特許第6045723号(P6045723)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アルカテル−ルーセントの特許一覧

特許6045723コヒーレント検波を用いるM−PAM光学システムのためのレベルスペーシング
<>
  • 特許6045723-コヒーレント検波を用いるM−PAM光学システムのためのレベルスペーシング 図000005
  • 特許6045723-コヒーレント検波を用いるM−PAM光学システムのためのレベルスペーシング 図000006
  • 特許6045723-コヒーレント検波を用いるM−PAM光学システムのためのレベルスペーシング 図000007
  • 特許6045723-コヒーレント検波を用いるM−PAM光学システムのためのレベルスペーシング 図000008
  • 特許6045723-コヒーレント検波を用いるM−PAM光学システムのためのレベルスペーシング 図000009
  • 特許6045723-コヒーレント検波を用いるM−PAM光学システムのためのレベルスペーシング 図000010
  • 特許6045723-コヒーレント検波を用いるM−PAM光学システムのためのレベルスペーシング 図000011
  • 特許6045723-コヒーレント検波を用いるM−PAM光学システムのためのレベルスペーシング 図000012
  • 特許6045723-コヒーレント検波を用いるM−PAM光学システムのためのレベルスペーシング 図000013
  • 特許6045723-コヒーレント検波を用いるM−PAM光学システムのためのレベルスペーシング 図000014
  • 特許6045723-コヒーレント検波を用いるM−PAM光学システムのためのレベルスペーシング 図000015
  • 特許6045723-コヒーレント検波を用いるM−PAM光学システムのためのレベルスペーシング 図000016
  • 特許6045723-コヒーレント検波を用いるM−PAM光学システムのためのレベルスペーシング 図000017
  • 特許6045723-コヒーレント検波を用いるM−PAM光学システムのためのレベルスペーシング 図000018
  • 特許6045723-コヒーレント検波を用いるM−PAM光学システムのためのレベルスペーシング 図000019
  • 特許6045723-コヒーレント検波を用いるM−PAM光学システムのためのレベルスペーシング 図000020
  • 特許6045723-コヒーレント検波を用いるM−PAM光学システムのためのレベルスペーシング 図000021
  • 特許6045723-コヒーレント検波を用いるM−PAM光学システムのためのレベルスペーシング 図000022
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6045723
(24)【登録日】2016年11月25日
(45)【発行日】2016年12月14日
(54)【発明の名称】コヒーレント検波を用いるM−PAM光学システムのためのレベルスペーシング
(51)【国際特許分類】
   H04B 10/61 20130101AFI20161206BHJP
   H04B 10/54 20130101ALI20161206BHJP
   H04L 27/02 20060101ALI20161206BHJP
【FI】
   H04B9/00 610
   H04B9/00 540
   H04L27/02 Z
【請求項の数】10
【全頁数】18
(21)【出願番号】特願2015-558896(P2015-558896)
(86)(22)【出願日】2014年2月17日
(65)【公表番号】特表2016-513421(P2016-513421A)
(43)【公表日】2016年5月12日
(86)【国際出願番号】US2014016671
(87)【国際公開番号】WO2014130386
(87)【国際公開日】20140828
【審査請求日】2015年10月9日
(31)【優先権主張番号】61/769,078
(32)【優先日】2013年2月25日
(33)【優先権主張国】US
(31)【優先権主張番号】61/772,664
(32)【優先日】2013年3月5日
(33)【優先権主張国】US
(31)【優先権主張番号】13/929,757
(32)【優先日】2013年6月27日
(33)【優先権主張国】US
(31)【優先権主張番号】14/032,886
(32)【優先日】2013年9月20日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】391030332
【氏名又は名称】アルカテル−ルーセント
(74)【代理人】
【識別番号】110001173
【氏名又は名称】特許業務法人川口國際特許事務所
(72)【発明者】
【氏名】シエ,チョンジン
(72)【発明者】
【氏名】ドン,ポー
(72)【発明者】
【氏名】ウィンザー,ピーター
【審査官】 川口 貴裕
(56)【参考文献】
【文献】 特開2011−160478(JP,A)
【文献】 特開2007−329673(JP,A)
【文献】 特開2008−167126(JP,A)
【文献】 国際公開第2012/163419(WO,A1)
【文献】 国際公開第2008/038337(WO,A1)
【文献】 国際公開第2010/061784(WO,A1)
【文献】 国際公開第02/093790(WO,A1)
【文献】 米国特許第7471903(US,B1)
(58)【調査した分野】(Int.Cl.,DB名)
H04B 10/00 − 10/90
H04J 14/00 − 14/08
H04L 27/02
(57)【特許請求の範囲】
【請求項1】
M個の異なるレベルの間で振幅変調される光信号を供給するように構成される光送信機と、
光信号を制御するために駆動信号を供給するように構成されるコンスタレーション制御モジュールと、
光信号のシンボルコンスタレーションの振幅ピーク間のスペーシングの量を受信し、スペーシングの量に応じて光信号を調節するためにコンスタレーション制御モジュールを調整するように構成されるフィードバックモジュールと
を備える、装置。
【請求項2】
光送信機が、駆動信号に応答して光信号を生成するように構成される垂直共振型面発光レーザ(VCSEL)を備える、請求項1に記載の装置。
【請求項3】
コンスタレーション制御モジュールとフィードバックコントローラとが、振幅偏移変調シンボルコンスタレーションのシンボル間のスペーシングを実質的に等しくするように構成される、請求項1に記載の装置。
