(58)【調査した分野】(Int.Cl.,DB名)
互いに回転可能に連結された複数のアームを駆動することにより予め定められている作業サイクルを繰り返し実行可能な多関節型のロボットを制御するためのロボットシステムであって、
前記ロボットの各軸にそれぞれ設けられ、各軸を駆動するためのモータおよび前記モータの出力を出力軸側に連結されている前記アームに伝達する歯車機構を有する複数の駆動部と、
複数の前記駆動部に対し、当該駆動部の前記モータを駆動するための駆動指令を個別に出力する指令出力手段と、
複数の前記駆動部に対し、前記駆動指令が出力されてからの経過時間が予め設定されている基準時間を超えたか否かを個別に判定する判定手段と、
複数の前記駆動部のうち前記経過時間が前記基準時間を超えたと判定された前記駆動部に対し、当該駆動部の前記モータを駆動するための補助駆動指令を出力する補助指令出力手段と、を備え、
前記作業サイクルには、前記アームを予め設定される教示点間で移動させる際、前記アームの移動軌跡を相対的に重視した作業動作と、前記アームの移動速度を相対的に重視した移動動作とが含まれ、
前記判定手段は、前記アームの移動が前記作業動作あるいは前記移動動作のいずれであるかをさらに判定し、
前記補助指令出力手段は、前記作業サイクル内の前記移動動作中に、前記歯車機構の歯の噛み合い位置を少なくとも1歯以上移動させる補助駆動指令を出力することを特徴とするロボットシステム。
【発明の概要】
【発明が解決しようとする課題】
【0004】
さて、ロボットなどの産業機器は、一般的に予め耐用年数が想定されており、その耐用年数に耐えうる設計がなされている。具体的には、上記したように複数の駆動部を有する多関節型のロボットの場合、各駆動部の耐用年数が概ね一致するように設計されている。
しかしながら、実際にロボットを設置して予め定められている作業サイクルを繰り返し実行させた際、上記したように耐用年数が概ね一致するはずの駆動部のうち特定の駆動部が想定よりも短い期間で故障し、ロボット全体としての耐用年数の低下を招くことがあった。
【0005】
本発明は、上記事情に鑑みてなされたものであり、その目的は、複数の駆動部を備える多関節型のロボットにおいて特定の駆動部における故障を抑制し、ロボットの耐用年数の低下を招くおそれを低減することができるロボットシステムを提供することにある。
【課題を解決するための手段】
【0006】
発明者は、故障したロボットを調査した結果、想定よりも短い期間で故障する駆動部が作業サイクル中に動作していない駆動部に集中していることを見いだした。多関節型のロボットの場合、様々な作業を実行する可能性があることから汎用性を考慮して複数の駆動部が設けられているものの、作業内容によっては全く動作しない駆動部も存在する。ただし、駆動部が動作しなければ歯車機構も動作しないことから、歯車機構の歯が摩耗したり破損したりするおそれは小さく、一般論で言えば、動作していない駆動部に故障が集中する状況は考えにくい。そこで、発明者は、駆動部に故障が生じる過程をさらに詳細に解析した結果、動作していない駆動部に故障が集中するのは、作業内容に対して可動軸の構成に冗長性のある多関節型のロボットに特有の現象であることを見いだした。
【0007】
多関節型のロボットにおいては、他の駆動部の動作やアームの移動に起因する振動が動作していない駆動部に伝達される。そして、ロボットは予め定められている作業サイクルを繰り返し実行することから、動作していない駆動部には繰り返し振動が伝達されることになる。その振動は、動作していない駆動部の歯車機構にも伝達される。歯車機構の潤滑剤としては粘度が比較的大きい潤滑油が一般的に用いられており、その潤滑油は、歯車機構が動作していない状況では固体に近い性質となっている。このため、歯車機構に振動が伝達されると、その振動によって潤滑油が部分的に欠落し、歯車機構の歯の間に潤滑油が存在しない欠落領域が比較的小さい範囲でまず発生する。この欠落領域は、作業サイクルが繰り返し実行されることによって、すなわち、振動が繰り返し伝達されることによって徐々に拡大していく。その際、噛み合った歯同士が直接的に接触する状態となり、その状態でさらに振動が繰り返し伝達された結果、直接的に接触した歯が損傷し、駆動部の故障を招いていたのである。
