(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0009】
図1を参照して、
図1は、本発明のある実施形態に係る駆動モジュール10の概略図である。
駆動モジュール10は、ディスプレイ装置におけるスキャンラインをスキャンするための駆動ゲートドライバである。ディスプレイ装置は、液晶ディスプレイ(LCD)、スマートテレビ、又はスマートフォン等であって、他にこれに限られない。
図1に示すように、駆動モジュール10は、トランジスタ(第1トランジスタ)MP1、トランジスタ(第2トランジスタ)MN1、及び電圧生成ユニット100を有する。
トランジスタMP1及びMN1の接続関係を下記説明する。
トランジスタMP1のゲート、ソース、及びドレインは、ノード(第1ノード)N1、正電圧源(第1正電圧源)VGH、及び出力端OUTへ夫々接続されている。
トランジスタMN1のゲート、ソース、及びドレインは、ノード(第2ノード)N2、負電圧源(第2正電圧源)VGL、及び出力端OUTへ夫々接続されている。
電圧生成ユニット100は、入力端IN、正電圧源(第2正電圧源)VDD、及び負電圧源(負電圧源)VSSと接続されており、正電圧源VDDの電圧は正電圧源VGHの電圧よりも小さく、負電圧源VSSの電圧は負電圧源VGLの電圧よりも大きい。入力端INから受け取った制御信号CONに応じて、電圧生成ユニット100は、ノードN1,N2夫々において適切な電圧VN1,電圧VN2を夫々生成し、そしてトランジスタMP1及びMN1の導電状態を制御し、ディスプレイ装置におけるディスプレイ部品(スキャンライン)の駆動信号として、出力端OUTで適切な出力電圧VOUTを生成する。
【0010】
ディスプレイ装置のディスプレイ部品を駆動させるために、出力電圧VOUTの膨大な電圧範囲における変形例と均等である必要がある。例えば、正電圧源VGHの電圧は15V(ボルト)であり、負電圧源VGLの電圧は−15Vであるとする。
ここで、出力電圧が15Vのとき、トランジスタMP1のソース・ドレイン間の電圧差は30Vになり、出力電圧が15Vのとき、トランジスタMN1のソース・ドレイン間の電圧差は30Vになる。
そして、トランジスタMP1及びMN1は、トランジスタMP1及びMN1が、ソース・ドレイン間の巨大な電圧差によってダメージを受けなくすることを可能にする、本発明に係る特別な工程によって、実装されることが、要求される。
従来の高電圧プロセスからの違いは、特別なプロセスにおけるトランジスタMP1及びMN1が、ソース・ドレイン間の巨大な電圧差と、ゲート・ドレイン間の巨大な電圧差を耐えることができるが、特別なプロセスのトランジスタMP1及びMN1は、ゲート・ソース間の巨大な電圧差によってダメージを受けるうる点である。
このような状況において、駆動モジュール10は、第1電圧VN1及び第2電圧VN2を生成して、各トランジスタMP1及びMN1の各ゲート・ソース間の電圧が閾値TH(例えば、5ボルト)を超えないように制限する、電圧生成ユニット100を使用する。各トランジスタMP1及びMN1の各ゲート・ソース間の電圧を制限することで、トランジスタMP1及びMN1をダメージから守る。
【0011】
異なる適用及び異なる設計コンセプトとして、電圧生成ユニット100の実施の方法は、適切に変更、修正できる。
図2を参照して、
図2は本発明の他の実施形態に係る駆動モジュール20を示す概略回路図を示す。
図2に示す駆動モジュール20は、
図1に示す駆動モジュール10と同様の機能を持つ構成要素は同じ符号を付す。駆動モジュール20は、トランジスタMP1、MN1、及び電圧生成ユニット200を有しており、トランジスタMP1及びMN1の接続関係は、
図1のトランジスタMP1及びMN1の接続関係と同様である。
電圧生成ユニット200は、抵抗R1〜R3と、トランジスタMN2、MN3、及びMP2とを備えている。
図2において、抵抗R1は、正電圧源(第1正電圧)VGHとノードN1との間に接続されている。
