【課題を解決するための手段】
【0016】
上記課題を解決するために、本発明者の研究の結果、以下の解決方法を発明するに至った。
【0017】
[1] 触媒反応用の原料ガスの流入路及び改質ガスの流出路と、流入路及び流出路に接続され、かつ触媒を収容する触媒反応容器とを有する連続式固定床触媒反応装置であって、
円柱状の触媒と、
複数の円柱状の触媒を立設する保持板と、
隣り合う円柱状の触媒間の空間内に配置される清掃体17と、
触媒反応容器内において前記円柱状の触媒と前記清掃体17との間で相対運動を生じるように、前記円柱状の触媒と前記清掃体17のいずれかまたは両方を、往復運動させるための駆動機構と、
を具備することを特徴とする、連続式固定床触媒反応装置。
[2] 前記円柱状の触媒と前記清掃体17との間で相対運動の方向が、ガス主流方向であることを特徴とする、[1]に記載の連続式固定床触媒反応装置。
[3] 前記触媒反応容器内において前記円柱状の触媒間に溜まった滞留物が落下除去されるための通路の方向がガス主流方向であることを特徴とする、[2]に記載の連続式固定床触媒反応装置。
[4] 前記ガス主流方向が略鉛直方向であり、
前記清掃体17が反応容器によって鉛直方向の可動性を拘束される清掃体17であり、
前記保持板が前記円柱状の触媒を略水平方向に保持する保持板であり、
前記駆動
機構が前記保持板に接続して前記保持板を略鉛直方向に昇降させる駆動装置であることを特徴とする[3]に記載の連続式固定床触媒反応装置。
[5] 前記円柱状の触媒が複数の触媒をそれらの可動性を損なわずに貫通する中心棒から構成される触媒連であることを特徴とする、[1]から[4]のいずれか1項に記載の連続式固定床触媒反応装置。
[6] 前記触媒反応用
の原料ガスが炭化水素を含有するガスであり、触媒反応による生成物がガスと固体の炭化水素または固体のカーボンとであることを特徴とする、[1]から[5]のいずれか1項に記載の連続式固定床触媒反応装置。
[7] 前記触媒反応用
の原料ガスがタールを含有するガスであることを特徴とする、[6]に記載の連続式固定床触媒反応装置。
[8] 前記触媒が、ニッケル、マグネシウム、セリウム、アルミニウムを含む複合酸化物であって、アルミナを含まない複合酸化物からなる触媒であり、前記複合酸化物が、NiMgO、MgAl
2O
4、CeO
2の結晶相からなることを特徴とする、[1]から[7]のいずれか1項に記載の連続式固定床触媒反応装置。
[9] [1]から[8]のいずれか1項に記載の連続式固定床触媒反応装置を用いて、触媒反応を行うことを特徴とする、連続式固定床触媒反応方法。
以下、簡単のために、固体炭化水素(コークともよぶ)及び固体のカ-ボンを単に「カーボン」または「固体カーボン」とよぶことにする。
【0018】
ここで、本発明者が本発明に到達した経緯を説明すると、次のとおりである。
本発明者らの調査の結果、固定床触媒層中の触媒間に生成固体カーボンの堆積する機構は次のとおりであることがわかった。
【0019】
(1)固定床触媒層中の隣り合う複数の触媒で形成される触媒間空間において、主流の上流側の隙間から原料ガス(一部改質済み)が流入し、主流の下流側の隙間から改質されたガス(一部は残留した原料ガス)が改質ガスとして流出する。
【0020】
(2)触媒間空間に供給された原料ガスが触媒反応によって改質される際、触媒表面で生成した固体カーボンの一部が触媒表面に付着する。
【0021】
(3)触媒間空間に供給された原料ガスが触媒反応によって改質される際、触媒表面で生成し、気流によって触媒表面から離脱した固体カーボン微粒子は、上記の既に触媒表面に付着した固体カーボン上に付着して、触媒表面で直径数十μmから約1mmのカーボン球が成長する。
【0022】
(4)上記のカーボン球は、時に触媒表面から離脱し、既に存在する他のカーボン球の上に再付着するなどして、触媒表面に多層のカーボン球から構成される厚みが数mmにもおよぶ固体カーボンの堆積層が形成される。
【0023】
(5)この固体カーボン堆積層は実質的に多孔質であるので、高速のガスが通気する際には大きな圧力損失を生じる。
【0024】
(6)特定の触媒間空間での通気抵抗が過大となれば、主流は、他のより通気抵抗の低い触媒間空間を優先的に通気するようになる。但し、固体カーボン堆積層が多孔質であるため、固体カーボンの堆積によって通気抵抗が過大になった空間においても、触媒間空間へのガスの流れが完全に遮断されるわけではなく、触媒表面には低流量で原料ガスが供給され続ける。この結果、触媒表面でのガス改質による固体カーボンの成長は常に進行し続ける(但し、触媒表面での露出面積は減少するので、改質速度は初期に比べて大幅に低下する)。