【0008】
そこで、請求項1記載の発明では、ロボットシステムは、多関節型のロボットの各軸を駆動するためのモータおよび当該モータの出力を伝達するための歯車機構を有する複数の駆動部のうち、駆動指令が出力されてからの経過時間が予め定められている基準時間を超えたと判定された各駆動部に対し、当該駆動部のモータを駆動させるための補助駆動指令を出力する。つまり、非動作状態が基準時間を超えて継続している駆動部を駆動させる。
【0009】
これにより、駆動部つまりは歯車機構が動作すれば潤滑剤がその都度拡散され、発生した欠落領域に他の部位から潤滑剤が補填されることから発生した欠落領域の補修、欠落領域の拡大の防止、ならびに、潤滑剤が補填されることから欠落領域の発生そのものの抑制が可能となる。その結果、歯車機構の歯が直接的に接触することが無くなり、ロボットの動作に伴って振動が伝達されたとしても歯車の損傷や破損などが生じるおそれを低減することができる。したがって、複数の駆動部を備える多関節型のロボットにおいて特定の駆動部における故障が抑制され、ロボットの耐用年数の低下を招くおそれを低減することができる。
【0010】
この場合、基準時間は、潤滑油Wの特性や作業サイクルに応じて適宜設定すればよい。例えば、潤滑油Wが硬化するまでの予想時間よりも短くなるように設定する、欠落領域が発生するまでの予想時間よりも短くなるように設定するなどが考えられる。また、上記したように、駆動部が動作しないこと、および、作業サイクルが繰り返し実行されることが欠落領域の発生原因であることから、作業サイクルの実行回数に基づいて、作業サイクル数×1サイクルの時間を基準時間とするなど、振動が伝達される時間に基づいて基準時間を設定してもよい。
【0011】
また、アームを予め設定される教示点間で移動させる際にアームの移動軌跡を相対的に重視した作業動作とアームの移動速度を相対的に重視した移動動作とのうち、移動動作中に、歯車機構の歯の噛み合い位置を少なくとも1歯以上移動させる補助駆動指令を出力する。なお、作業動作とは、アームを教示点間で移動させる際、ワークを掴んだり組み付けたりするなどの作業を行うために移動軌跡を相対的に重視してアームを滑らかに移動させる制御を行うときの動作であり、一般的にはCP(Continuous Path)動作と呼ばれている。また、移動動作とは、アームを教示点間で移動させる際、移動速度を相対的に重視して教示点間を素早く移動させる制御を行うときの動作、換言すると、軌跡をそれほど重視しない動作であり、一般的にはPTP(Point To Point)動作と呼ばれている。以下、便宜的に、作業動作をCP動作、移動動作をPTP動作と称する。
【0012】
上記したように非動作状態が基準時間を超えて継続している駆動部を動作させることでその駆動部の故障を抑制することができるものの、ロボットの場合、いつ駆動部を動作させるかを考慮する必要がある。すなわち、ロボットは所定の作業サイクルを繰り返し実行していることから、基準時間を超えたからといって直ぐに動作させると、アームの軌跡に影響を与えるおそれがある。かといって、基準時間を経過した後の作業サイクルの終了時に動作させると、次の作業サイクルを実行するまでに本来の作業では不要な時間を要することになり、作業を行うために要する時間(以下、タクトタイムと称する)が長くなる。そして、タクトタイムが長くなると、所定の作業量をこなすためには余分に時間が掛かる一方、予め作業時間が決められている場合には実行可能な作業サイクル数が低下することになり、生産効率が低下する。このため、ロボットにおいては、タクトタイムに影響を与えないように対象となる駆動部を動作させることが求められる。
