出量が増加し汚染部が濃集していることがわかる。同細粒土壌のベンゼン溶出量は未処理土壌よりも溶出量が低減しているが、これは水洗、分級処理中に揮発し減少したためである。
【0056】
図9を見ると分かるように、細粒部のシアン化合物濃集土壌に酸化剤と鉄源を添加することで土壌のシアン化合物は分解され、または不溶性のフェロシアン、フェリシアン錯体を形成することで溶出量は低減できる。
硫酸鉄触媒溶液を鉄源に利用した場合、1日後ではシアン化合物溶出量が最も低値を示すがその後はほとんど低減しない。
一方、還元鉄粉やショットブラストダストを用いた発明例1,2場合には、時間の経過とともにシアン化合物溶出量は低減し、7日後には未検出となる。
また、水準1-1と水準1-2、水準1-3と水準1-4をそれぞれ比較すると分かるように、還元鉄粉やショットブラストダストの添加量が多いほど高い低減効果が得られている。さらに、水準1-1と水準1-3、水準1-2と水準1-4をそれぞれ比較すると分かるように、ショットブラストダストの方が還元鉄粉より高い低減効果が得られることがわかる。
なお、
図10に示されるように、ベンゼンの溶出量の変化の挙動は、シアン化合物とほぼ同様の挙動を示す。
【0057】
以上の実験結果より、水洗後の土壌についてもショットブラストダストなどの固体鉄粉が、硫酸鉄触媒より効果が高く、また効果の持続性が高いことが確認された。