【実施例】
【0076】
1.一本鎖CD95L融合タンパク質(scCD95L)の製造
以下に、ヒトCD95リガンドの受容体結合ドメインに例示される本発明の組換え体タンパク質の一般構造(
図1)を示す。
【0077】
1.1 ポリペプチド構造
A)アミノ酸Met1〜Ser21
Igκシグナルペプチド、アミノ酸Gly20の後に想定シグナルペプチダーゼ切断部位。
【0078】
B)アミノ酸Glu22〜Leu161
ヒトCD95リガンドの第1の可溶性サイトカインドメイン(CD95L;K145S突然変異を含む、配列番号6のアミノ酸142〜281)。
【0079】
C)アミノ酸Gly162〜Gly169
第1のペプチドリンカーエレメント。
【0080】
D)アミノ酸Arg170〜Leu307
ヒトCD95リガンドの第2の可溶性サイトカインドメイン(CD95L;K145S突然変異を含む、配列番号6のアミノ酸144〜182)。
【0081】
E)アミノ酸Gly308〜315
第2のペプチドリンカーエレメント。
【0082】
F)アミノ酸Arg316〜Leu453
ヒトCD95リガンドの第3の可溶性サイトカインドメイン(CD95L;K145S突然変異を含む、配列番号6のアミノ酸144〜281)。
【0083】
G)アミノ酸Gly457〜Lys472
Strep−tag IIモチーフを有するペプチドリンカー。
【0084】
scCD95Lのアミノ酸配列を配列番号27に示す。融合ポリペプチドは、配列GGSGSGSG(配列番号21)を有する第1および第2のペプチドリンカーを含む。さらに別の好ましいリンカー配列は、上述の配列番号22〜26である。第1および第2のペプチドリンカー配列は、同一である必要がないことに留意するべきである。
【0085】
シグナルペプチド配列(A)は、任意の他の適した、例えば、哺乳動物のシグナルペプチド配列によって置き換えることができる。Strep−tag IIモチーフ(G)は、所望の場合、他のモチーフによって置き換えても、除去してもよい。
【0086】
図23に示す通り、scCD95L(配列番号27)を一時発現しているHEK293細胞の細胞培養上清を収集し、様々な濃度でJurkat細胞を刺激するのに用いた。上清は、さらなる改変なしに直接用いるか、scCD95Lタンパク質を架橋するために抗Streptag抗体(2μg/ml)が添加された。架橋されたscCD95L−Stを含有した細胞上清のみがJurkat細胞内のカスパーゼ活性を増大させた。これは、scCD95L単独では、アポトーシス促進性となりうる高次の凝集体を形成しないことを示す。
【0087】
1.2 ポリペプチドをコードする遺伝子カセット
合成遺伝子は、適した宿主細胞、例えば、昆虫細胞または哺乳動物細胞での発現についてのコドン使用頻度に鑑みて最適化できる。好ましい核酸配列を配列番号30に示す。
【0088】
1.3 クローニングストラテジー
合成遺伝子は、例えば制限酵素加水分解によって、適した発現ベクターにクローニングできる。
【0089】
2.一本鎖TRAIL融合タンパク質(Sc TRAIL wt)の製造
2.1 ポリペプチド構造
A)アミノ酸Met1〜Gly20
Igκシグナルペプチド、アミノ酸Gly20の後に想定シグナルペプチダーゼ切断部位。
【0090】
B)アミノ酸Gln21〜Gly182
ヒトTRAILリガンドの第1の可溶性サイトカインドメイン(TRAIL、配列番号10のアミノ酸120〜281)。
【0091】
C)アミノ酸Gly183〜Ser190
第1のペプチドリンカーエレメント、Xと指定された2個のアミノ酸は両方ともSか、一方がSであり、かつもう一方がNである。
【0092】
D)アミノ酸Arg191〜Gly351
ヒトTRAILリガンドの第2の可溶性サイトカインドメイン(TRAIL、配列番号10のアミノ酸121〜281)。
【0093】
E)アミノ酸Gly352〜Ser359
第2のペプチドリンカーエレメントXと指定された2個のアミノ酸は両方ともSか、一方がSであり、かつもう一方がNである。
【0094】
F)アミノ酸Arg360〜Gly520
ヒトTRAILリガンドの第3の可溶性サイトカインドメイン(TRAIL、配列番号10のアミノ酸121〜Gly281)。
【0095】
G)アミノ酸Gly521〜Lys538
Streptag IIモチーフを有するペプチドリンカーエレメント。
【0096】
Sc TRAIL wtのアミノ酸配列を配列番号28に示す。
【0097】
示したリンカーを、例えば、配列番号21.26に示す他の好ましいリンカーで置き換えてもよい。第1および第2のペプチドリンカーは、同一である必要がないことに留意するべきである。
【0098】
シグナルペプチド配列(A)は、任意の他の適した、例えば、哺乳動物のシグナルペプチド配列によって置き換えることができる。Strep−tag IIモチーフ(G)は、所望の場合、他のモチーフによって置き換えても、除去してもよい。
【0099】
様々なリンカーで一本鎖TRAILがタンパク質を一時発現するHEK293細胞の細胞培養上清(総計9通りの異なったリンカー組合せで、配列番号28に由来する)を収集し、様々な希釈率でJurkat細胞を刺激するのに用いた(例として、1:8希釈を