【0013】
さて、ロボットの作業サイクルに上記したCP動作やPTP動作が含まれることは一般的に知られている。このため、タクトタイムに影響を与えることなく、また、ロボットの本来の作業に影響を与えることなく(アームの軌跡に大きな影響を与えることなく)駆動部を動作させるには、PTP動作中に動作させることがまず考えられる。しかし、潤滑剤を満遍なく拡散させるために例えば歯車機構の歯の噛み合い位置を一回転させるような動作を行わせると、アームが大きく移動してしまい、いくら軌跡をそれほど重視していないPTP動作中といえども、アームやハンドあるいはハンドに保持されたワークなどが周辺設備に衝突するおそれがある。つまり、どの時期に駆動部を動作させればよいかは、PTP動作中であればよいといった単純な問題ではない。
【0014】
ここで、発明者による解析結果が有効活用されることになる。すなわち、発明者によって、潤滑剤の欠落領域が上記したように比較的小さい範囲でまず発生すること、さらに、発生当初の欠落領域が1歯未満程度の大きさであることが見いだされている。このため、発生当初の欠落領域に潤滑剤を拡散させるためには、潤滑剤が欠落していない部位に噛み合わせればよいこと、すなわち、歯車機構の歯の噛み合い位置を1歯以上移動させればよいことが明らかになった。換言すると、発生当初の欠落領域に対処するためには、アームを大きく動かす必要がないことが明らかになった。さらに、噛み合い位置を1歯以上動かせばよいことから、PTP動作中に十分実施可能であると考えられる。
【0015】
このような解析結果の裏付けに基づいて、請求項2記載のロボットシステムでは、対象となる駆動部を、PTP動作中に歯車機構の歯の噛み合い位置を1歯以上移動させるように動作させている。これにより、発生当初の欠落領域に潤滑剤を拡散させることが可能となり、欠落領域の拡大を抑制することができるとともに、駆動部が動作すれば潤滑剤が拡散されることから、欠落領域の発生そのものを抑制することができる。また、潤滑剤を拡散させるための動作はPTP動作中に実施可能な動作であることから、PTP動作中に駆動部の動作が完了する。したがって、タクトタイムが長くなるなどの影響を与えることが無く、生産効率が低下するおそれを抑制することができる。
【0016】
請求項2記載の発明では、判定手段は、作業サイクル中に複数のPTP動作が存在する場合、最も動作時間の長いPTP動作を判定し、補助指令出力手段は、最も動作時間の長いPTP動作中に補助駆動指令を出力する。動作時間が長ければ、補助駆動指令により動作させた駆動部を確実に本来の位置まで戻すことができるようになることに加えて、そのPTP動作中での噛み合い位置の移動量の増加を図ることができるので、欠落領域の発生および拡大をさらに抑制することができる。
【0017】
請求項3および請求項4記載の発明では、ワークを移送していないと判定された期間に補助駆動指令を出力する。ロボットは、与えられた指令に基づいて動作することから、通常は対象となるワークがどのようなものであるかを自身で把握することができない。そこで、ワークを移送していないと判定された時期に補助駆動指令を出力することにより、本来の作業サイクルでは想定していない駆動部が動作したとしても、その動作に起因してワークが設備装置に衝突するなどの不具合を生じさせることがない。
【発明を実施するための形態】
【0019】
(第1実施形態)
以下、本発明の第1実施形態について、
図1から
図6を参照しながら説明する。
図1に示すように、一般的な産業用に用いられるロボットシステム1は、多関節型のロボット2、ロボット2を制御するコントローラ3、コントローラ3に接続されたティーチングペンダント4を備えている。
【0020】