【請求項4】
駆動信号が、振幅と、バイアスレベルと、振幅ピークスペーシングとを示す、請求項1に記載の装置。
【請求項5】
受信光信号を復調し、そこからシンボルコンスタレーションを生成するように構成される光受信機と、
シンボルコンスタレーションの振幅ピーク間のスペーシングを決定し、スペーシングの量を提供するように構成されるコンスタレーション特性評価モジュールと
を備える、装置。
【請求項6】
光受信機が、光信号の同相成分と、直角位相成分とを決定するように構成される光ハイブリッドと、局部発振器とを含む、請求項5に記載の装置。
【請求項7】
シンボルコンスタレーションのそれぞれのシンボルが、同相/直角位相(I/Q)平面内の閉曲線によって表され、振幅検出器が、閉曲線間のスペーシングを決定する、請求項5に記載の装置。
【請求項8】
M個の異なるレベルの間で振幅変調される光信号を供給する光送信機を構成することと、
光信号を制御するために駆動信号を制御するコンスタレーション制御モジュールを構成することと、
光信号のシンボルコンスタレーションの振幅ピーク間のスペーシングの量を受信し、スペーシングの量に応じて光信号を調節するためにコンスタレーション制御モジュールを調整するフィードバックモジュールを構成することと
を備える、方法。
【請求項9】
コンスタレーション制御モジュールとフィードバックコントローラとが、振幅偏移変調シンボルコンスタレーションのシンボル間のスペーシングを実質的に等しくするように構成される、請求項8に記載の方法。
【請求項10】
フィードバックモジュールが、コヒーレント光受信機からスペーシングの量を受信するように構成される、請求項8に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、2013年2月25日に出願された米国仮出願第61/769,078号、および2013年3月5日に出願された米国仮出願第61/772,664号に対する、米国特許法第119条(e)に基づく優先権の利益を主張し、両者の内容は、引用によりその全体が組み込まれている。本出願は、2013年6月27日に出願された米国特許出願第13/929,757号の一部継続出願であり、引用によりその全体が本明細書に組み込まれている。
【0002】
本開示は、概して光通信の分野に関する。
【背景技術】
【0003】
本節では、本発明のより良い理解を容易にすることに役立ち得る態様を紹介する。したがって、本節の陳述は、この観点で読まれるべきであり、従来技術にあるもの、または従来技術にないもの、について認めるものとして理解されるべきではない。
【0004】
インターネットおよびクラウドコンピューティングアプリケーションの急速な成長は、通信ネットワーク容量に対するますます重要な需要を駆り立てている。偏光分割多重方式4位相偏位変調(PDM−QPSK)および光伝送ネットワークにおけるデジタルコヒーレント検波を使用する100Gb/s技術の商業化および配備、ならびに400Gb/sおよび1Tb/s技術などのより高いビットレートの開発によって、近い将来、メトロネットワークを、10Gb/sから100Gb/s以上にまでアップグレードする緊急の必要性も存在する。デジタルコヒーレント検波は、高いスペクトル効率およびネットワーキングの柔軟性を達成するための1つの方法である。しかしながら、光伝送ネットワークと比較して、メトロネットワークは、コスト、設置面積、および消費電力に対してより敏感である。メトロネットワークの将来の要件を満たす低コスト光送信システムに対する重要な必要性が存在する。
【先行技術文献】
【非特許文献】
【0005】
【非特許文献1】A.S.Karar、J.C.Cartledge、他、「Generation and Detection of a 112 Gb/s Dual Polarization Signal Using a Directly Modulated Laser and Half−Cycle16−QAM Nyquist−Subcarrier−Modulation」、ECOC 2012、paper Th.3.A.4、2012年
【非特許文献2】C.Xie、他、「Colorless coherent receiver using 3x3 coupler hybrids and single−ended detection」、Optics Express、Vol.20、No.2、1164−1171頁、2012年
【発明の概要】
【課題を解決するための手段】
【0006】
一実施形態は、M個の異なるレベルの間で振幅変調される光信号を供給するように構成される光送信機を含む装置を提供する。コンスタレーション制御モジュールは、光信号を制御するために駆動信号を供給するように構成される。フィードバックモジュールは、光信号の信号コンスタレーションの振幅ピーク間のスペーシングの量を受信し、シンボルスペーシングの量に応じて光信号を調節するように構成される。
【0007】
別の実施形態は、たとえば光送信機を形成する方法を提供する。方法は、M個の異なるレベルの間で振幅変調される光信号を供給する光送信機を構成することを含む。方法は、光信号を制御するために駆動信号を制御するコンスタレーション制御モジュールを構成することをさらに含む。方法は、光信号のシンボルコンスタレーションの振幅ピーク間のスペーシングの量を受信するフィードバックモジュールを構成することをさらに含む。フィードバックモジュールは、スペーシングの量に応じて光信号を調節するようにさらに構成される。
【0008】
いずれかの実施形態では、コンスタレーション制御モジュールとフィードバックコントローラとは、振幅偏移変調シンボルコンスタレーションのシンボル間のスペーシングを実質的に等しくするように構成され得る。いずれかの実施形態では、光送信機は、駆動信号に応答して光信号を生成するように構成される垂直共振型面発光レーザ(VCSEL)を含むことができる。いずれかの実施形態では、駆動信号は、振幅と、バイアスレベルと、振幅ピークスペーシングとを示すことができる。いずれかの実施形態では、フィードバックモジュールは、振幅ピークスペーシング調節信号を供給するように構成され得る。いずれかの実施形態では、光送信機は、駆動信号に応答してM個の異なるレベルにレーザーからの光を変調するように構成される電界吸収型変調器を含むことができる。いずれかの実施形態では、光送信機は、駆動信号に応答してM個の異なるレベルにレーザーからの光を変調するように構成されるマッハツェンダー変調器(MZM)を含むことができる。
【0009】