トランジスタ(第3トランジスタ)MN2のゲート、ソース、及びドレインは、入力端IN(即ち、制御信号CON)、負電圧源VSS(例えば、接地)、及びノードN1へ夫々接続されている。
制御信号CONがトランジスタMP1をOFFすることを示すとき、制御信号CONがトランジスタMN2をOFFする。(即ち、制御信号CONが出力端OUT・正電圧源VGH間の接続を切断することを示すと、制御信号CONが、ノードN1・負電圧源VSS間の接続を切断する)そして、電圧VN1を正電圧源VGHの電圧と等しくする。このような状況では、トランジスタMP1のゲート・ソース間電圧は、0Vである。トランジスタMP1がOFFにされ、ダメージを受けることはない。
制御信号CONがトランジスタ(第1トランジスタ)MP1をONすることを示すとき、トランジスタMP1をONするために、制御信号CONは、トランジスタ(第3トランジスタ)MN2をONにして、抵抗R1を流れる適切な電流を生成する。トランジスタMP1をONする電圧と正電圧源VGHの電圧(即ち抵抗R1を通る電圧)との間の電圧差は、閾値TH以下であり、トランジスタMP1をONすると同時にトランジスタMP1がダメージを受けることを防止する。
【0012】
他方(トランジスタMN1に関して)、抵抗(第1抵抗)R2は、負電圧源VGL_1とノードN2との間に接続されている。
トランジスタ(第3トランジスタ)MN3のゲート、ソース、及びドレインは、ノード(第3ノード)N3、負電圧源VGL及びノードN2へ夫々接続されている。
抵抗(第2抵抗)R3は、負電圧源VGLとノードN3との間に接続されている。
トランジスタ(第4トランジスタ)MP2のゲート、ソース、及びドレインは、制御信号CONの反転信号CONB、正電圧源(第2正電圧源)VDD、及びノードN3へ夫々接続されている。
なお、負電圧源(第3負電圧源)VGL_1の電圧(第3負電圧)と(第1負電圧源)VGLの電圧(第1負電圧)との間の電圧差は、閾値TH以下であり、この負電圧源VGL_1・VGL間の電圧差はトランジスタMN1の閾値よりも大きい。例えば、閾値THが5Vのとき、負電圧源VGL_1の電圧は負電圧源VGLの電圧から5V増加する(即ちVGL_1=VGL+5)。
さらに、反転信号CONBはインバータ(
図2には図示せず)を介して、制御信号CONを反転することによって得られる。反転信号のためにインバータを用いることは、当業者によって明らかであるので、詳細な説明は省略する。
【0013】
制御信号CONがトランジスタ(第2トランジスタ)MN1をOFFすることを示すとき、反転信号CONBはトランジスタ(第4トランジスタ)MP2をONにして、電流が抵抗R3へ流れることで、ノードN3において適切な電圧VN3を生成して、トランジスタ(第3トランジスタ)MN3をONする。このような状態において、電流は負電圧源VGL_1からノードN2へ流れ、抵抗R2を通る。ノードN2の電圧VN2は、負電圧源VGL_1の電圧と抵抗R2間の電圧との間の電圧差に等しい。抵抗R2を通る電流の電流値と、抵抗R2の抵抗値とを調整することで、電圧VN2と負電圧源VGLの電圧との間の電圧差はトランジスタMN1の閾値電圧よりも小さくなり、ついに、トランジスタMN1をOFFすることを達成する。
制御信号CONがトランジスタMN1をONすることを示すとき、反転信号CONBはトランジスタMP2をOFFする。トランジスタMN3のゲート・ソース間の電圧差は0になり、トランジスタMN3が遮断状態になる。このような状態において、ノードN2の電圧VN2は負電圧源VGL_1の電圧と等しくなる。負電圧源VGLとVGL_1との間の電圧差はトランジスタMN1の閾値電圧よりも大きいので、トランジスタMNはONされることになる。なお、負電圧源VGLとVGL_1との間の電圧差が閾値以下なので、トランジスタMN1はダメージを受けない。
電圧生成ユニット200を介して、駆動モジュール20は、制御信号CONに応じて、トランジスタMP1とMN1との導電状態を切り替えて、ディスプレイ装置でのディスプレイ部品を駆動するために用いられる駆動信号としての出力電圧VOUTを出力端OUTにて生成する。さらに、電圧生成ユニット200は各トランジスタMP1,MN1のゲート・ソース間の電圧差が閾値THより小さくなるように制限し、トランジスタMP1,MN1がダメージを受けることを回避する。