ロボット2は、いわゆる6軸の垂直多関節型ロボットとして周知の構成を備えており、ベース5上に、Z方向の軸心を持つ第1軸(J1)を介してショルダ6が水平方向に回転可能に連結されている。ショルダ6には、Y方向の軸心を持つ第2軸(J2)を介して上方に延びる下アーム7の下端部が垂直方向に回転可能に連結されている。下アーム7の先端部には、Y方向の軸心を持つ第3軸(J3)を介して第一上アーム8が垂直方向に回転可能に連結されている。第一上アーム8の先端部には、X方向の軸心を持つ第4軸(J4)を介して第二上アーム9が捻り回転可能に連結されている。第二上アーム9の先端部には、Y方向の軸心を持つ第5軸(J5)を介して手首10が垂直方向に回転可能に連結されている。手首10には、X方向の軸心を持つ第6軸(J6)を介してフランジ11が捻り回転可能に連結されている。
【0021】
ベース5、ショルダ6、下アーム7、第一上アーム8、第二上アーム9、手首10およびフランジ11は、ロボット2のアームとして機能し、アームの先端となるフランジ11には、図示は省略するが、ハンド(エンドエフェクタとも呼ばれる)が取り付けられる。ハンドは、例えば図示しないワークを保持して移送したり、ワークを加工する工具などが取り付けられる。ロボット2に設けられている各軸(J1〜J6)には、それぞれに対応して駆動部23(
図2参照)が設けられている。
【0022】
コントローラ3は、
図2に示すように、CPU12、ROM13およびRAM14、駆動回路15、位置検出回路16などを備えている。CPU12は、ROM13あるいはRAM14などに記憶されているプログラムに基づいてコントローラ3全体を制御するとともに、周知のように、ロボット2に予め定められている作業サイクルを繰り返し実行させるための各種の指令を出力する。このCPU12は、指令部17、判定部18および補助指令部19を有している。これら指令部17、判定部18および補助指令部19は、本実施形態ではCPU12により実行されるプログラムによってソフトウェア的に構成されている。なお、指令部17、判定部18および補助指令部19は、ハードウェア的に構成してもよい。
【0023】
指令部17は、ロボット2の駆動部23を動作させるための駆動指令、つまり、モータ20(
図2参照)を駆動するための実行命令を各駆動部23に対して個別に出力する。指令部17は、特許請求の範囲に記載した指令手段を構成している。
判定部18は、駆動指令が出力されてからの経過時間が予め設定されている基準時間を超えたか否かを個別に判定するとともに、アームの移動が作業動作(前述したCP動作)あるいは移動動作(前述したPTP動作)のいずれであるか、PTP動作中にワークを保持しているか否かをさらに判定する。判定部18は、特許請求の範囲に記載した判定手段を構成している。以下、作業動作をCP動作、移動動作をPTP動作と称する。
【0024】
補助指令部19は、前回駆動指令が出力されてからの経過時間が予め定められている基準時間を経過したと判定された駆動部23に対してモータを駆動するための補助駆動指令を出力する。本実施形態では、補助駆動指令として、後述する減速機22の歯車機構の歯の噛み合い位置を1歯以上移動させることができる補助駆動指令を出力する。この場合、例えば一般的な構成のロボット2では、第4軸(J4)のギア比=100、第5軸(J5)の中心からハンド先端までの距離=200mmとすると、モータを1回転(モータの出力軸が1回転。歯車機構を一回転させるわけではない)させることでハンドの先端は最大で約13mm(2π÷100×200=4π)しか動作しない。補助指令部19は、特許請求の範囲に記載した
補助指令出力手段を構成している。
【0025】
駆動回路15は、CPU12から出力された指令をロボット2に与えるための電気信号に変換する例えばインバータ回路などにより構成されている。ロボット2は、第1軸J1〜第6軸J6をそれぞれ駆動するための複数のモータ20、および各モータ20に対応して設けられているエンコーダ21を備えている。位置検出回路16は、モータ20の回転位置を検出するエンコーダ21からの信号が入力され、モータ20の回転位置を検出する。CPU12は、位置検出回路16で検出したモータ20の回転位置に基づいて、モータ20をフィードバック制御する。