いずれかの実施形態は、コヒーレント光受信機をさらに含むことができる。受信機は、シンボルコンスタレーションの振幅ピーク間のスペーシングを決定するように構成され得、そこから、シンボルスペーシングの量を生成するようにさらに構成され得る。いずれかの実施形態では、2つのレーザーは、光信号の第1および第2の異なる偏光に偏光多重信号を供給するように構成され得る。
【0010】
別の実施形態は、たとえば光受信機など、第2の装置を提供する。装置は、光学検波器と、コンスタレーション特性評価モジュールとを含む。光学検波器は、受信光信号を復調し、受信シンボルコンスタレーションをそこから生成するように構成され得る。コンスタレーション特性評価モジュールは、受信シンボルコンスタレーションの振幅ピーク間のスペーシングを決定し、シンボルスペーシングの量を提供するように構成され得る。
【0011】
以下の実施形態は、第2の装置に関連して説明される。いずれかの実施形態では、光受信機は、光信号の同相成分と、直角位相成分とを決定するように構成される、局部発振器と、光ハイブリッドとを含むことができる。いずれかの実施形態では、光受信機は、光信号の同相成分と、直角位相成分とを決定するように構成される光120°ハイブリッドを含むことができる。いずれかの実施形態では、シンボルコンスタレーションのそれぞれのシンボルは、同相/直角位相(I/Q)平面内の閉曲線によって表され得る。そのような実施形態では、振幅検出器は、閉曲線間のスペーシングを決定することができる。
【0012】
添付の図面と併せて解釈されるとき、本発明のより完全な理解が、以下の発明を実施するための形態の参照によって得られ得る。
【図面の簡単な説明】
【0013】
図1】単一の光ファイバーに多重化された複数の送信機と、デマルチプレクサと、複数の受信機とを使用する従来技術システムを示す図である。
図2】偏光ビームコンバイナ(PBC)を使用して2つの直接変調レーザーの出力を結合する送信機と、送信信号の直接検波を採用する受信機とを含む従来技術システムを示す図である。
図3】光通信システムが、1)M−ASK光信号を生成するために、たとえば4レベルなど、Mレベル電気信号で直接変調されるレーザーを含む送信機と、2)搬送波および位相リカバリを採用することなく、データをリカバリするために光信号を復調する光ハイブリッドを採用する受信機とを含む、本開示の一実施形態を示す図である。
図4】たとえば3×3光カプラなど、光120°ハイブリッドが、図3の光ハイブリッドのいくつかの機能性を提供する、図3の受信機の代替の実施形態を示す図である。
図5図3および図4の送信光信号を生成するためにマッハツェンダー変調器が採用される、図3の送信機の代替の実施形態を示す図である。
図6図3および図4の送信光信号を生成するために電界吸収型変調器が採用される、図3の送信機の代替の実施形態を示す図である。
図7A】受信コンスタレーションの態様を示し、コンスタレーションが、連続的な閉曲線を含む実施形態を示す図である。
図7B】受信コンスタレーションの態様を示し、コンスタレーションが開弧を含む実施形態を示す図である。
図7C】受信コンスタレーションの態様を示し、コンスタレーションが開弧を含む実施形態を示す図である。
図8図9A/B、10、11、および12に提示される特性を決定するために使用され得る、送信機と受信機との間の整形フィルタを含む、実験的な構成を示す図である。
図9A】整形フィルタなしの図8の実施形態によって送信される信号のI/Q特性を示す図である。
図9B】整形フィルタありの図8の実施形態によって送信される信号のI/Q特性を示す図である。
図10】整形フィルタあり、およびなしの図3の実施形態によって送信される信号のピーク強度特性、および整形フィルタの応答例を示す図である。
図11】バックツーバック動作(たとえば送信機と受信機との間の無視できる光路長)についての図8の実施形態の実験的な性能を示す図である。
図12】たとえば320km、640km、および960kmなど、3つのスパン長についての出射パワーの関数として、図8の実施形態のビット誤り率(BER)特性を示す図である。
図13図7Aのシンボル環など、コンスタレーションシンボル間のスペーシングをおよそ等しくするように構成されるPAM送信システムの実施形態を示す図である。
図14】シンボルスペーシングを等しくする図13のシステムを動作させる方法の実施形態を示す図である。
図15】バックツーバック動作(たとえば送信機と受信機との間の無視できる光路長)における4−PAM送信システムにおける図13に示される実施形態を実装するように構成される試験システムの実験的な性能を示す図である。
【発明を実施するための形態】
【0014】
本開示は、たとえば光通信信号を送信するための装置、システム、および方法などに向けられる。
【0015】
本明細書に提示される実施形態は、たとえば典型的には100kmから1000kmまでの範囲における、メトロネットワーク上のデータの改善された光送信のための費用効果がある解決策を説明する。一非限定的な例の実施形態では、100Gb/s信号は、ASK変調方式を実装する1.5μmの直接変調VCSELを使用して、960km標準シングルモードファイバー(SSMF)上を送信される。実施形態は、たとえば次世代100Gb/sメトロネットワークに適用することができる。送信信号の受信は、デジタルコヒーレント検波によって可能にされる。そのような送信距離およびレートは、たとえば直接変調VCSELを使用して光データを送信するための知られている方法およびシステム上などに、著しい改善を表す。
【0016】
VCSELは、その比較的低いコスト、エネルギー効率、および狭い設置面積に因り、短距離および低データレートのアプリケーションで広く使用される。最近の開発は、シングルモード1.5μmVCSELの40Gb/s動作と、10Gb/sにおける60kmの最大送信距離とを可能にしている。直接変調によるVCSELを使用する100Gb/s短距離リンクも、4レベルパルス振幅変調(PAM)、偏光分割多重化(PDM)、および直接検波により、最近、実証されている。しかしながら、100mの送信距離しか達成されなかった。このこと、および他の考慮事項のため、直接変調VCSELは、高データレートにおける100kmから1000kmまでの送信距離を有するメトロネットワークに適しているとは、従来、概して考えられなかった。
【0017】