図25に示す)。上清は、さらなる改変なしに直接用いるか、scTRAILwtタンパク質を架橋するために抗Streptag抗体(2μg/ml Strep MAB Immo)が添加された。Jurkat細胞をHEK293細胞培養上清と共に37°で3時間インキュベートし、溶解し、カスパーゼ活性について分析した。架橋されたscTRAILwtタンパク質を含有した細胞培養上清は、Jurkat細胞におけるカスパーゼ活性の増大を誘導した(グラフの右側に示す結果)。これは、scTRAILwtタンパク質単独では、アポトーシス促進性でありうる高次の凝集体を低量しか形成しないことを示す。
【0100】
2.2 ポリペプチドをコードする遺伝子カセット
合成遺伝子は、適した宿主細胞、例えば、昆虫細胞または哺乳動物細胞での発現についてのコドン使用頻度に鑑みて最適化できる。好ましい核酸配列を配列番号31に示す。
【0101】
3.一本鎖突然変異導入TRAIL融合タンパク質(scTRAIL(R2特異的))の製造
以下に、TRAIL受容体R2への選択的結合のための突然変異を含む一本鎖TRAILポリペプチドの構造を示す。
【0102】
3.1 ポリペプチド構造
A)アミノ酸Met1〜Ser29
Igκシグナルペプチド、アミノ酸Gly20の後に想定シグナルペプチダーゼ切断部位、およびペプチドリンカー。
【0103】
B)アミノ酸Arg29〜Gly190
ヒトTRAILリガンドの第1の可溶性のサイトカインドメイン(TRAIL、突然変異Y189Q、R191K、Q193R、H264R、I266L、およびD267Qを含む、配列番号10のアミノ酸121〜281)。
【0104】
C)アミノ酸Gly191〜Ser198
第1のペプチドリンカーエレメント、Xに指定されたアミノ酸は実施例2に示す通り。
【0105】
D)アミノ酸Arg199〜Gly359
ヒトTRAILリガンドの第2の可溶性のサイトカインドメイン(Bに示す突然変異を含む、配列番号10のTRAILアミノ酸121〜281)。
【0106】
E)アミノ酸Gly360〜Ser367
第2のペプチドリンカーエレメント、アミノ酸Xは実施例2に示す通り。
【0107】
F)アミノ酸Arg368〜Gly528
ヒトTRAILリガンドの第3の可溶性のサイトカインドメイン(TRAIL、Bに示す突然変異を含む、配列番号10のアミノ酸121〜281)。
【0108】
G)アミノ酸Gly529〜Lys546
Strep−tag IIモチーフを有するペプチドリンカー。
【0109】
scTRAIL(R2特異的)のアミノ酸配列を配列番号29に示す。
【0110】
示したリンカーを、例えば、配列番号21〜26に示す他の好ましいリンカーで置き換えてもよい。第1および第2のペプチドリンカーは、同一である必要がないことに留意するべきである。
【0111】
シグナルペプチド配列(A)は、任意の他の適した、例えば、哺乳動物のシグナルペプチド配列によって置き換えることができる。Streptag IIモチーフ(G)は、所望の場合、他のモチーフによって置き換えても、除去してもよい。
【0112】
3.2 ポリペプチドをコードする遺伝子カセット
合成遺伝子は、適した宿主細胞、例えば、昆虫細胞または哺乳動物細胞での発現についてのコドン使用頻度に鑑みて最適化できる。好ましい核酸配列を配列番号32に示す。
【0113】
4.発現および精製
a)融合ポリペプチドのクローニング、発現、および精製
10%FBS、100単位/mlペニシリンおよび100μg/mlストレプトマイシンを補ったDMEM+GlutaMAX(GibCo)中で培養したHek293T細胞を、融合ポリペプチドのための発現カセットを含有するプラスミドで一時的に形質移入した。最終産物を得るのに、例えば、Fab−scTNF−SF融合タンパク質(
図9A)のために、複数のポリペプチド鎖が必要である場合、発現カセットは、1つのプラスミド上で連結されるか、または形質移入中に異なったプラスミド上に置かれた。組換え体融合ポリペプチドを含有する細胞培養上清は形質移入後3日目に採取し、300×gの遠心分離およびそれに続く0.22μm無菌フィルターを通した濾過によって清澄化した。アフィニティー精製のために、Streptactin Sepharoseをカラムに充填し(ゲルベッド1ml)、15mlのバッファーW(100mM Tris−HCl、150mM NaCl、pH8.0)またはPBS pH7.4で平衡化し、細胞培養上清を4ml/分の流速でカラムに添加した。続いて、カラムを15mlのバッファーWで洗浄し、結合したポリペプチドを段階的に7×1mlのバッファーE(100mM Tris HCl、150mM NaCl、2.5mMデスチオビオチン、pH8.0)の添加によって溶出した。代わりに、2.5mMデスチオビオチンを含有するPBS、pH7.4をこの段階に用いることもできる。溶出液画分のタンパク質の量を定量し、ピーク画分を限外濾過によって濃縮し、サイズ排除クロマトグラフィー(SEC)でさらに精製した。
【0114】