【0014】
この実施形態において、ノードN1と負電圧源VSSの電圧(第2負電圧)との間の電圧差が巨大になるので、トランジスタMN2は特別なプロセスにおいて実現することが必要になる。それは(特別なプロセスは)、制御信号CONと負電圧源VSSの電圧との間の電圧差は閾値THを超えないことである。例えば、負電圧源VSSが接地され、閾値THが5Vのときは、制御信号CONの電圧範囲は5V〜0Vの間になる。
同様に、ノードN3と正電圧源VSSとの間の電圧差が巨大になるので、トランジスタMP2は特別なプロセスを実現することが必要になる。
【0015】
図3を参照して、
図2の駆動モジュール20が動作するときの、関連する信号のタイミングチャートである。
図3に示すように、時刻T1〜T2の間、トランジスタMP1をONすること及びトランジスタMN1をOFFすることを示すように、制御信号CONの電圧は負電圧源VSSの電圧と閾値THとの電圧の和に等しく、反転信号CONBの電圧は負電圧源VSSの電圧である。時刻T1〜T2の間、電圧VN1が実質的に正電圧源VGHマイナス閾値THに等しくなり、トランジスタMP1をONするように、トランジスタMN2が、制御信号CONに応じて、ONされる。さらに、時刻T1〜T2の間、ノードN2の電圧VN2が実質的に負電圧源VSSの電圧に等しくなり、トランジスタMN1をOFFするように、トランジスタMP2及びMN3が、反転信号CONBに応じて、ONされる。
時刻T2〜T3の間、トランジスタMP1をOFFすること及びトランジスタMN1をONすることを示すように、制御信号CONの電圧は負電圧源VSSの電圧であり、反転信号CONBの電圧は負電圧源VSSの電圧と閾値THの和と等しい。さらに、時刻T2〜T3の間、ノードN2での電圧VN2を負電圧源VGLの電圧と実質的に等しくし、トランジスタMP1をOFFするように、トランジスタMP2及びMN3が、制御信号CONに応じて、ONされる。時刻T2〜T3の間、トランジスタMP1をOFFすること及びトランジスタMN1をONすることを示すように、制御信号CONの電圧が負電圧源VSSの電圧であり、反転信号CONBの電圧は負電圧源VSSの電圧と閾値THとの和に等しい。時刻T2〜T3の間、制御信号CONに応じて、トランジスタMN2をONすることで、ノードN1の電圧VN1を正電圧源VGHの電圧と等しくさせる。また、時刻T2〜T3の間、反転信号CONBに応じて、トランジスタMP2及びMN3をOFFすることで、ノードN2の電圧VN2を負電圧源VGL_1の電圧と等しくさせる。にする。(本実施形態では、負電圧源VGLの電圧は、負電圧源VGLの電圧と閾値THの電圧の和に等しい)。このようにして、トランジスタMN1はONされる。
電圧生成ユニット200を介して、駆動モジュール20は、制御信号CONに応じて、トランジスタMP1とMN1との導電状態を切り替えて、ディスプレイ装置でのディスプレイ部品を駆動するために用いられる駆動信号としての出力電圧VOUTを出力端OUTにて生成する。さらに、電圧生成信号200は各トランジスタMP1,MN1のゲート・ソース間の電圧差が閾値THより小さくなるように制限し、トランジスタMP1,MN1がダメージを受けることを回避する。
【0016】
なお、制御信号CON及び反転信号CONBは、駆動モジュールの異常動作を避けるために、重複がない。
図3において、時間期間TNO_1〜TNO_4が示されている。期間TNO_1〜TNO_4において、制御信号CON及び反転信号CONBの立ち上がりエッジ及び立ち下がりエッジは、被っていない。例えば、TNO1の期間において、設計者は制御信号CONの立ち上がりエッジを遅延させ、及び/又は反転信号CONBの立ち下がりエッジを早めてもよい。
【0017】
図4を参照して、本発明の他の実施形態に係る駆動モジュール40の概略回路図を示す。
図4の駆動モジュール40は、