【0026】
ロボット2では、モータ20の出力は、減速機22を介してアームに伝達される。これらモータ20および減速機22は、駆動部23を構成している。なお、
図2では、各駆動部23によって駆動されるショルダ6、下アーム7、第一上アーム8、第二上アーム9、手首10およびフランジ11を便宜的にアームと示している。本実施形態では、減速機22としていわゆる波動歯車装置を採用している。
【0027】
この減速機22は、
図3に示すように、内周面に内歯30が形成された円環状の剛性内歯歯車31、この剛性内歯歯車31の内側に同心状に設けられ、外歯32を有する可撓性外歯歯車33を備えている。可撓性外歯歯車33は、図示は省略するが周知のように全体形状としてカップ状に形成されており、カップ状の底部に出力軸が取り付けられる。また、剛性内歯歯車31の内歯30と可撓性外歯歯車33の外歯32との間には、潤滑剤としての潤滑油W(
図5参照)が充填されている。この潤滑油Wは、一般的に比較的粘性が高く、剛性内歯歯車31と可撓性外歯歯車33とが動作していれば歯車間に拡散して潤滑剤として機能する一方、動作していない状態では、固体に近い状態となる。なお、潤滑剤としては、油性のものに限らず、他のものであっても良い。
【0028】
外歯32の内周側にはウエーブベアリング34が配設されている。このウエーブベアリング34は、可撓性外輪35、可撓性内輪36、可撓性外輪35と可撓性内輪36との間に配列された複数個のボール37とから構成されている。ウエーブベアリング34の内側、つまり可撓性内輪36の内周には、楕円形の剛性カム38が固定されている。この剛性カム38には、モータ20の出力軸を連結するためのキー溝39付きの嵌合孔40が形成されている。
【0029】
このような構成の減速機22は、ウエーブベアリング34の可撓性内輪36および可撓性外輪35が楕円形に撓められ、可撓性外輪35が楕円形に撓むことによって、外歯32形成部分が楕円形に撓められる。その結果、楕円形に撓んだ部分の長径方向両端部の2箇所において、外歯32が部分的に剛性内歯歯車31の内歯30に噛み合うようになる。そして、剛性カム38がモータ20により回転駆動されると、可撓性外歯歯車33の楕円形に撓んだ部分の長径部分が周方向に移動し、外歯32の内歯30に対する噛み合い位置が周方向に移動する。このとき、外歯32が内歯30よりも例えば2枚少なく設定されているので、噛み合い位置の移動に伴って、剛性内歯歯車31と可撓性外歯歯車33との間で相対的な回転が発生する。そして、可撓性外歯歯車33が出力軸となってモータ20の減速回転が取り出される。
【0030】
図1に示すように、ティーチングペンダント4は、例えば薄型の略矩形箱状に形成されており、概ね使用者が携帯あるいは所持して操作可能な程度の大きさとなっている。ティーチングペンダント4には、各種キースイッチやタッチパネルが設けられており、使用者は、それらキースイッチやタッチパネルにより種々の入力操作を行う。ティーチングペンダント4は、ケーブルを経由してコントローラ3に接続され、通信インターフェイスを経由してコントローラ3との間で高速のデータ転送を実行するようになっており、キースイッチ等の操作により入力された操作信号などの情報はティーチングペンダント4からコントローラ3へ送信される。
【0031】
ここで、ロボット2が実行する作業サイクルについて説明する。
作業サイクルは、予め定められている教示点を経由して、例えばワークの移送などを繰り返し行う作業である。例えば
図4は、教示点P1を初期位置として、教示点P2まで移動した後、教示点P3にてワークをピックアップし、ワークを保持した状態で教示点P2、P1を経由した後、教示点P4にてワークをプレースする作業サイクルを模式的に示している。より具体的には、教示点P1−P2間ではアームが水平方向に大きく移動し、教示点P2−P3間およびP1−P4間ではアームが垂直に移動している。