SECは、Aktaクロマトグラフィーシステム(GE−Healthcare)を用いて、Superdex200カラムで行った。カラムをリン酸緩衝食塩水で平衡化し、濃縮されたStreptactin精製ポリペプチドを0.5ml/分の流速でSECカラムに添加した。ポリペプチドの溶出プロフィルを280nmの吸光度によってモニターした。
【0115】
非変性条件下における精製融合ポリペプチドの見かけの分子量を決定するために、分子量が公知である標準タンパク質をSuperdex200カラムに添加した。標準タンパク質の溶離容積に基づいて、検量線をプロットし、精製融合ポリペプチドの見かけの分子量を決定した。
【0116】
5.アポトーシスアッセイ
様々なCD95−リガンド(CD95L)およびTRAIL融合ポリペプチドコンストラクトのアポトーシス誘導活性を決定するために、Jurkat A3永久T細胞系を用いた細胞アッセイを用いた。Jurkat細胞は、10%FBS、100単位/mlペニシリン、および100μg/mlストレプトマイシンを補ったRPMI 1640培地+GlutaMAX(GibCo)を含むフラスコ内で培養した。アッセイの前に、ウェルあたり100,000の細胞を96ウェルマイクロタイタープレートに播種した。様々な濃度の融合ペプチドをウェルに添加した後、37℃で3時間インキュベーションした。溶解バッファー(250mM HEPES、50mM MgCl
2、10mM EGTA、5%Triton−X−100、100mM DTT、10mM AEBSF、pH7.5)を添加することによって細胞を溶解させ、プレートを30分間から2時間氷上に置いた。アポトーシスは、カスパーゼ、例えば、カスパーゼ−3の活性増大を伴う。それゆえ、アポトーシスの程度を決定するのに、特異的なカスパーゼ基質Ac−DEVD−AFC(Biomol)の切断が用いられた。実際、カスパーゼ活性は、ヨウ化プロピジウムおよびHoechst−33342で細胞を染色した後に形態学的に決定されたアポトーシス細胞のパーセントと相関する。カスパーゼ活性アッセイのために、20μlの細胞溶解液を黒い96ウェルマイクロタイタープレートに移した。50mM HEPES、1%スクロース、0.1%CHAPS、50μM Ac−DEVD−AFCおよび25mM DTT、pH7.5を含有するバッファー80μlを添加した後に、プレートをTecan
Infinite 500マイクロタイタープレートリーダーに移し、蛍光強度の増大をモニターした(励起波長400nm、発光波長505nm)。
【0117】
5.1 細胞死アッセイ
HT1080線維肉腫細胞における細胞死の測定のために、15,000細胞を96ウェルプレートにプレーティングし、10%FBS(Biochrom)を補ったRPMI
1640培地+GlutaMAX(GibCo)中に一終夜置いた。細胞を最終濃度2.5g/mlのシクロヘキシミド(Sigma)と共にインキュベートした。細胞死は、バッファーKV(0.5%クリスタルバイオレット、20%メタノール)で染色することによって定量化した。染色の後に、ウェルを水で洗浄し、空気乾燥させた。色素をメタノールで溶出し、595nmの光学濃度をELISAリーダーで測定した。
【0118】
6.安定性/凝集試験
6.1.凝集分析の原理(可溶性タンパク質の定義)
単量体(TNF−SF受容体結合モジュールの規定の三量体アセンブリ)の含有量および凝集体は、実施例4に記載の分析的SECによって測定される。この特定の目的には、生理的pHの生理的塩濃度を含有するバッファー(例えば、0.9%NaCl、pH7.4;PBS pH7.4)中で分析を行う。典型的な凝集分析は、Superdex200カラム(GE Healthcare)で行われる。このカラムは、10〜800kDaの範囲のタンパク質を分離する。
【0119】
非変性条件下における精製融合ポリペプチドの見かけの分子量を決定するために、分子量が公知である標準タンパク質をSuperdex200カラムに添加する。標準タンパク質の溶離容積に基づいて検量線をプロットし、精製融合ポリペプチドの見かけの分子量を溶離容積に基づいて計算する。
【0120】
可溶性の非凝集タンパク質−例えば、三量体TNF−SFのSECの分析は、通常、規定の溶離容積に明確な単一タンパク質ピークを示す。この溶離容積は、特定のタンパク質の見かけの天然分子量に対応しており、一次アミノ酸配列に基づいて計算されるおおよその理論的分子量に応じる。
【0121】
タンパク質凝集が起こった場合には、SEC分析は、より小さな保持容積の追加のタンパク質ピークを示す。TNF−SFファミリーメンバーでは、可溶性タンパク質の凝集が独特の様式で起こる。タンパク質は、「三量体」のオリゴマーを形成する傾向があり、ノナマー(3×3)および27量体(3×9)を形成する。これらのオリゴマーは、凝集種子として働き、オリゴマーが高含有量だと、タンパク質の凝集をもたらす可能性がある。高分子量のオリゴマーおよび凝集体は、Superdex200カラムのボイド容積で溶出し、それらの非変性分子量についてSECによって分析することができない。TNF−SFタンパク質の規定の可溶性三量体調製物およびオリゴマー化/凝集調製物のSECの分析の例を
図17に示す。
【0122】