図1の駆動モジュール10と同様であって、同様の機能を備える構成要素は同じ符号を用いる。
駆動モジュール40は、トランジスタMP1、MN1、及び電圧生成ユニット400を有しており、トランジスタMP1及びMN1の接続関係は、
図1のトランジスタMP1及びMN1の接続関係と同様である。
図4において、電圧生成ユニット400は、トランジスタMN4〜MN8及びMP3〜MP7と、抵抗R4,R5と、電流源I1,I2とを備えている。
抵抗R4は、正電圧源VGHとノード(第1ノード)N1との間に接続されている。
トランジスタ(第3トランジスタ)MN4のゲート、ソース、及びドレインはノード(第3ノード)N4、負電圧源VSS(例えば接地)及びノードN1へ夫々接続されている。
トランジスタ(第4トランジスタ)MN5のゲート、ソース、及びドレインは、制御信号CONの反転信号CONB、負電圧源VSS及びノードN4へ夫々接続されている。
トランジスタ(第5トランジスタ)MN6のゲート、ソース、及びドレインは、制御信号CON、ノード(第4ノード)N5、及びノードN4へ夫々接続されている。
トランジスタ(第6トランジスタ)MN7のゲート、ソース、及びドレインは、ノードN5、負電圧源VSS、及びノードN5へ夫々接続されている。
電流源I1は、正電圧源(第2正電圧源)VDDとノードN5との間に接続されている。
反転信号CONBは、インバータ(
図4には図示せず)を介して、制御信号CONを反転することによって得られる。反転信号のためのインバータを用いることは、当業者によって明らかであるので、詳細な説明は省略する。
【0018】
制御信号CONがトランジスタMP1をOFFすることを示すとき(即ち、出力端OUT・正電圧源VGH間の接続が切断されているとき)、反転信号CONBはトランジスタMN5をONにして、制御信号CONはトランジスタMN6をOFFにすることで、トランジスタMN4を遮断状態にして、ノードN1の電圧VN1を正電圧源VGHの電圧と等しくする。トランジスタMP1がOFFになると、トランジスタMP1のゲート・ソース間電圧が0になるため、トランジスタMP1はダメージを受けない。
制御信号CONがトランジスタMP1をONすることを示すとき、反転信号CONBはトランジスタMN5をOFFにして、制御信号CONはトランジスタMN6をONにすることによって、トランジスタMN4及びMN7はカレントミラーを形成し、適切な電流が抵抗R4を流れて、トランジスタMP1をOFFするためのノードN1での電圧VN1を生成する。
トランジスタMN1をONするための電圧VN1と、正電圧源VGHの電圧との間の電圧差(即ち、抵抗R4を通ることによる電圧降下)は、閾値TH以下であって、トランジスタMP1の閾値電圧よりも大きくなるように設計されている。したがって、トランジスタMP1をONにし、及びトランジスタMP1をダメージから防ぐという両方の目的が、同時に達成される。
【0019】
一方で(トランジスタMN1に関して)、トランジスタ(第3トランジスタ)MP3のゲート、ソース、及びドレインは、ノード(第3ノード)N6、負電圧源VGL_2、及びノードN2へ夫々接続されている。
トランジスタ(第4トランジスタ)MN8のゲート、ソース、及びドレインは、ノードN6、負電圧源VGL、及びノードN2へ夫々接続されている。抵抗R5は、ノードN6と負電圧源VGLとの間に接続されている。
トランジスタ(第5トランジスタ)MP4のゲート、ソース、及びドレインは、ノード(第4ノード)N7、正電圧源VDD、及びノードN6へ夫々接続されている。
トランジスタ(第6トランジスタ)MP5のゲート、ソース、及びドレインは、制御信号CON、正電圧源VDD、及びノードN7へ夫々接続されている。
トランジスタ(第7トランジスタ)MP6のゲート、ソース、及びドレインは、反転信号CONB、ノード(第5ノード)N8、及びノードN7へ夫々接続されている。
トランジスタ(第8トランジスタ)MP7のゲート、ソース、及びドレインは、ノードN8、正電圧源VDD、及びノードN8へ夫々接続されている。