図1は、複数の送信機および受信機を使用する第1の従来技術実装を示す。たとえば、そのようなシステムは、10個の10Gb/s送信機110と、受信機120とを、または示されるように、4個の25Gb/s送信機110a−110dと、受信機120a−120d(4×25Gb/s)とを含むことができる。そのような実装の1つの欠陥は、たとえば典型的には、50GHzチャネルスペーシングに適合することができないなど、大きな帯域幅を占有するということである。また、そのようなシステムは、典型的には、光分散補償を使用することなく、約数百キロメートルを超える距離を超えて送信することができない。
【0018】
図2は、2つのレーザー210a、210bを4レベル信号で直接変調する第2の従来技術実装を示す。レーザー出力は、偏光ビームコンバイナ(PBC)220を使用して、たとえば直角になど、異なるように偏光され、結合される。信号は、2つの偏光を分離する偏光ビームスプリッタ(PBS)230によって受信される。2つの直接検波受信機240aおよび240bは、その後、分離された偏光信号を受信する。そのような実装の1つの欠陥は、光偏光追跡が典型的に必要とされ、概して扱いにくいということである。また、数十キロメートルを超える距離については、光分散補償が典型的に必要とされる。
【0019】
第3の従来技術実装(図示せず)は、副搬送波変調を使用する。偏光分割多重化(PDM)は、信号の帯域幅を低減するために、この方式において使用され得る。受信機側では、光偏光追跡が、典型的に必要とされる。加えて、この方式は、偏光モード分散(PMD)に敏感である。(たとえば、A.S.Karar、J.C.Cartledge、他、「Generation and Detection of a 112 Gb/s Dual Polarization Signal Using a Directly Modulated Laser and Half−Cycle16−QAM Nyquist−Subcarrier−Modulation」、ECOC 2012、paper Th.3.A.4、2012年、参照)。
【0020】
本開示の範囲内の実施形態は、前述の従来技術実装の欠点のいくつかを克服するものである。本発明は、たとえばレーザーなど、光源は、M振幅偏移変調(ASK)光信号を生成するためにMレベル電気信号で直接変調され得るということを見出している。以下で説明されるいくつかの実施形態では、限定するものではないが、Mは4に等しいとして示される。光送信機の複雑さは、コヒーレント送信機と比較して著しく低減される。偏光分割多重化(PDM)は、信号の帯域幅を低減するために、いくつかの実施形態において使用される。たとえば、PDM−4ASK変調システムは、25Gbaudシンボルレートを使用して、100Gb/s送信レートを実装することができる。受信機側では、受信シンボルストリームは、コヒーレントに検出され得、必要に応じ、デジタル信号処理(DSP)により、電気領域における偏光多重分離化および波長分散補償を提供することができる。送信信号は、ASK変調されるので、搬送波周波数および位相リカバリは必要とされず、受信機の消費電力および複雑さを著しく低減させる。いくつかの実施形態では、レーザーは、VCSELであり、さらにコストを低減する。
【0021】
図3は、非限定的な実施形態におけるシステム300のブロック図を示す。システム300は、送信機310と、受信機320とを含む。送信機310は、2つのレーザー330aと、330bとを含む。レーザー330aと330bとは、いずれかの特定のレーザーの種類に限定されるものではなく、それぞれが、たとえば端面発光分布帰還型(DFB)、分布ブラッグ反射器(DBR)もしくはファブリペロー(FP)レーザー、VCSEL、または電界吸収型変調器もしくは干渉ベースの変調器などの外部変調器によって続かれるレーザーであってもよい。VCSELに限定されるものではないが、このレーザーの種類を含む実施形態は、たとえば、VCSELが、より低いコストとすることができ、同等の端面発光レーザーダイオードよりも高い信頼性を有するなどの点で有利となることがある。
【0022】
レーザー330a、330bのそれぞれは、Mレベル電気信号で直接変調され、ここで、限定するものではないが、Mは4に等しいとして示される。レーザー330aの出力は、たとえば水平(H)など、第1の明確な偏光を有する。偏光回転子(PR)335は、偏光回転光が、たとえば垂直(V)など、第1の偏光と異なる第2の偏光を有するように、レーザー330bの出力の偏光を回転する。レーザー330a、330bの出力は、偏光ビームコンバイナ(PBC)340で結合され、それによって、たとえばM=4などの、PDM−(M)ASK信号350を生成する。
【0023】
受信機320を参照すると、送信機310の出力における偏光に対して任意に回転され得る、信号350の偏光成分は、PBS355によって分離される。局部発振器(LO)360は、たとえばHおよびVなど、PBS365によって分離される2つの偏光成分を生成する。PBS355からのそれぞれの偏光成分は、2つの偏光ダイバース90°光ハイブリッド370a、370bのうちの対応する1つにおいて、PBS365からの対応する偏光成分とうなりを生じる。たとえばシングルエンドまたはバランス光検出器などの参照されない光検出器、ローパスフィルタ、およびアナログ−デジタル変換器(ADC)は、ハイブリッド370a、370bの出力をデジタル電気領域に変換する。DSP380は、波長分散(CD)補償と、偏光多重分離化と、シンボル間干渉(ISI)等化とを提供する。いくつかの実施形態では、シンボル識別は、等化器の直後に実行され得る。特に、搬送波周波数および位相リカバリは、示される実施形態によって必要とされないか、または示される実施形態において使用されない。
【0024】
図4は、代替の実施形態例、受信機400を示し、受信機410を含んでいる。この実施形態では、たとえば3×3カプラなど、光120°ハイブリッド420a、420bが、システム300の90°光ハイブリッド370a、370bに置き換わる。適切に構成される3×3カプラは、光受信機における光ハイブリッドの代わりに使用され得ることが以前に示されている。たとえば、引用によって本明細書に組み込まれる、C.Xie、他、「Colorless coherent receiver using 3x3 coupler hybrids and single−ended detection」、Optics Express、Vol.20、No.2、1164−1171頁、2012年、内を参照されたい。受信機400によって表される実施形態では、カプラ420a−bは、たとえば受信機320など、光ハイブリッドを使用する実施形態と比較して、著しく低いコストを提供することが期待される。3つのシングルエンド検出器430は、それぞれの3×3カプラのために使用され、さらなる信号処理が、I成分およびQ成分を得るために必要とされ得る。