(完全な)凝集の誘導により、TNF−SF融合タンパク質の精製調製物は、好ましくは、規定の三量体タンパク質のみ、および極めて低量のオリゴマー化タンパク質のみを含有するべきである。
【0123】
特定のTNF−SFタンパク質調製物の凝集/オリゴマー化の程度をSEC分析をベースにして、それぞれ規定の三量体およびオリゴマー/凝集体画分についてOD280図のピーク面積を計算することによって決定する。総ピーク面積をベースにして、規定の三量体タンパク質のパーセントを以下の通りに計算する。
【0124】
(%三量体含有量=[三量体のピーク面積]/[総ピーク面積]×100)
この本文で用いられる可溶性タンパク質の定義は、0.2〜10.0mg/mlの典型的なタンパク質濃度範囲内で>90%の含有量にて特定の可溶性タンパク質(TNF−SFドメインの三量体アセンブリ)を含有する、生理的pHの生理的塩濃度バッファー中における精製TNF−SFタンパク質のタンパク質調製物について記述するものである。
【0125】
6.2 精製されたsc−TRAIL変異体のSEC凝集分析
3種の異なるsc−TRAIL変異体が形質移入され、記載の通りにアフィニティー精製された。続いて、6.1に記載のSEC分析を用いて、精製タンパク質を、それらにおける規定の可溶性タンパク質の含有量について分析した。一本鎖融合タンパク質の特定の場合には、三量体とは、単一ペプチド鎖によってコードされる3つのコードTNF−SFドメインの三量体アセンブリを記述するものである(正式には、一本鎖TNF−SFタンパク質は、一本鎖アセンブリが分子内相互作用を形成するのみであり[すべてのタンパク質ドメインは単一ペプチド鎖によってコードされている]、異なる個々のポリペプチド鎖間の分子間相互作用を形成するわけではないので、単量体である)。
【0126】
SECによって分析したタンパク質は以下の通りであった。
【0127】
1.)Fab−sc−TRAIL(R2特異的)−SNSN(
図19):
TRAIL受容体2相互作用に特異的なTRAILの一本鎖融合タンパク質のN末端側に融合したFabドメインを含む融合タンパク質であり、グリコシル化される。
【0128】
2.)Fab−sc−TRAIL(R2特異的)−SSSS(
図18)
TRAIL受容体2相互作用に特異的なTRAILの一本鎖融合タンパク質のN末端側に融合したFabドメインを含む融合タンパク質であり、グリコシル化されない。
【0129】
3.)Fab−sc−TRAIL−wt−SNSN(
図20):
一本鎖TRAILのN末端側に融合したFabドメインを含む融合タンパク質であり、グリコシル化される。
【0130】
TRAILの3つの精製Fab−scコンストラクトのSEC分析は、すべてのタンパク質について、規定の可溶性タンパク質画分を示す単一タンパク質ピークを明らかにした(>95%の三量体)。これらのタンパク質について計算された見かけのMW(カラムの較正に基づく)は、精製タンパク質について、TNF−SF−ドメインの三量体結合を強く指示する。分析されたタンパク質はいずれも凝集の指標を示さなかった(
図18、19、20)。
【0131】
グリコシル化されている可能性のある「Fab−sc−TRAIL−R2−SNSN」と、非グリコシル化「Fab−sc−TRAIL−R2−SSSS」との比較は、Fab−sc−TRAIL(R2特異的)−SNSNのグリコシル化による見かけの非変性MWの有意差を示す。
【0132】
抗体fv−断片との融合タンパク質としてのsc−TNF−SFメンバーの発現は、タンパク質の凝集を促進することが公知である。Fab−sc−TRAIL変異体の構築原則は、発現されたTRAIL変異体の凝集を示さず、それゆえ、タンパク質の可溶性に関して有益である。
【0133】
6.3 sc−TRAILリンカー変異体の示差的なグリコシル化
タンパク質のグリコシル化は、組換え体Sc−TNF−SFコンストラクトにとって、潜在的な免疫原性および安定性に関して有益でありうる。sc−TRAILコンストラクトのグリコシル化を得るために、規定の位置に推定上のN結合型グリコシル化部位を含有する特定のリンカー配列を設計した(
図21−Aを参照)。組換え体発現、および後続のウェスタンブロット分析によって、リンカー配列中のアスパラギン(N)のそれぞれの位置がタンパク質の後続のグリコシル化に重要であることが明らかにされた。驚いたことに、グリコシル化されるアスパラギンの優先的なリンカー位置は、
図21−Aに記載の「2」の位置
【0134】
【化1-1】
であると同定された。アスパラギンが他の位置に位置する場合(例えば、位置「1」
【0135】
【化1-2】
、
図21−A参照)それぞれのアスパラギンのグリコシル化は起こらない。この特質は、様々なsc−TRAIL変異体のウェスタンブロット分析によって確認できた。リンカー1のアスパラギンとリンカー2のアスパラギンとの両方が位置「2」に位置する場合、それぞれのsc−TRAIL変異体について、有意なグリコシル化依存的MWシフトが観察できた(
図22)。グリコシル化されたsc−TRAILリンカー変異体のMWシフトは、SEC分析後に見かけのMWを計算することによっても確認できた(