電流源I2はノードN8と負電圧源VSSとの間に接続されている。
なお、負電圧源の(第3負電圧源)VGL_2の電圧と(第1負電圧源)VGLの電圧との間の電圧差は、閾値TH以下であり、トランジスタMN1の閾値電圧よりも大きい。
例えば、閾値THが5V(ボルト)のとき、負電圧源VGL_2の電圧が、負電圧源VGLの電圧と5Vとの和である(即ち、VGL_2=VGL+5)。
【0020】
制御信号CONが、トランジスタMN1をOFFすることを示すとき、制御信号CONはトランジスタMP5をOFFにし、反転信号CONBはトランジスタMP6をONにする。トランジスタMP4及びMP7は、カレントミラーを形成し、トランジスタMP3をOFFにし、トランジスタMN8をONするための、適切な電圧VN6を生成する。
トランジスタMP4及び抵抗R5を通る電流を調整することによって、ノードN2の電圧VN2が負電圧源VGLの電圧と実施的に等しくなり、トランジスタMN1は遮断状態になる。
制御信号CONがトランジスタMN1をONすることを示すとき、トランジスタMP4が遮断状態になり、ノードN6の電圧VN6が、負電圧源VGLの電圧と実質的に等しくなるように、制御信号CONはトランジスタMP5をONにし、反転信号CONBはトランジスタMP6をOFFにする。このような状態において、ノードN2の電圧VN2が、負電圧源VGL_2の電圧と実質的に等しくなるように、トランジスタMN8は遮断状態であり、トランジスタMP3はONにされる。負電圧源VGL_2の電圧とVGLの電圧との間の電圧差が閾値TH以下であり、トランジスタMN1の閾値電圧よりも大きいので、トランジスタMN1はダメージを受けることなく、ONに移行する。
電圧生成ユニット400を介して、駆動モジュール40は、制御信号CONに応じて、トランジスタMP1とMN1との導電状態を切り替えて、ディスプレイ装置でのディスプレイ構成要素を駆動するために用いられる駆動信号としての出力電圧VOUTを出力端OUTにて生成する。さらに、電圧生成ユニット400は各トランジスタMP1,MN1のゲート・ソース間の電圧差が閾値THより小さくなるように制限し、トランジスタMP1,MN1がダメージを受けることを回避する。
【0021】
なお、トランジスタMN4,MN7,MP4,及びMP7は、本実施形態の特別なプロセスによって実現される。
【0022】
ディスプレイ装置が、ディスプレイ装置でのディスプレイ部品(例えば複数のスキャンラインのスキャンライン信号)を駆動するための駆動信号を生成する、駆動モジュール40を複数使用するとき、ディスプレイ装置は一般的に一度に1つのスキャンラインを用いるので、複数の駆動モジュール40は、構成要素を共有することができる。
例えば、複数の駆動モジュール40は、トランジスタMN7,MN9及び電流源I1,I2を共通で用いる。つまり、単一の各トランジスタMN7,MN9、電流源I1、I2の組を用いて動作を実行するために、複数の駆動モジュール40の各ノードN5は接続されており、複数の各駆動モジュール40の各ノードN8は接続されている。それゆえ、複数の駆動モジュール40の電力消費量は劇的に削減できる。
【0023】
さらに、制御信号CONがトランジスタMP1をONすることとトランジスタMN1をOFFすることを示しているとき、駆動モジュール40は抵抗R4を通る電流i1と、抵抗R5を通る電流i2とを生成する。一方、制御信号CONがトランジスタMP1をOFFすることとトランジスタMN1をONすることを示しているとき、駆動モジュール40は静電流を消費しない。
言い換えると、駆動モジュール40は、トランジスタMP1がONで、トランジスタMNがOFFのときのみ、電流を消費する。ディスプレイ装置が、複数のスキャンラインを駆動するために複数の駆動モジュール40を使用する場合、スキャンラインは1つのみが同時に利用可能であるので、複数の駆動モジュール40のうちただ1つのみが一度に電流を消費する。ディスプレイ装置の電力消費がさらに削減できる。
【0024】
図5を参照して、本発明の他の実施形態に係る駆動モジュール50の概要図を示す。