【0025】
(7)触媒層中の大半の触媒間空間において固体カーボンの堆積が進むと触媒層全体としての圧力損失が過大となり、「閉塞状態」が生じる(触媒反応容器では所与の流量で原料ガスを処理しなければならず、この所与のガス流量時にいずれの触媒間空間を通気しても圧力損失が反応装置の許容値(ガス搬送能力や容器の強度等によって定まる)を超えることが避けられない状態で触媒層は実質的な「閉塞」となる)。
【0026】
水素・二酸化炭素・水蒸気・タール含有ガスの改質反応を行い、閉塞を生じた固定床触媒反応容器の触媒表面から固体カーボン堆積層を単独で取り出し、容器の中に入れて軽くシェイクする様な機械的外力を加えると、構成単位であるカーボン球の境界で容易に分離し、粉化した。このような固体カーボンの堆積により閉塞を生じた触媒層から固体カーボンを除去するために、本発明者らは、種々の対策を試みた。
【0027】
第1の対策として、触媒層外部からのブローによる触媒層の逆洗を試みた。詳しく言えば、反応容器内に触媒層の下流側に窒素ガス供給配管を設け、触媒層に対して高速窒素流を噴射して、触媒層の逆洗を試みた。逆洗は、粉塵除去用のフィルタの閉塞時の対策として一般に用いられる手法である。
【0028】
結果として、一部の固体カーボンは除去されたが、触媒層の圧力損失の変化は軽微であり、閉塞を解消する効果はなかった。その理由としては、次のことが考えられる。
【0029】
1)フィルタの場合、上流からフィルタ内に流入した粉塵粒のうち、フィルタの目開きよりも大きいものをその場で捕集する。フィルタは、通常、上流ほど目開きが大きい。従って、フィルタの閉塞部に対して主流の下流側から高速流を供給して逆洗を行う場合、捕集された粉塵粒のうちフィルタの目から離脱したものは、高速気流に搬送されて主流の上流側に進行する際、より大きな目開きを通過するので、メッシュに再捕集されることは少なく、フィルタ外に排出できる。
【0030】
一方、本発明が対象とする触媒反応副生物である固体カーボンなどの堆積層は、主流の上流から流入するのではなく、触媒間空間中で、ガスを原料として生成する。このため、堆積カーボンの大きさが触媒間空間の流出入の隙間よりも小さいとは限らないので、そのままでは触媒間空間から流出できない堆積カーボンが多量に存在する。
【0031】
カーボン堆積層を破壊して微粉化すれば触媒間空間から流出できる可能性がある。しかし、気流が堆積カーボンに与える応力は一般に小さいので(触媒層全体に大きい気圧差を与えても、触媒層中で触媒は、通常多数の層で積載されているいので、個々の触媒間空間の入側−出側気圧差は微小となり、大きな応力を堆積カーボンに与えることはできない)、堆積カーボン層を破壊することはできない。
【0032】
2)一部のカーボンを除去した時点で、カーボン除去の結果として通気抵抗の小さくなった少数の触媒間空間を連ねた狭い流路が触媒層の中に新たに形成され、主流の大半はこの流路に集中して流れる。この際、新たに形成された流路以外の触媒間空間には気流はほとんど通過しないので、これ以上カーボンが除去されることはない。このため、主流が通過する狭い流路で流速が上昇して大きな圧力損失が生じるので、閉塞状態はあまり改善されない。このように形成された新たな流路も、流路内で新たなカーボンが生成・堆積することよって急速に再閉塞していくので、逆洗の効果は短時間とならざるをえない。その一方、早期に失活を生じた触媒によって構成される(囲まれる)触媒間空間ではこのような触媒間空間の再閉塞を生じない。しかし、そもそも、主流が失活した触媒のみと接触して触媒層を通過するのであれば、ガスの改質を行えないので、触媒反応容器としての性能を発揮できない。
【0033】
これらから、次のように結論することができる。
すなわち、一般に、閉塞を生じた触媒層においては、
[個々の堆積カーボンの大きさ]>[当該触媒間空間の隙間]
の状態となっており、
[個々の堆積カーボンの大きさ]<[当該触媒間空間の隙間]
としない限り、触媒層からカーボンを大量に除去することはできず、触媒層外部からのブローによる触媒層の逆洗はこれに有効ではない。
【0034】
そこで次に、第2の対策として、反応容器外面を槌打して、堆積カーボン層の破壊、または触媒間空間の拡大を試みた。