図18、19)。グリコシル化されないFab−sc−TRAIL(R2特異的)SSSSは、グリコシル化されたFab−sc−TRAIL(R2特異的)SNSN(87kDa)と比較して、明らかにより低いMW(68kDa)を有する。
【0136】
この分析に基づいて、本発明者らは、リンカー配列(複数可)内のアスパラギンの位置を改変することによる、sc−TRAILコンストラクトの示差的なグリコシル化を主張する。グリコシル化は、タンパク質分解に対して、リンカー配列を保護し、タンパク質を安定できるであろう。加えて、リンカー配列のグリコシル化は、免疫系によるリンカー配列の認識を防止する可能性があり、タンパク質の免疫原性を低減させる可能性がある。したがって、リンカー配列のグリコシル化は、sc−TRAILコンストラクトの免疫原性およびタンパク質分解安定性に関して有益であり、タンパク質の半減期に影響を与える可能性がある。組換え体TNF−SFメンバーの免疫原性および安定性を改変するのに、リンカーの特異的な示差的グリコシル化が使用できる。
【0137】
6.3.延長されたリンカー配列およびN末端ストーク残基を有するsc−TRAIL(sc−TRAIL−(95−281)−ロング)の発現および分析
WO/2005/103077には、本明細書でsc−TRAIL−(95−281)−ロングと命名された、各TRAILモジュールが配列番号10の残基95〜281を含む一本鎖TRAIL融合ポリペプチドが記載されている。TRAILモジュールは、少なくとも12アミノ酸(GGGSGGGSGGGS)を含むGlycin Serinリンカーによって連結される。本発明のTRAILモジュール(配列番号10の残基121〜281を含む)と比較して、ストーク領域を含めた追加の25アミノ酸が隣接するTRAILモジュールのそれぞれに存在する。
【0138】
sc−TRIALコンストラクトへのリンカー配列の影響を分析するために、sc−TRAIL−(95−281)−ロングを分析する。発現、精製、および後続のSEC分析は、12aaリンカーを有するsc−TRAIL−(95−281)−ロングおよび追加のストーク配列が発現され、HEK293T細胞の細胞培養上清中に分泌されることを明らかにする。しかし、精製タンパク質のSECの分析は、sc−TRAIL−(95−281)−ロングが、オリゴマー化または凝集型のタンパク質を大量に含む複数のピークを示すことを示す。sc−TRAIL−(95−281)−ロングの凝集は、N末端ストークの追加残基と組み合わされた延長リンカー配列の直接的影響である。結果は、このコンストラクトで用いられたより長いリンカーがコンストラクトの凝集特性の増大をもたらすことを示す。
【0139】
7.1つまたは複数の追加ドメインを含む一本鎖融合ポリペプチドの構築
7.1.可溶性TNF−SFおよび当技術分野で公知の抗体断片のアセンブリ
当技術分野では、三量体の三量体化および/または二量体化を得るために、可溶性TNF−SFサイトカインドメインを抗体断片に融合できることが公知である。一本鎖抗体と、TNF−RBDおよびストーク領域を含む可溶性ドメインとからなる一本鎖scFv−TNF−SF融合タンパク質が構築されている。対応する三量体は、3つの一本鎖抗体および3つの可溶性ドメインからなる(
図7)。
【0140】
加えて、各融合タンパク質がN末端分子内Fc−ドメインおよびC末端可溶性ドメインを含むFc−TNF−SF融合タンパク質が構築されている(
図8)。可溶性ドメインの二量体化は、ジスルフィド架橋を介した2つのFc−ドメインのアセンブリで実現される。続いて、1つのFc−TNF−SF融合タンパク質からの2つの可溶性ドメインと、別のFc−TNF−SF融合タンパク質からの1つの可溶性ドメインとの組合せによって三量体を得る。
図4から推論できるように、三量体の二量体化も、N末端Fc−TNF−SF融合によって媒介される。結論として、3つのFc−抗体断片が三量体の二量体単位で存在する。しかし、そのような融合タンパク質は、大分子量凝集体を形成する可能性が高く、これが大きな不利益となっている。
【0141】
7.2 1つまたは複数の追加ドメインを含む本発明の融合タンパク質
1つまたは複数の追加ドメインを含む本発明の融合タンパク質は、いくつかの方法で構築できる。以下では、追加ドメインを有する融合タンパク質の構築を、細胞表面抗原ErbB2に対する指向性を有する抗体パーツズマブで例示する。
【0142】
重鎖のアミノ酸配列を以下の配列番号33に示す。
【0143】
【化1-3】
軽鎖のアミノ酸配列を以下の配列番号34に示す。
【0144】
【化2】
7.2.1
一実施形態では、本発明の融合ポリペプチドは、NまたはC末端Fab抗体断片をさらに含む(
図9A)。
【0145】
scTNF−SF融合ポリペプチドのN末端への抗体Fab断片の融合は、以下の2つのストラテジーで実現されうる。
【0146】
(i)重鎖配列は、さらなるアミノ酸によってIgG1ヒンジ領域から伸長されて、一本鎖TNF−SF融合タンパク質に融合する。
【0147】
IgG1ヒンジ領域を、以下に示す配列番号35のアミノ酸配列を含む。
【0148】
【化3】