図5の駆動モジュール50は、
図1の駆動モジュール10と同様であって、同様の機能を備える構成要素は同じ符号を用いる。駆動モジュール50は、トランジスタMP1,MN1、及び電圧生成ユニット500を有しており、トランジスタMP1及びMN1の接続関係は、
図1のトランジスタMP1及びMN1の接続関係と同様である。
図5において、電圧生成ユニット500は、トランジスタMN9〜MN13及びMP8〜MP12と、電流源I3,I4とを備えている。
トランジスタ(第3トランジスタ)MP8のゲート、ソース、及びドレインは、ノードN1、正電圧源VGH、及びノードN1へ夫々接続されている。
トランジスタ(第4トランジスタ)MN9のゲート、ソース、及びドレインは、制御信号CON、ノードN1、及びノード(第3ノード)N9へ夫々接続されている。
トランジスタ(第5トランジスタ)MN10のゲート、ソース、及びドレインは、ノード(第4ノード)N10、負電圧源VSS(例えば、接地)、及びノードN9へ夫々接続されている。
トランジスタ(第6トランジスタ)MN11のゲート、ソース、及びドレインは、ノードN10、負電圧源VSS、及びノードN10へ夫々接続されている。
電流源I3は、ノードN10と、正電圧源VDDとの間に接続されている。
トランジスタMP8は、正電圧源VGHとノードN1との間に接続される抵抗とみなすことができ、トランジスタMN10及びMN11はカレントミラーを形成する。
【0025】
制御信号CONがトランジスタMP1をOFFすることを示すとき、制御信号CONはトランジスタMN9をOFFする。ノードN1の電圧VN1は、実質的に正電圧源VGHの電圧と等しくなる。トランジスタMP1のゲート・ソース間電圧が0であるので、トランジスタMP1は遮断状態であり、ダメージを受けない。
制御信号CONがトランジスタMP1をONすることを示すとき、制御信号CONによってトランジスタMN9がONされ、電流源I3とトランジスタMN10及びMN11とによって構成されるカレントミラーが、トランジスタMN9及びMN8を通る電流を生成して、ノードN1において適切な電圧VN1を生成して、トランジスタMP1をONする。
トランジスタMN9及びMP8を通る電流を調整することにより、トランジスタMP1をONする電圧と正電圧源VGHの電圧との間の電圧差(即ち、トランジスタMPを通る電流により生成される電圧降下)は、閾値TH以下であり、このトランジスタMP1をONする電圧・正電圧源VGHの電圧間の電圧差は、トランジスタMP1の閾値電圧よりも大きい。従って、トランジスタMP1はONにされ、ダメージを受けることはない。
【0026】
一方で(トランジスタMN1に関して)、トランジスタ(第3トランジスタ)MP9のゲート、ソース、及びドレインは、ノード(第3ノード)N11、負電圧源VGL_3、及びノードN2へ夫々接続されている。
トランジスタ(第4トランジスタ)MN12のゲート、ソース、及びドレインは、ノードN11、負電圧源VGL、及びノードN2へ夫々接続されている。
トランジスタ(第5トランジスタ)MN13のゲート、ソース、及びドレインは、ノードN11、負電圧源VGL、及びノードN11へ夫々接続されている。
トランジスタ(第6トランジスタ)MP10のゲート、ソース、及びドレインは、制御信号CONの反転信号CONB、ノード(第4ノード)N12、及びノードN11へ夫々接続されている。
トランジスタ(第7トランジスタ)MP11のゲート、ソース、及びドレインは、ノード(第5ノード)N13、正電圧源VDD、及びノードN12へ夫々接続されている。
トランジスタ(第8トランジスタ)MP12のゲート、ソース、及びドレインは、ノードN13、正電圧源VDD、及びノードN13へ夫々接続されている。
電流源I4は、ノードN13と、負電圧源VSSとの間に接続されている。
トランジスタMN13は、負電圧源VGLとノードN11との間に接続される抵抗とみなすことができ、トランジスタMP11及びMP12はカレントミラーを形成する。
なお、負電圧源(第3負電圧源)VGL_3の電圧と(第1負電圧源)VGLの電圧との間の電圧差は、閾値TH以下であって、トランジスタMN1の閾値電圧よりも大きい。