【0032】
この場合、アームが水平移動する際には例えば第1軸(J1)が駆動され、アームが垂直移動する際には例えば第2軸(J2)、第3軸(J3)や第5軸(J5)が駆動されるものとする。また、アームが水平方向に大きく移動する教示点P1−P2間では、移動速度を重視したPTP動作が行われ、ワークを所定位置からピックアップする教示点P2−P3間およびワークを所定位置にプレースする教示点P1−P4間では、位置決めの正確性を増すために移動軌跡を重視したCP動作が行われているものとする。
【0033】
この
図4に示す作業サイクルでは、アームを捻る動作(第4軸(J4)を駆動する動作)が必要ないため、第4軸(J4)は動作していない。換言すると、第4軸(j4)に対応して設けられている駆動部23には、作業サイクル中に駆動指令が出力されていない。以下、本実施形態では第4軸(J4)に対応して設けられている駆動部23のように作業サイクル中に動作しない駆動部23を、便宜的に非動作駆動部と称し、動作しない状態を非動作状態と称する。
【0034】
さて、非動作駆動部では、作業サイクルが繰り返し実行されると、
図5(a)〜(d)に示すように、剛性内歯歯車31の内歯30と可撓性外歯歯車33の外歯32とが直接接触する可能性のある状態となる。具体的には、内歯30と外歯32との間に充填されている潤滑油Wは、通常であれば
図5(a)に示すように拡散しているものの、非動作状態が続くと潤滑油Wが徐々に固体に近い状態となる。その状態で作業サイクルが繰り返し実行されると、つまり、非動作駆動部に他の駆動部23やロボット2自体からの振動が伝達されると、
図5(b)に示すように、概ね1歯未満程度の大きさで潤滑油Wが部分的に欠落し、欠落領域Rが形成される。この
図5(b)は、発生当初の欠落領域Rの状態を示している。
【0035】
この状態でさらに作業サイクルが繰り返し実行されると、欠落領域Rは、
図5(c)に示すように徐々に拡大していく。このように欠落領域Rが大きくなると、内歯30と外歯32とが直接的に接触するようになる。そして、作業サイクルが繰り返し実行され、振動が伝達されると、内歯30と外歯32とが接触を繰り返すようになり、その結果として、
図5(d)に示すように、例えば内歯30が欠けるなどの破損部位Kが形成される。この状態では、破損部位Kがあることから、例えば作業サイクルが変更されて非動作駆動部が駆動されるようになると正常に動作せず、故障となってしまう。
【0036】
このように、多関節型のロボット2では、特定の駆動部23が全く動作しない状態で作業サイクルが繰り返し実行されることがあり、動作していないことから本来であれば耐用年数に影響がないと思われるその駆動部23において、耐用年数が反って低下してしまうという現象が起こり得る。そして、この現象は、作業内容に対して駆動軸が冗長性を備えた構成となっている多関節型のロボット2に特有の問題である。
そこで、ロボットシステム1は、以下のようにしてこの問題に対処している。なお、上記したように本実施形態では非動作駆動部として第4軸(J4)を想定しているため第4軸(
図6では「4軸目」等と記載する)を対象として説明する。
【0037】
ロボットシステム1のコントローラ3は、
図6に示す処理を繰り返し実行しており、動作命令が開始されると(駆動指令が出力されると)、4軸目が動作するか否かを判定し(S1)、4軸目が動作する場合には(S1:YES)、タイマをクリアする(S5)。このタイマは、4軸目が前回動作してからの経過時間を計測するタイマである。このように、コントローラ3は、4軸目が動作する毎に、前回動作してからの経過時間の計測を繰り返す。なお、本実施形態では、基準時間を1分に設定している。これは、一般的な作業サイクルが概ね1分以内で終了することから、作業サイクル毎に非動作駆動部を動作させるためである。
【0038】