好ましい実施形態では、Fabドメインは、重鎖のC末端システイン(ヒンジ領域のC1)でCH1ドメインが終了するように選ばれる。このシステインは、軽鎖とのジスルフィド結合を形成するのに必要である。
【0149】
後続のリンカーは、IgGヒンジ領域の部分(例えば、DKTHTまたはDKT)を含むが、ヒンジ領域のさらなるシステインは含まない。代わりに、グリシン/セリンリンカーが使用される。さらなるシステインが存在しないので、2本のポリペプチド鎖を含む単量体融合タンパク質が得られる。リンカーは、3〜15アミノ酸の長さを有することが好ましい。リンカーは、下記に示すリンカー1〜7から選択されることがより好ましい。
【0150】
【化4】
scTNF−SFモジュールのN末端側に位置する重鎖モジュールを有する好ましいアミノ酸配列は、配列番号45、配列番号47、および配列番号49に示されている。産生目的には、これらのポリペプチド鎖を、Fab軽鎖ポリペプチド(配列番号40)と共に共発現させ、Fab−scTRAIL融合ポリペプチドを最終的に得る。
【0151】
(ii)軽鎖配列は、一本鎖TNF−SF融合タンパク質に融合させる。
【0152】
軽鎖(例えば、配列番号34)の定常領域は、C末端システイン残基で終わる。この残基は、重鎖のC1ヒンジシステインで共有結合によって架橋されうる。軽鎖配列とTNF−SF融合タンパク質との連結には、下記に示す通り、リンカー1〜7を用いることが好ましい。リンカー5〜7が好ましい(上記参照)。
【0153】
サイトカインモジュールに隣接したリンカー内の最後のアミノ酸は、GlyまたはSerのいずれかであることが好ましい。以下に、好ましいリンカー配列を示す。
【0154】
さらに、リンカーは、Nグリコシル化モチーフ(NXS/T、配列中、Xは任意のアミノ酸でありうる)を含みうる。
【0155】
scTNF−SFモジュールのN末端側に位置する軽鎖モジュールを有するアミノ酸配列の一実施形態を配列番号51に示す。
【0156】
Fab−scTNF−SF融合タンパク質の場合、2本のポリペプチド鎖の共発現が、scTNF−SFモジュールに追加されるFabモジュールの正しいアセンブリを得るのに必要である。(
図9A参照)。パーツズマブ重鎖および軽鎖モジュール(配列番号33および配列番号34)は、シグナルペプチドを付与され、逆翻訳され、この結果得られた合成遺伝子(配列番号41および配列番号42)は、scTRAILwt特異的またはscTRAILR2特異的遺伝子モジュール(配列番号31および配列番号32)の上流に遺伝学的に融合された。この結果得られた遺伝子カセットの例を配列番号46、48、および50に示す。適切な発現ベクター中にサブクローニングした後、この結果得られたプラスミドから選択したものをHEK293T細胞の一時的なタンパク質発現に用いた。重鎖TRAILまたは軽鎖TRAIL発現プラスミドは、単独で、または必要とされる軽鎖もしくは重鎖をコードする、Fab断片のベクターと組み合わせて形質移入した(
図26)。驚いたことに、融合タンパク質内のモジュールの組合せは、分泌ベースの発現中におけるscTRAILタンパク質の相対的安定性に影響を与えた。Fabドメインの軽鎖モジュールがscTRAILドメインのN末端側に融合される場合(配列番号51に例示される)、別々に発現された際に、発現産物がそれ自体安定であり、分泌される(レーン1〜4、
図26)。したがって、そのような融合ポリペプチドが重鎖モジュールと共に共発現される場合、2つの主要なタンパク質種、すなわち、(1)2本のポリペプチド鎖からなるFab−scTRAIL融合タンパク質、および(2)混入物として、機能的Fabドメインの無い軽鎖−scTRAIL融合タンパク質が潜在的生産過程中に形成されると予測できる。それゆえ、発現のためにscTNF−SF−モジュールのN末端側に重鎖モジュールを融合させて、この技術的不利益を避けるのが好ましい。
【0157】
scTRAIL−モジュールのN末端側に融合させた重鎖モジュールを有する本発明の組換え体Fabを含むscTRAIL融合タンパク質(Fab−scTRAILR2−SNSNまたはFab−scTRAILwt−SNSN)の機能解析を
図28に示す。
図19および20に例示されるように、最終精製ステップとして、サイズ排除クロマトグラフィーを用いた。
【0158】
TNFスーパーファミリーの人工架橋されたリガンドまたは膜結合リガンドを用いることによって、可溶性のホモ三量体リガンドと比較して優れた生理活性が容易に実現できる。したがって、一本鎖TRAIL(scTRAIL)コンストラクトを、これらのscTRAILタンパク質に融合したHer2選択的Fab断片(「パーツズマブ」)を介して、抗原Her2を発現する細胞上に局所濃縮することによって、それらの細胞傷害性生理活性が増強されるはずである。同様に、Her2特異的Fab断片(パーツズマブ−Fab)とのプレインキュベーションによる細胞上のHer2結合部位のブロッキングは、Fab−scTRAIL融合タンパク質の細胞傷害性生理活性を減少させるのみであるはずである。