【0025】
DSP440は、それぞれの受信偏光チャネルのIおよびQを決定するためにDSP380の機能性と、さらなる機能性とを含むことができる。要約すれば、カプラの入力における光信号場(フィールド)EおよびLO場(フィールド)E、たとえばシングルエンド検出器など、検出器430の出力光電流は、式(1)によって記述される。
【0026】
【数1】
【0027】
ここで、φは、LOと信号との間の位相差を表す。式(1)の第1の項は、直接検波の項であり、第2の項は、うなりの項である。局部発振器対信号電力比(LOSPR)が小さい、かつ/または多数の波長分割多重化(WDM)チャネル
【数2】
が存在する場合、直接検波の項は、うなりの項に比べて比較的大きくなり得る。ここで、Mは、WDMチャネルの数であり、ESiは、チャネルiの光信号場(フィールド)である。I成分およびQ成分は、以下の簡単な演算で得ることができる。
【0028】
=I−0.5I−0.5I=|E||E|cosφ (2a)
【0029】
【数3】
【0030】
図5は、たとえばM=4などの、(M)ASK送信機510の代替の実施形態を示す。送信機510は、無変調(CW)レーザー源520と、マッハツェンダー変調器(MZM)530a、530bと、先に参照されたPR335と、先に参照されたPBC340とを含む。MZM530aは、たとえばM=4などの、Mレベル信号源540aによって駆動される。MZM530bは、再度たとえばM=4などの、Mレベル信号源540bによって駆動される。MZM530a/bによって受信されるCW光部分は、それぞれ、それによって、たとえばM=4などの、M値のうちの1つに変調される。PR335は、MZM530bからの変調光の偏光を、MZM530aからの光に対して、たとえばπ/2ラジアン回転し、それらの信号が、PBC340によって再結合される。
【0031】
図6は、たとえばM=4などの、(M)ASK送信機610の別の代替の実施形態を示し、電界吸収型変調器(EAM)620aと620bとが、図5のMZMに置き換わる。光学技術の当業者によって理解されるように、EAMは、印可電圧に応答して、そこを伝搬する光信号の強度を変調することができ、ここにおいて、電圧は、伝搬媒体のバンドギャップを変調する。EAM620a/bは、それによって、レーザー520から受信されるCW光の強度を変調するために使用され得る。送信機610の残りの要素は、前述のように動作することができる。
【0032】
図7A−7Cは、様々な実施形態における受信信号コンスタレーション700A、700B、および700Cの態様を示す。それぞれの図は、たとえばコンスタレーション700A−700Cの同相(水平軸)成分と、直角位相(垂直軸)成分とを有する平面など、複素I−Q空間を示す。
【0033】
コンスタレーション700Aは、たとえば同心の環など、多数の閉曲線710と、シンボル点720とを含む。このコンスタレーションは、二重偏光送信信号のうちの1つの偏光についての等化後の一実施形態においてシミュレートされたデータを表し、ここにおいて、閉曲線710のそれぞれとシンボル点720とは、以下でさらに説明されるように、送信シンボルを表す。閉曲線710は、2πの角度寸法を有する弧とみなされ得る。シミュレーションでは、送信機レーザー(たとえばレーザー330a/b)の線幅およびLOレーザー(たとえばレーザー360)の線幅は、それぞれ、500MHzおよび10MHzであるが、これに限定するものではない。送信機とLOレーザーとの間の周波数オフセットは、x偏光およびy偏光について、それぞれ、1GHzおよび2GHzであるが、これに限定するものではない。
【0034】
コンスタレーション700Bは、コンスタレーション700Aの同心の環が、たとえば開弧など、完全に閉じていないときの受信信号コンスタレーションの態様を示す。このコンスタレーションは、開弧730と、シンボル点720とを含む。開弧730および点720のそれぞれは、送信シンボルを表す。開弧730は、それぞれ、2π未満の角度寸法を有し、この例では、約11π/6である。それぞれの開弧730は、閉曲線710に類似している閉曲線または環740を形成するために、その半径に沿って外挿され得る。
【0035】
コンスタレーション700Cは、受信信号コンスタレーションの態様を示し、ここにおいて、弧750は、たとえば約π/4など、実質的に2π未満の角度寸法を有する。弧750はまた、閉曲線710に類似している閉曲線または環760を形成するために、外挿され得る。
【0036】
閉曲線710ならびに弧730および750など、コンスタレーション弧の角度寸法は、レーザー330の線幅によって少なくとも部分的に決定されると考えられる。より小さい線幅を有するレーザー330は、より小さい角度寸法を有するコンスタレーション弧を生成し、一方、より大きい線幅を有するレーザー330は、より大きい角度寸法を有するコンスタレーション弧を生成することが期待される。たとえば、レーザー330の線幅が、十分大きいとき、コンスタレーションは、図7A内のような閉曲線を含む。非常に小さい線幅の極限では、コンスタレーションは、たとえば非常に小さな角度寸法を有する弧など、点を含むことができる。コンスタレーション700Bおよび700Cは、これらの両極端の間の例を示し、弧は開弧である。
【0037】
コンスタレーション700Bおよび700Cにおけるシンボル弧のうちの1つの角度位置は、シンボル弧の他の角度位置に対して不定となり得る。これは、たとえば、それぞれのシンボル弧に分解される送信光の偏光回転に制約がないときなどに生じることがある。それぞれの閉曲線710は、「シンボル環」と呼ばれることがある。また、環740または760のうちの1つなど、閉曲線上へのそれぞれの弧の外挿によって、弧が、たとえば開弧であるなど、2π未満の角度寸法を有する場合でも、それぞれの弧730、750は、シンボル環と呼ばれることがある。
【0038】