例えば、閾値THが5Vのとき、負電圧源VGL_3の電圧は負電圧源VGLの電圧から5V増加する(即ちVGL_3=VGL+5)。
反転信号CONBは、インバータ(
図5には図示せず)を介して、制御信号CONを反転することによって得られる。反転信号のためにインバータを用いることは、当業者によって明らかであるので、詳細な説明は省略する。
【0027】
制御信号CONがトランジスタMN1をOFFすることを示すとき、反転信号CONBはトランジスタMP10をONにして、電流源I4とトランジスタMP11及びMP12とによって構成されるカレントミラーが、トランジスタMN13を通る適切な電流を生成することで、トランジスタMP9をOFFにし、トランジスタMN12をONする、適切な電圧VN11を生成するようにする。このような状態において、ノードN2の電圧VN2は負電圧源VGLの電圧と実施的に等しく、トランジスタMN1が遮断状態になる。
制御信号CONがトランジスタMN1をONすることを示すとき、トランジスタMP10が反転信号CONBによってOFFにされる。ノードN11の電圧VN11は負電圧源VGLの電圧と実施的に等しくなる。トランジスタMN12はOFFに切り替わり、トランジスタMP9がONへ切り替わる。従って、ノードN2の電圧VN2は負電圧源VGL_3の電圧と実施的に等しくなる。それゆえ、負電圧源VGL_3の電圧とVGLの電圧との間の電圧差は閾値TH以下であって、トランジスタMN1の閾値電圧よりも大きいので、トランジスタMN1はダメージを受けることなく、ONに移行する。
電圧生成ユニット500を介して、駆動モジュール50は、制御信号CONに応じて、トランジスタMP1とMN1との導電状態を切り替えて、ディスプレイ装置でのディスプレイ部品を駆動するために用いられる駆動信号としての出力電圧VOUTを出力端OUTにて生成する。さらに、電圧生成ユニット500は各トランジスタMP1,MN1のゲート・ソース間の電圧差が閾値THより小さくなるように制限し、トランジスタMP1,MN1がダメージを受けることを回避する。
【0028】
この実施形態において、トランジスタMN9及びMN10は特別なプロセスにおいて実装される必要がある。
【0029】
なお、ディスプレイ装置が、ディスプレイ装置でのディスプレイ部品(例えば複数のスキャンラインの複数のスキャンライン信号)を駆動するための駆動信号を生成する、駆動モジュール50を複数使用するとき、ディスプレイ装置は一般的に一度に1つのスキャンラインを用いるので、複数の駆動モジュール50は、構成要素を共有することができる。
例えば、複数の駆動モジュール50は、トランジスタMN11、MP12及び電流源I3、I4を共通で用いる。つまり、単一のトランジスタMN11、MP12、電流源I3、I4の組を用いて動作を実行するために、複数の各駆動モジュール50の各ノードN10は接続されており、複数の駆動モジュール50の各ノードN13は接続されている。それゆえ、複数の駆動モジュール50の電力消費量は劇的に削減できる。
【0030】
図6を参照して、本発明の他の実施形態に係る駆動モジュール60の概要図を示す。
図6の駆動モジュール60は、
図1の駆動モジュール10と同様であって、同様の機能を備える構成要素は同じ符号を用いる。駆動モジュール60は、トランジスタMP1、MN1、及び電圧生成ユニット600を有しており、トランジスタMP1及びMN1の接続関係は、
図1のトランジスタMP1及びMN1の接続関係と同様である。
図6において、電圧生成ユニット600は、インバータINV1,INV2、スイッチSW1、SW2、及びコンデンサC1,C2を備えている。
インバータINV1はノードN1と(第3ノード)N14との間に接続されている。
コンデンサC1はノードN14と(第4ノード)N15との間に接続されている。
スイッチSW1は、制御信号CONに応じて、ノードN14・正電圧源VGH_1間の接続を調整するために用いられる。