図28Aに示すように、タンパク質濃度の増大に従って生存率が低減するので、scTRAILコンストラクトはHT1080細胞の死を誘導する。これと一致して、HT1080細胞をFab断片(パーツズマブ−Fab)と共にプレインキュベーションし、続いてFab−scTRAILコンストラクト(Fab−scTRAILR2−SNSNまたはFab−scTRAILwt−SNSN)と共に一終夜インキュベーションすると、Fab−scTRAILコンストラクトの細胞傷害性活性を低減させ(
図28B)、一方Fabのみでは細胞死を誘導しない。
【0159】
技術的効果の増大は、TNFスーパーファミリーの人工架橋されたリガンドまたは膜結合リガンドの使用によって実現でき、可溶性のホモ三量体リガンドと比較して特に優れた生理活性をもたらす。したがって、一本鎖TRAIL(scTRAIL)によって例示されるようなリガンドまたは一本鎖リガンドを細胞上または隣接細胞上に局所濃縮すると、これらの融合タンパク質の生理活性を増強するはずである。これらの一本鎖リガンドの局所濃縮(またはターゲッティング)は、例えば、細胞、例えば腫瘍細胞などに存在している任意の抗原に結合するアミノ酸配列を有する一本鎖リガンドを融合させることによって特異的に誘導することができる。抗原結合配列の例は、scFvまたはFab断片などの抗体から得ることができる。標的細胞上に発現されている抗原の例は、EGFRファミリーの受容体などの受容体、または結合抗体を生成できる任意の他の抗原でありうる。この関連で特別に興味深いのは、腫瘍または癌細胞に特異的な細胞表面抗原である。
【0160】
7.2.2
別の実施形態では、本発明の融合ポリペプチドは、追加のNまたはC末端scFv抗体断片をさらに含む(
図9B)。
【0161】
この実施形態では、上述のリンカー5〜7が使用できる。さらに、リンカーは、Nグリコシル化モチーフを含みうる。
【0162】
一本鎖サイトカイン融合タンパク質に融合させるための好ましい一本鎖Fv−パーツズマブ断片は、配列番号33のアミノ酸Glu1〜Ser119および配列番号34のAsp−Lys107またはThr109を含みうる。VH断片およびVL断片はリンカーによって連結できる。
【0163】
パーツズマブのscFv−ドメインの一実施形態を、以下の配列番号36に示す。
【0164】
【化5】
アミノ酸1〜20(下線部)は、N末端分泌シグナルペプチドを構成する。
【0165】
7.2.3
さらに別の実施形態では、本発明の融合ポリペプチドは、追加のNまたはC末端Fc抗体断片を含む(
図10および11)。
【0166】
Fc抗体断片ドメインは、ヒト免疫グロブリンG重鎖由来、とりわけヒト免疫グロブリンIgG1重鎖由来であることが好ましい。特に好ましい実施形態では、Fcドメインのアミノ酸配列は、配列番号37に示される。
【0167】
【化6】
アミノ酸Lys1〜Glu16はヒンジ領域を規定する。
【0168】
C末端融合(
図11)には、Fc−ドメインは完全な定常ドメイン(配列番号37のアミノ酸17〜230)および一部分または完全なヒンジ領域、例えば、完全なヒンジ領域またアミノ酸Asp4から始めるヒンジ領域を含むことが好ましい。
【0169】
C末端Fc抗体断片(例えば、
図11)を連結するための好ましいリンカーを以下に示す。
【0170】
【化7】
すべてのリンカーがGlyGlyから始まる。但し、TRAILのC末端アミノ酸がGlyであることを考慮に入れる。リンカーの位置3では、代わりに、ProまたはSerが存在する。リンカー8は、重鎖のCys1システインを含む。
【0171】
リンカー8〜10は、他のポリペプチド、例えば、さらなるscTNF−SF融合タンパク質のC末端融合にも適していることに留意するべきである。
【0172】
詳細には、scTRAILwtモジュール(配列番号28)、scTRAIL(R2特異的)モジュール(配列番号29)、およびscCD95Lモジュール(配列番号27)を、配列番号37のAsp4から始まるヒトIgG1のFcドメインのN末端に、表2に示す4つのリンカーエレメントを用いて融合させた。
【0173】
【表2】
精製および特性分析用に、Strep−tag II(アミノ酸配列WSHPQFEK)をFc−ドメインのC末端側に配置した。このアフィニティータグは、CH3配列のC末端リジン残基を置換する柔軟なリンカーエレメント(アミノ酸配列SSSSSSA)によってCH3ドメインに連結された。記載したタンパク質モジュールと同様に、scTNF−SF融合タンパク質のアミノ酸配列は逆翻訳され、それらのコドン使用頻度を哺乳動物細胞ベースの発現用に最適化した。遺伝子合成は、ENTELECHON GmbH(独国Regensburg)によって行われた。より大きな融合タンパク質のための発現カセットは、適したサイズおよび適した制限酵素パターンのDNAモジュールで始まる通常のクローニング手順によって組み立てられた。例として、結果として得られる一本鎖TRAILwt FC01融合タンパク質(scTRAILwt−FC01)用の遺伝子カセットを配列番号44に示し、コードされているタンパク質配列を配列番号43に示す。短縮されたリンカー変異体(表1)をコードする遺伝子カセットを、配列番号44から始めて、PCRベースのサブクローニングストラテジーによって生成した。最終発現カセッ