本明細書および特許請求の範囲において、「同心の」という用語は、2つ以上のシンボル環、閉曲線または弧に適用されるとき、1つのシンボル環、閉曲線または弧が、他のシンボル環、閉曲線または弧内に配置されることを意味する。第1の弧が、第2の弧が外挿する閉曲線より小さい半径を有する閉曲線を外挿するとき、第1の弧は、第2の弧内に配置される。したがって、コンスタレーション700A−700Cは、それぞれ、3つの同心のシンボル環、ならびにおよそ原点に配置されるシンボルを含む。2つのシンボル環については、より小さい半径を有するシンボル環は、本明細書において、低次シンボル環と呼ばれ、より大きい半径を有するシンボル環は、本明細書において、高次シンボル環と呼ばれる。複素平面内の点によって表される従来のM−QAMまたはM−PSKコンスタレーションとは対照的に、シンボルは、ここで全体の環によって表され、すなわち、これらのコンスタレーションにおけるシンボルの意味は、環上の光場(フィールド)値とは独立している。
【0039】
「同心の」のいくつかの通例の意味とは対照的に、本明細書で使用されるとき、この用語は、シンボル環が原点を共有する実施形態を含むが、同心のシンボル環は、厳密に原点を共有する必要はない。また、シンボル環710は、およそ円形であるが、実施形態は、限定されるものではないが、たとえば楕円のような閉路など、円形でないシンボル環を含む。加えて、いくつかの実施形態では、1つのシンボル環は、そのシンボル環が、他のシンボル環の原点の周りにおいて、事実上シンボル点であるように、小さな半径を有することができる。たとえばシンボル点720など、そのようなンボル点は、1つまたは複数の他のシンボル環内に包含されるとき、同心のシンボル環とみなされ得る。したがって、コンスタレーション700は、4つの受信シンボルを表す。
【0040】
図8は、別の実施形態の実験的な構成例、システム800を示す。システム800は、レーザー810と、デジタル−アナログ変換器(DAC)820と、偏光マルチプレクサ830と、増幅器840と、整形フィルタ850と、光路855と、増幅器LO860と、コヒーレント受信機870と、デジタルサンプリングオシロスコープ880と、オフライン処理890とを含む。本明細書において、光路855の長さが無視できるとき、実施形態は、「バックツーバック」と呼ばれ得る。他の実施形態では、光路855の長さは、数百キロメートル(km)のオーダーとすることができる。非限定的な例では、ドライバ820は、レーザー810の35Gbaud 3レベル振幅直接変調を提供して、たとえば52.86Gb/sを達成し、偏光マルチプレクサ830によって、同じ波長チャネルにおいて105.70Gb/sを送信する2つのVCSELをエミュレートする。様々な実施形態では、光フィルタ850は、複数の同心のシンボル環の真部分集合の強度を低減するように構成される。この態様は、以下でさらに説明される。
【0041】
レーザー810が、VCSELである場合、たとえば>500MHzなど、大きな線幅を有することができる。しかしながら、これは、システム性能には、ほとんど影響を与えず、処理890において、搬送周波数および位相リカバリは必要とされず、コヒーレント受信機の消費電力および複雑さをさらに低減する。
【0042】
限定するものではないが、図9Aおよび9Bは、システム800を使用して測定される、実験的に決定されるシンボルコンスタレーションを提示する。実験的実施形態は、整形フィルタ850の存在を伴わない(9A)および伴う(9B)、105.70Gb/sのPDM−3ASK信号の動作およびバックツーバック構成を含んでいた。これらの図は、増幅器840aによる信号出力のI/Qコンスタレーションを示す。図3を参照すると、整形フィルタ850は、たとえば光学素子によって、物理的に実装され得、または、送信機310または受信機320においてDSPによって実装され得る。実施形態は、フィルタ850のすべての機能的側面が、DSPまたは光学素子によって実装され得ることを認識しつつ、詳細なしに、フィルタ850を含むシステム800を概して参照して説明され得る。示される実施形態では、フィルタ850は、限定するものではないが、たとえばJDS Uniphase Corporation、Milpitas、CA、USAによって製造された0.67nmフィルタによって実現された。
【0043】
フィルタ850は、同心のシンボル環の真部分集合の強度を低減するように動作することができる。たとえば、図9Aおよび9Bを見ると、I−Q平面の原点の周りに配置される低次シンボル環910(最低次シンボル環)の強度が、フィルタ850の存在によって低減されることが示され、それによって、セットのシンボル環の間のコントラストが向上される。フィルタされない(図9A)特性およびフィルタされた(図9B)特性をさらに比較すると、フィルタリングは、コンスタレーションの同心のシンボル環920および930の著しいコントラスト向上をもたらし、検出された信号の性能を改善することが期待される。別の態様では、フィルタ850は、より低いレベルの振幅を抑制し、I/Q空間における異なる信号間の振幅差を増大させる。以下にさらに示されるように、フィルタ850の存在は、信号コントラストを向上させることによって、いくつかの実施形態においてシステム性能を著しく改善することが期待される。
【0044】
フィルタ850の存在の効果は、図10によってさらに示され、これは、前述の0.67nmフィルタを使用する、フィルタあり(1020)およびフィルタなし(1010)で、図8の実施形態において増幅器840aによって出力される信号の波長の関数としての強度を示している。重なっているフィルタ応答1030は、約1526nmの上の波長および下の波長において光信号の強度を低減するフィルタ850の動作を示す。低減は、たとえば前述の、最低次シンボル環など、シンボル環の真部分集合の強度低減の効果を有する。フィルタされる特性は、図9Bに示される改善されたコンスタレーション特性と矛盾しない、オフピーク光ノイズフロアの著しい低減も示す。
【0045】
たとえばレーザー330aおよび330bなど、直接変調レーザーでは、高強度のシンボルは、低強度のシンボルと比較して典型的に青にシフトされる。フィルタ850の動作の別の態様では、フィルタ850が、図10の例示的な実施形態に示される方式で信号波長と整合されるとき、赤にシフトされる信号部分(たとえば低強度のシンボル)は、青にシフトされる信号部分(たとえば高強度のシンボル)よりも大きな減衰を受ける。たとえば、示される実施形態の一態様では、信号のスペクトルは、フィルタ応答が、たとえば波長の増大とともに減衰が増大する、負の勾配を有する波長に配置される。別の態様では、ピークフィルタ応答は、約1526.1nmに配置され、一方、ピーク信号強度、または信号中心周波数は、約1526.7nmに配置される。言い換えれば、フィルタ応答は、たとえば青方向など、短波長方向に、信号中心波長に対して、約0.5nmシフトされ得る。別の見方では、ピークフィルタ応答と信号中心波長との間の波長差Δλが約0.5nmである。別の見方では、ピークフィルタ応答波長と信号中心波長との間のこの関係は、周波数変調(FM)から振幅変調(AM)への変換という結果になる。この変換は、信号についてのアイの開きを増大させ、したがってシステムの性能を増大させることが期待される。様々な実施形態では、Δλは、たとえば、全体の信号スペクトルの波長が、フィルタの中心波長よりも大きいなど、全体の信号スペクトルが、負の勾配を有するフィルタ応答の領域内に配置されるように選択される。たとえば、図10では、信号スペクトル1010は、1526nmを超える波長に実質的に配置され、したがって、負の勾配を有するフィルタ応答1030の部分と一致する。