これに対して、コントローラ3は、4軸目が動作しないと判定すると(S1:NO)、現在の起動補完方法(つまり、アームの移動態様)がPTP動作であるか否かを判定し(S2)、PTP動作でなければ(S2:NO)そのまま処理を終了する一方、PTP動作であれば(S3:YES)、基準時間経過したか否か、つまり、前回動作してからの経過時間が基準時間を超えたか否かを判定する(S3)。そして、基準時間経過している場合には(S3:YES)、補助駆動指令を出力して、当該PTP動作中に4軸目を動作させる(S4)。この場合、上記したように、補助駆動指令による駆動部23の動作は、剛性内歯歯車31と可撓性外歯歯車33との噛み合い位置が1歯移動する程度のもので十分なことから、ステップS4における4軸目の動作は、そのPTP動作中に終了する。なお、基準時間を経過していない場合には(S3:NO)、そのまま処理を終了する。
【0039】
このように、ロボットシステム1では、本来の作業サイクルでは動作しない非動作駆動部である第4軸(J4)に対応する駆動部23を動作させることにより、非動作状態で振動が伝達されることにより発生する欠落領域Rに対して、発生当初には潤滑油Wを補充することができ、また、非動作駆動部を駆動させて潤滑油Wの拡散を促進しておくことで、欠落領域Rの発生そのものを抑制している。
【0040】
以上説明した本実施形態によれば、次のような効果を奏する。
前回駆動指令が出力されてからの経過時間を計測し、経過時間が基準時間を超えたと判定された駆動部23である非動作駆動部に対し、当該駆動部23のモータ20を駆動させるための補助駆動指令を出力する。このように本来の作業サイクル中には動作しない駆動部23つまりは減速機22を動作させることにより、その動作に伴って減速機22内の潤滑油Wの拡散が促進され、欠落領域Rの発生および拡大が抑制される。すなわち、剛性内歯歯車31と可撓性外歯歯車33の歯が直接的に接触することが無くなる。したがって、非動作駆動部に振動が伝達されたとしても、歯の損傷や破損などが生じるおそれが低減され、非動作駆動部つまり特定の駆動部23における故障の発生を抑制できる。また、ロボットの耐用年数の低下を招くおそれを低減することができる。
【0041】
非動作駆動部を動作させる際、駆動部23の剛性内歯歯車31と可撓性外歯歯車33との噛み合い位置が1歯以上移動するように動作させているので、
図4に示したような発生当初の欠落領域Rに潤滑油Wを拡散させることができ、欠落領域Rの拡大を抑制することができる。また、駆動部23が動作すれば潤滑油Wの拡散が促進されることから、欠落領域Rの発生そのものを抑制することができる。
【0042】
このとき、PTP動作中に非動作駆動部を動作させているので、タクトタイムが長くなるなどの影響を与えることが無く、また、潤滑油Wを拡散させるためには上記したように、噛み合い位置を1歯以上移動させればよいのでPTP動作中に確実に駆動部23の動作を完了させることができ、生産効率の低下を抑制することができる。また、PTP動作中に動作させるので、ロボット2の本来のアームの軌跡に影響を与えることがない。
本実施形態では、基準時間を1分に設定しているので、概ね作業サイクル毎に駆動部23が動作する。これにより、欠落領域Rが発生する前に非動作駆動部が動作すると想定されることから、欠落領域Rの発生をより確実に予防することができる。
【0043】
(第2実施形態)
第1実施形態では6軸の垂直多関節型ロボットを例示したが、
図7に示すような4軸の水平多関節型ロボットに適用してもよい。なお、第1実施形態と実質的に共通する部位には同一の符号を付し、詳細な説明は省略する。
【0044】
図7に示すように、ロボットシステム61を構成するロボット62は、設置面に固定されるベース63と、このベース63上にZ方向の軸心を持つ第1軸(J61)を中心に回転可能に連結された第一アーム64と、第一アーム64の先端部上にZ方向の軸心を持つ第2軸(J62)を中心に回転可能に連結された第二アーム65と、第二アーム65の先端部に上下動可能(矢印A方向)で且つZ方向の軸心を持つ第3軸(J63)を中心に回転可能に設けられたシャフト66とから構成されている。シャフト66の先端部(下端部)には、ツールなどを取り付けるためのフランジ67が位置決めされて着脱可能に取り付けられるようになっている。