トを中間クローニングベクターから切り離し、pCDNA4−HisMaxのバックボーンに、このプラスミドのユニークなHind−III部位、Not−I部位またはXba−I部位を用いてサブクローニングした。FabおよびFc融合タンパク質のアセンブリには、ベクターバックボーンにユニークなSgS−I部位を導入し、Not−I部位を置き換えた。すべての発現カセットをDNAシーケンシングによって慣行的に確かめた。
【0174】
タンパク質をHEK293T細胞で一時的に発現させ、細胞培養上清を、それらのプロアポトーシス活性についてモニターした。
図27に示すように、本発明のscTRAIL−Fc融合タンパク質は、カスパーゼ活性の顕著な増大を誘導することができた。これは、2つのscTRAILwtモジュールのFcベースの二量体化の効力を確認する。同様の結果がscTRAIL(R2特異的)−Fc融合タンパク質についても得られた(データは示されていない)。
【0175】
Fc−抗体断片がscTNF−SF融合タンパク質のN末端に融合される場合(
図10参照)、Fcモジュールのアミノ酸配列は、以下の配列番号38に示す通りであることが好ましい。
【0176】
【化8-1】
アミノ酸1〜20(下線部)は、N末端分泌シグナルペプチドを構成する。
【0177】
FcモジュールをScTNF−SF融合タンパク質に連結するには、Gly/Serリンカーを用いることが好ましい。すべてのリンカーは、セリンで始まるのが好ましく、グリシンまたはセリンで終わるのが好ましい。好ましいリンカー配列11〜12を以下に示す。
【0178】
【化8-2】
7.3 本発明の一本鎖融合タンパク質の二量化
7.3.1 1つの追加ドメインを含む一本鎖融合ポリペプチド
本発明の三量体融合タンパク質は、さらに二量体化させることができる。
【0179】
一実施形態では、本明細書に定義されるリンカー構造を介して第1の融合タンパク質のC末端を直接的に第2の融合タンパク質のN末端に連結した場合に二量体化が得られる(
図12)。
【0180】
別の実施形態では、追加ドメインとしてFab抗体断片を含む本発明の融合タンパク質を、本発明のさらに別の融合タンパク質と、本明細書に定義されるリンカーを介して直接的に、または本発明のさらに別の融合タンパク質に融合したscFv抗体断片を介して間接的に連結できる(
図13)。それによって、本発明の三量体融合タンパク質の二量体化が実現される。
【0181】
別の実施形態では、追加ドメインとしてFab抗体断片を含む本発明の2つの融合タンパク質のアセンブリを介して三量体の二量体化を得ることができる(
図14)。この場合、分子間ジスルフィド架橋が形成される。
【0182】
scTNF−SFドメインのN末端側の二量体化Fab断片(例えば、
図14)の構築には、IgGヒンジ領域(配列番号35)の天然システイン残基を用いることが好ましい。
【0183】
Fab配列のC末端システインは、軽鎖とジスルフィド結合を形成する、ヒンジ領域のC1残基に対応することが好ましい。第2のシステインC2は、2つのFabモジュールの共有結合に使用できる。第3のシステイン残基C3は、オープンとなっていても、隣接鎖のC3と連結していてもよい。Fab重鎖配列と、scTNF−SFドメインのN末端との間の好ましいリンカーは、以下に示すリンカー13〜22である。
【0184】
【化9】
さらに、リンカーは、上述のように、Nグリコシル化モチーフの取込みによって修飾されていてもよい。
【0185】
さらに別の実施形態では、追加のNおよび/またはC末端ドメインとしてFc抗体断片を含む本発明の融合タンパク質の二量体化は、前記融合タンパク質のうちの2つの間の分子間ジスルフィド架橋の形成によって得ることもできる。その場合、三量体融合タンパク質の二量体あたり1つのFc抗体断片が存在するのみである。それによって、当技術分野のFc抗体断片融合タンパク質とは対照的に、高分子量の凝集体が形成される可能性はそれほど高くない。
【0186】
7.3.2 複数の追加ドメインを含む一本鎖融合ポリペプチド
一本鎖融合ポリペプチドは、1つまたは複数の追加ドメイン、例えば、さらに別の抗体断片および/またはさらに別のターゲティングドメインおよび/またはさらに別のサイトカインドメインを含みうる。
【0187】
一追加ドメインとしてFc抗体断片を含む本発明の融合タンパク質は、さらに別のFabまたはscFv抗体断片に、N末端融合Fc抗体断片のN末端を介して(
図15)連結することも、Fc抗体断片がそのC末端で本発明の融合タンパク質に連結している場合には、さらに別のリンカー構造を介して直接的にそのN末端で(
図16)連結することもできる。
【0188】
さらに別の抗体断片に加えて、またはさらに別の抗体断片の代わりに、さらに別のサイトカイン(好ましくはインターロイキン)が融合タンパク質に連結していてもよい。それによって、アゴニストscCD95LとアンタゴニストscCD95L分子の組合せ、または代わりに、scTRAIL(R1特異的)とscTRAIL(R2特異的)の組合せを得ることが可能である。
【0189】
前記融合タンパク質はアポトーシスの誘導に特に有用である。