【0046】
ここで図11について考えると、バックツーバック動作におけるシステム800のビット誤り率(BER)が、光信号対ノイズ比(OSNR)に対して示されている。この特性は、この特定の実施形態では、約2.0×10−3のBERにエラーフロアがあることを示す。7%オーバーヘッドの硬判定前方誤り訂正(FEC)コードでは、約98.80Gb/sの正味のビットレートという結果となり、約26dBを超えるOSNRで実質的にエラーフリーの動作が期待され得る。別の態様では、20%オーバーヘッドの硬判定FECコードが使用され、約88.10Gb/sの正味のビットレートの場合、20.3dBを超えるOSNRで実質的にエラーフリーの動作が期待される。
【0047】
図12は、105.7Gb/sのビットレートにおける320km、640km、および960kmの3つのスパン長についての光路850への信号の出射パワーの関数としてのBER特性を示す。それぞれの特性は、約2dBmから約3dBmまでの出射パワーについて最小のBERを有する。7%FECオーバーヘッドでは、320kmの送信距離が達成され得、一方、20%FECオーバーヘッドでは、960kmの送信距離が達成され得る。ASK信号についてのこの送信能力は、これまで知られておらず、説明される実施形態の予想外に有益な側面である。たとえば、前述のPDMおよび直接検波による4レベルPAMの最大の送信距離は、約100mであった。したがって、図12に示される結果は、以前の送信距離限界に対して少なくとも約1000倍の改善であり、少なくとも約10,000倍の改善を表すことさえ可能である。そのような結果は、メトロネットワークにおける費用効果がある光送信のための潜在的な利益を明らかに提供する。
【0048】
代わって図13では、光送信機1305と、光受信機1310とを含む、光送信システム例の、1300と付される実施形態が示される。送信機1305は、光路を介して受信機1310に変調光信号1315を送信するように構成される。光路は、いずれかの特定の種類に限定されるものではないが、いくつかの実施形態では、光ファイバーを含むことができる。レーザー330aおよび330bに対して説明されたように、レーザー1330は、M個の異なるレベルの間で振幅変調される光信号を供給するように構成される。変調は、コンスタレーション700A、700B、および700Cによって例示されるような信号コンスタレーションを生成する。コンスタレーション制御モジュール1340は、たとえば信号コンスタレーションを生成するために光信号1315の振幅変調を提供するなど、振幅および/またはレーザー1330のレーザー駆動信号のバイアスを制御するように構成される。
【0049】
送信機1305は、フィードバックモジュール1350も含む。フィードバックモジュール1350は、光信号1315の信号コンスタレーションのシンボルスペーシングの量を受信し、シンボルスペーシングの量に応じてレーザー1330の駆動信号を調節するために制御モジュール1340を調整するように構成される。示される実施形態では、フィードバックモジュール1350は、第1の電気信号を制御モジュール1340に、第2の電気信号をデジタル−アナログ変換器(DAC)1360に供給する。オプションの増幅器1370は、DAC1360の出力を適切なレベルに調整することができる。第1の信号は、たとえばレーザー1330の駆動信号に印可されるDCバイアスおよび/または信号振幅を変更するために制御モジュール1340に指示することができる、バイアス調節および/または振幅信号とすることができる。第2の信号は、たとえばコンスタレーションシンボル間の1つまたは複数のピーク振幅間隔を変更するためにDAC1360に指示することができる、ピーク振幅スペーシング調節信号とすることができる。バイアス/振幅調節信号およびシンボルスペーシング調節信号は、信号コンスタレーションの振幅ピーク間のスペーシングが制御され得るように、たとえば光信号1315によって搬送される個々のシンボルの時間スケールで、動的に印可され得る。
【0050】
いくつかの実施形態では、コンスタレーション振幅ピーク間のスペーシングは、コンスタレーション特性評価モジュール1335によって受信機1310において決定される。モジュール1335は、たとえばコンスタレーション700Aの環の間など、少なくとも2つの受信コンスタレーションの振幅ピークの間のスペーシングを決定することができる。図7Aを参照すると、たとえば、モジュール1335は、閉曲線710の隣接する対の振幅ピーク間のスペーシング730を決定することができる。シンボルコンスタレーションが、図7Cに例示されるようなシンボル弧を含む実施形態については、モジュール1335は、環760などの外挿された閉曲線間のスペーシング730を決定することができる。モジュール1335は、振幅ピークスペーシング情報をフィードバックモジュール1350に通信することができ、その振幅ピークスペーシング情報からフィードバックモジュール1350は、制御モジュール1340を介するレーザー制御信号の振幅および/またはDCバイアスの変更、および/またはDAC1360を介するシンボルスペーシングの変更を指令することができる。そのような実施形態では、シンボルスペーシングは、たとえば光ファイバーなど、信号1315が伝搬する送信媒体のいずれかの効果を含むことができる。
【0051】
たとえばコンスタレーションシンボル間など、振幅ピーク間のスペーシングは、隣接するシンボル間で実質的に等しいことが好ましい。様々な実施形態では、「実質的に等しい」は、シンボルコンスタレーションにおけるピーク振幅間のスペーシングの差異が約10%未満であることを意味する。いくつかの事例では、スペーシングの差異が約5%以下であることが好ましい場合がある。さらに他の事例では、スペーシングの差異が、約1%以下であることが好ましい場合がある。また、図9Bのコンスタレーションにおいて例示されるように、場合によっては、コンスタレーションシンボル、または環は、円形の対称性から実質的に逸脱してもよい。そのような事例では、モジュール1335は、たとえば平均スペーシングなど、隣接するシンボル対のピーク振幅間の任意の好適なスペーシングの量を決定するか、または、たとえば楕円など、コンスタレーションシンボルの最良に適合する幾何学モデル間のスペーシングを決定することができる。