このような構成においても、第1実施形態の
図6と同様の処理を行うことで、非動作駆動部の動作に伴って潤滑油Wが拡散され、欠落領域Rの拡大や発生そのものを抑制することができるなど、第1実施形態と同様の効果を得ることができる。
【0045】
(その他の実施形態)
本発明は上記した各実施形態に限定されるものではなく、次のような変形または拡張が可能である。
各実施形態では減速機22として波動歯車装置を例示したが、歯車を利用するものでれば他の構成のものであっても本発明を適用することができる。
各実施形態では基準時間を経過した時点のPTP動作にて非動作駆動部を動作させるようにしたが、作業サイクル中に複数のPTP動作が存在する場合、最も動作時間の長いPTP動作を予め判定しておき、最も動作時間の長いPTP動作中に補助駆動指令を出力するようにしてもよい。動作時間が長ければ、補助駆動指令により動作させた駆動部23を確実に本来の位置まで戻すことができるため本来の作業に影響を与えることがない。また、動作時間が長ければ、そのPTP動作中での噛み合い位置の移動量を増加させることができるので、欠落領域Rの発生およびその拡大をより一層抑制することができる。
【0046】
その場合、PTP動作の動作時間に応じて、非動作駆動部の動作量を帳調整するようにしてもよい。例えば、PTP動作の動作時間が長ければ、動作量を大きくしてもよい。これは、動作時間が長ければPTP動作が終了するまでに本来の噛み合い位置に戻すことができるためである。このようにすれば、潤滑油Wの拡散をさらに促進でき、欠落領域Rの発生より確実に予防できるようになる。
【0047】
各実施形態ではPTP動作であるか否かのみを判定したが、
図6の処理にワークを保持しているか否かを判定する処理をさらに加えて、ワークを保持していない(移送していない)PTP動作中に非動作駆動部を駆動するための補助駆動指令を出力してもよい。このようにすれば、本来の作業サイクルでは想定していないタイミングで駆動部23が動作したとしても、その動作に起因してワークが設備装置に衝突するなどの不具合を生じさせることがない。
【0048】
第1実施形態では第4軸(J4)を対象としたが、他の軸を対象として
図6と同様の処理を実行することにより、ロボット2に設けられている複数の駆動部23の全てに対して非動作駆動部と判定された場合には動作させることができるようになり、第1実施形態と同様の効果を得ることができる。
もちろん、
図6と同様の処理を全ての軸を対象として同時に実行し、非動作駆動部と判定された全ての駆動部23に対して同一の作業サイクル中に個別に補助駆動指令を出力するようにしてもよい。その場合、複数の非動作駆動部が特定された場合には、同一のPTP動作中に補助駆動指令を出力してもよいし、異なるPTP動作でそれぞれ補助駆動指令を出力するようにしてもよい。
【0049】
各実施形態では潤滑油Wとして非動作状態では個体に近い性質を有するものを例示したが、常時液体の性質を有するものであってもよい。この場合、潤滑油Wの量が減少した部位すなわち潤滑油Wが切れた部位が欠落領域Rに相当すると考えればよいことから、
図6と同様の処理を実行することにより、各実施形態と同様の効果を得ることができる。
第1実施形態では6軸ロボット、第2実施形態では4軸ロボットを例示したが、例えば7軸ロボットなど軸数が異なるロボットであっても本発明を適用することができる。
各実施形態では駆動部23に対して駆動指令が出力されたか否かを判定するようにしたが、エンコーダ21により検出されるモータ20の回転位置から間接的にモータ20が駆動されたか否かを判定する構成としてもよい。