【0035】
結果として、最初の閉塞発生後に槌打(第1回目の槌打)すると、一部の堆積カーボンを除去でき、圧力損失も半分程度に減少し、一定の効果が見られた。この後、再閉塞発生後に再び槌打(第2回目の槌打)すると、堆積カーボンの除去は微小であり、圧力損失の変化はなく、閉塞を回避することはできなかった。すなわち、反応容器外面の槌打は、2回目以降は堆積カーボンの除去に有効でないことがわかった。その理由としては、次のことが考えられる。
【0036】
1)通常、触媒を反応容器内に積層する際には上部から単純に落下させるので、触媒層における触媒は最密充填状態にはない。ここに、第1回目の槌打を加えると、振動によって触媒が最密充填あるいはそれに近い状態になる(簡単にするために、以下ではこれを「最密重点化」と称することにする)。最密充填化の過程で触媒間の相対位置は、合計で触媒代表長さの30%程度の大きさで移動する。この相対位置の移動時(即ち、触媒間相対運動)に、一部の堆積カーボンが触媒との接触応力によって破壊されて小型化するとともに、触媒間の間隔が一時的に広がる瞬間を生じるので、
[個々の堆積カーボンの大きさ]<[当該触媒間空間の隙間]
の関係が実現されて触媒層中を落下し、遂には触媒層から除去された。
【0037】
2)一方、第1回の槌打終了後に触媒層は最密充填化されているので、第2回目以降の槌打を行っても触媒間の相対位置はほとんど変化せず、堆積カーボンの破壊や触媒間の間隔の広がりは生じない。このため、第2回目以降の槌打では堆積カーボンの除去の効果が認められなかった。
【0038】
これらから、次のように結論することができる。
すなわち、1回限りの閉塞解消効果では、多くの場合、触媒反応容器における所要処理継続時間を満足できないので、反応容器外面の槌打は堆積カーボンの継続的な除去のためには不十分である。触媒層から堆積カーボンを継続的に除去するためには、
[個々の堆積カーボンの大きさ]<[当該触媒間空間の隙間]
とした後に、触媒層の最密充填状態を解消する手段が必要である。
【0039】
前述の結論を踏まえ、第3の対策として、内部に貫通孔を有する複数の触媒を用いて個々の触媒を中心棒で貫いて一列に整列させたものとして定義する「触媒連」を用い、複数の触媒連を、間隔をあけて配列して形成したものとして定義する「触媒柵」を触媒反応容器内に配置して、各触媒連間の空間を専用気流路とし、触媒反応容装置の運転を開始してから一定時間経過後に短時間往復運動させることを試みた。その結果、次のことがわかった。
【0040】
(a)反応の初期状態から反応固体生成物の触媒表面への堆積が所定量進むまでの期間では、
[個々の堆積カーボンの大きさ]<[当該触媒間空間の隙間(専用気流路の幅)]
を実現できている。従って、固体生成物が触媒上に所定量堆積するまでの間に触媒柵を往復運動させることによって堆積物を触媒表面から離脱させることができる。さらに、離脱させた固体生成物を、専用気流路を通じて落下または気流搬送することによって、触媒反応容器外に排出することができる。このようにして、触媒表面の生成物を除去することによって、触媒表面での生成物堆積状態を反応の初期状態と同様の状態に戻すことができるので、この往復運動操作を生成物の堆積が進行するたびに繰り返すことによって、反応容器の通気性を常に良好に保つことができる。
【0041】
ここで、本発明では、従来の単純な積層構造の触媒層と同一レベルの触媒充填率を維持しつつ、気流路を集約して各気流路の空間を広大なもの(例えば、主流方向に触媒容器高さのレベル、かつ、主流垂直方向に触媒断面積と同等レベル)とした集約気流路にすることができる。このため、集約気流路内での少々の生成物堆積量では反応容器の通気性が阻害されることはないので、上記の往復動作の所要頻度を、少なくすることができきる(例えば、1回/時間)。これは、従来の単純な積層構造の触媒層では触媒ごとに分散した多数の小空間であった触媒間の隙間を、本発明では少数の太い集約気流路に集約することによって、高い通気性と高い触媒充填率を両立できるからである。一方、従来の単純な積層構造の触媒層では、個々の触媒が互いに支え合って触媒層を形成・保持するという構造であるため、隣接する触媒間で構成される気流路は、触媒ごとに細分化されるとともに狭窄部を生じ易い。このような触媒層では気流路の狭窄部において高々、触媒断面積の1/10程度の流路断面積しか確保できないため、気流路内での少量の生成物の堆積があっても、反応容器の通気抵抗が急上昇してしまう(気流路の通気抵抗は、一般に狭窄部での流路断面積に依存する)。しかも、この方式に限らず、従来の触媒層では気流路に一旦、生成物が堆積すると、これを取り除く手段が存在しなかったので、反応によって固体生成物を生じ易い反応容器では、通気抵抗の上昇による制約によって、連続運転可能な時間は極めて短いものであった。