【0052】
図13の実施形態は、駆動モジュール1340の出力に応答して信号1315を生成するためにレーザー1330を制御する非限定的な例について説明されることに留意されたい。いくつかの他の実施形態では、信号1315は、たとえば送信機510(図5)または送信機610(図6)によって生成され得る。そのような実施形態では、制御モジュール1340は、特定の実施形態に適切なように電界吸収型変調器またはMZMを制御することができる。
【0053】
図14は、たとえばパルス振幅変調コンスタレーションなど、たとえば受信コンスタレーションのシンボル間の振幅における差を少なくとも部分的に等しくするために、信号1315の振幅および/またはDCバイアスを調節するための方法1400の一実施形態を提示する。方法1400は、たとえば制御モジュール1340およびDAC1360によって実行され得る。以下に、示される実施形態に限定するものではないが、図13に示される機能的エンティティを参照して、方法1400が説明される。さらに、関連技術の当業者は、示される方法1400が、本開示の範囲内に留まりつつ、所望の振幅特性をもたらす、さらなるステップを含むことができる、または異なるステップを含むことができることを理解するであろう。
【0054】
ステップ1410では、レーザー制御信号は、たとえば制御モジュール1340およびDAC1360によって、レーザーが等間隔のダイビング信号および初期バイアスで駆動されるように、設定される。「等間隔のダイビング信号」によって、レーザー駆動信号が、M個の異なるレベルを有し、それぞれが、その隣接するレベルからおよそ等間隔であることが意味される。したがって、たとえば、コンスタレーション700Aを生成するために、レーザー駆動信号は、たとえばV、2V、3V、および4Vなど、初期レベルVのおよそ整数倍である4つのレベルを有し得る。初期バイアスは、たとえば約ゼロボルトDCなど、任意の値とすることができる。スペーシングは、たとえば(2V−V)=Vなど、2つの隣接するシンボル環の間で計算され得る。
【0055】
ステップ1420では、たとえば受信機1320による検出後、モジュール1335によって、信号コンスタレーションの振幅レベルがおよそ等間隔であるかが決定され得る。振幅がおよそ等間隔であると決定されない場合、その後、方法は、ステップ1430に進み、レーザー制御信号の振幅および/またはDCバイアスが調節され、かつ/またはDACのレベルスペーシングが調節される。そのような調節は、たとえばシンボル環の間の一様なスペーシングなど、受信コンスタレーションと所望の振幅特性との間の差を特徴付ける1つまたは複数の信号を、フィードバックモジュール1350にモジュール1335によって送ることを含むことができる。フィードバックモジュール1350は、その後、前述のようにレーザー制御信号の変化をもたらすように動作することができる。方法1400は、その後、ステップ1420に戻り、受信コンスタレーションのシンボル振幅を再度試験する。シンボルコンスタレーションが、所望の方式で、レーザー制御信号の振幅および/またはDCバイアスならびにDACのレベルスペーシングの変化に応答した場合、モジュール1335およびフィードバックモジュールは、コンスタレーションシンボルスペーシングの差を漸次およそ等しくするように動作することができる。代わりに、シンボルコンスタレーションが、コンスタレーションシンボルスペーシングにおける差がより大きくなるように応答した場合、モジュール1335およびフィードバックモジュール1350は、コンスタレーションシンボルスペーシングの差という方式で、レーザー制御信号の振幅および/またはDCバイアスを変化させるように動作することができる。
【0056】
コンスタレーションシンボル間のスペーシングが、たとえば受信機1320によって受信されるシンボルストリームのBERの低減をもたらすレベルなどの、ある閾値に達するとき、方法1400は、終了状態1440に進むことができる。もちろん、モジュール1335およびフィードバックモジュール1350は、BERの所望のレベルを維持することが必要とされるとき、受信シンボルコンスタレーションの監視を継続し、レーザー制御信号の振幅および/またはDCバイアスならびにレベルスペーシングを変更するように動作することができる。
【0057】
図15は、EAMによって生成される32Gbaudの4−PAM信号を送信する試験システムの2つの事例についてのOSNRの関数としてのBERを示す。第1のBER特性1510については、たとえばレーザー1330など、レーザーは、たとえばコンスタレーション700Aの環など、コンスタレーションシンボルの強度を等しくするように制御された。この事例は、図8に示されるBER特性と類似している。第2のBER特性1520については、レーザーは、コンスタレーションシンボル間のスペーシングを等しくするように制御された。これら2つの事例についてのBER特性間の比較は、30dBのOSNRにおける10倍のBERの改善の要因について示しており、送信忠実度を著しく改善し、および/またはより長い送信範囲を可能にすることが期待される。図11において議論された既に非常に良好な結果を超えてさらに改善する、この結果もまた、これまで知られておらず、説明される実施形態のさらなる予想外に有益な側面を提供する。図13および14の実施形態によって提供されるさらなる改善は、PAM送信の交信におけるシンボルスペーシングの均等化は、従来の光学技術の範囲外であり、メトロ送信システムにおける最新技術の著しい進歩を表すことを明らかに示している。
【0058】
本発明の複数の実施形態が、添付の図面において示され、前述の発明を実施するための形態において説明されてきたが、本発明は、開示された実施形態に限定されるものではなく、以下の特許請求の範囲によって記載され定義される本発明から逸脱することなく、多数の再構成、修正、および置換が可能であることが理解されるべきである。
図1
図2
図3
図4
図5
図6
図7A
図7B
図7C
図8
図9A
図9B
図10
図11
図12
図13
図14
図15