【0042】
(粒子落下路)
清掃体17によって触媒間の固着固体カーボンを破砕したとしても、破砕された触媒間の固体カーボン粒子が触媒間空間から効率的に除去されなければ、集約気流路の通気性を改善することはできない。この観点から、粒子を触媒間から落下除去させるための通路である粒子落下路の確保も通気性改善のためには必要な機能である。本発明では、触媒間の空間を集約し、かつ、互いに触媒間空間が連結しているので、この空間を粒子落下路とすることによってより大きな粒子を速やかに落下させることができ、粒子の落下性に関して好適である。
【0043】
粒子落下路は、集約気流路と一致してもよいし、集約気流路とは別に設けてもよい。
図1の例では、集約気流路と直交して鉛直方向に一直線の粒子落下路が設定されている。
【0044】
(b)特に、円柱状触媒として複数のリング状の触媒の中心孔を中心棒で貫いて円柱状に一体化した触媒連を用いた場合、円柱状触媒(触媒連)と清掃体17間の相対運動時には、各触媒連において、隣あう触媒は互いに結合されていないので、触媒間での相対運動を容易に生じる(例えば、触媒内孔壁と、これに接する中心棒表面間の摩擦力は触媒によって異なるので、上記相対運動が一定の速度で生じたとしても、清掃体17-触媒間の作用力と中心棒-触媒間の作用力のばらつきによって、個々の触媒の運動も触媒ごとに異なったものになる)。そのため、触媒間での衝突が容易に生じるので衝突時に各触媒で強い表面振動を生じて生成物を触媒表面から離脱させることができる。
【0045】
(c)円柱状触媒と清掃体17間を定期的に相対運動させることによって触媒表面のバルク状の生成物の堆積が少なくなるので、触媒反応容器内で原料ガスが常に触媒表面に到達できる。このため、触媒反応効率の低下が少ない。
【0046】
(d)円柱状触媒間の専用気流路が互いに連結しているので流体の主流垂直方向にガスが拡散(物質交換およびこれに伴う熱交換)しやすい。このため、加熱面(触媒反応が吸熱反応の場合)である触媒反応容器の外壁面から遠く離れた触媒に対しても、ガス拡散によって加熱面から十分に熱を供給することがきでき、吹き抜けを生じにくい。
【0047】
(e)清掃体17がなく、単に円柱状触媒のみに槌打や往復運動を与える場合に比べて、円柱状触媒と清掃体17間を定期的に相対運動させることによって、円柱状触媒間を架橋するような大規模なコーキングに対して生成した固体カーボン塊を有効に破壊して粒子化でき、さらに、粒子落下路を通じて、この破壊された固体カーボン粒子を下方へ落下させて反応器の流路から効率的に除去することができる。
【0048】
こうして、本発明は、円柱状の触媒を複数用い、各触媒連間の空間を専用気流路及び粒子落下路とするとともに、円柱状の触媒の集合体である触媒柵を触媒反応容器内で往復運動させることによって、触媒層全域(触媒柵全体)において触媒表面に堆積した固体生成物を効率的に落下させて触媒層(触媒柵)から除去できるという顕著な効果を奏するものである。
【0049】
従って、本発明は、固定床触媒層内で触媒上に生成・堆積する固体生成物の除去に好適に適用することができる。例えば、ニッケル、マグネシウム、セリウム、ジルコニウム、アルミニウムを含む複合金属酸化物触媒によるタール含有ガスの改質反応では、他の反応に比べて触媒表面への固体カーボンの堆積量が多く、それを除去するニーズがより高い。本発明は、このように他の反応に比べ触媒表面への固体カーボンの堆積量が多いタール含有ガス改質反応用の触媒を用いる場合においても、触媒上に生成・堆積する固体生成物の効率的な除去を可能にする。
【0050】
本発明の対象である触媒固定床と異なり、移動床は、原則として反応中に絶えず触媒を移動(および撹拌)させる。それに対し、本発明では、反応容器内での触媒層の移動を間欠的に、短時間実施すればよいので、反応中に触媒撹拌を行う必要はない。さらに、移動床では、反応中に一定量の触媒を系外に排出するとともに同量の触媒を系外から供給する。それに対し、本発明では、反応中に触媒の入れ替えは行わない(触媒層が固定床であるから)。