正電圧源(第2正電圧源)VGH_1の電圧と(第1正電圧源)VGHの電圧との間の電圧は、閾値TH以下であって、トランジスタMP1の閾値電圧よりも大きい。例えば、閾値THが5Vのとき、正電圧源VGH_1の電圧は、正電圧源VGHの電圧と5Vとの差になる(即ちVGH_1=VGH−5)。
【0031】
制御信号CONがトランジスタMP1をOFFすることを示すとき、制御信号CONはスイッチSW1を正電圧源VGH_1・ノードN14間の接続を導電状態にするように制御する。このような状態において、インバータINV1はノードN1の電圧VN1を調整して正電圧源VGHの電圧にして、トランジスタMP1を遮断状態にする。
制御信号CONがトランジスタMP1をONすることを示すとき、制御信号CONはスイッチSW1を正電圧源VGH_1・ノードN14間の接続を切断するように制御する。このとき、制御信号CONに応じて、ノードN15の電圧(第4電圧)VN15が閾値THまで増加し、インバータINV1を調整してノードN1の電圧VN1を正電圧源VGH_1の電圧にして、トランジスタMP1をONにする。
【0032】
一方(トランジスタMN1に関して)、インバータINV2はノードN2と(第3ノード)N16との間に接続されており、コンデンサC2はノードN16と(第4ノード)N17との間に接続されており、スイッチSW2は、制御信号CONの反転信号CONBに応じて、負電圧源VGL_4・ノードN16間の接続を調整する。
なお、負電圧源(第2負電圧源)VGL_4の電圧と(第1負電圧源)VGLの電圧との間の電圧差は、閾値TH以下であって、この負電圧源VGL_4・VGL間の電圧差は、トランジスタMN1の閾値電圧よりも大きい。例えば、閾値THが5Vのとき、負電圧源VGL_4の電圧は負電圧源VGLの電圧と5Vとの和である(即ちVGL_4=VGL+5)。
反転信号CONBは、インバータ(
図6は図示せず)を介して、制御信号CONを反転することによって得られる。反転信号のためにインバータを用いることは、当業者によって明らかであるので、詳細な説明は省略する。
【0033】
反転信号CONBがトランジスタMN1をOFFすることを示すとき、反転信号CONBはスイッチSW2を負電圧源VGL_4・ノードN16間の接続を導電状態にするように制御する。このような状態において、インバータINV2はノードN2の電圧VN2を調整して負電圧源VGLの電圧にして、トランジスタMN1を遮断状態にする。
反転信号CONBがトランジスタMN1をONすることを示すとき、反転信号CONBはスイッチSW2を負電圧源VGH4・ノードN16間の接続を切断するように制御する。
このとき、制御信号CONに応じて、ノードN17の電圧VN17が閾値THまで減少し、インバータINV2を調整してノードN2の電圧VN2を負電圧源VGL_4の電圧にして、トランジスタMN1をONにする。
電圧生成ユニット600を介して、駆動モジュール60は、制御信号CONに応じて、トランジスタMP1とMN1との導電状態を切り替えて、ディスプレイ装置でのディスプレイ部品を駆動するために用いられる駆動信号としての出力電圧VOUTを出力端OUTにて生成する。さらに、電圧生成ユニット600は各トランジスタMP1,MN1のゲート・ソース間の電圧差が閾値THより小さくなるように制限し、トランジスタMP1,MN1がダメージを受けることを回避する。
【0034】
図7を参照して、本発明の他の実施形態に係る駆動モジュール40の概要図を示す。
図7の駆動モジュール70は、
図1の駆動モジュール10と同様であって、同様の機能を備える構成要素は同じ符号を用いる。駆動モジュール70は、トランジスタMP1,MN1、及び電圧生成ユニット700を有しており、トランジスタMP1及びMN1の接続関係は、
図1のトランジスタMP1及びMN1の接続関係と同様である。
図7において、電圧生成ユニット700は、トランジスタMN14〜MN16,MP13と電流源I5,I6を備えている。
トランジスタ(第3トランジスタ)MP13のゲート、ソース、及びドレインは、ノードN1、正電圧源VGH、及びノードN1へ夫々接続されている。
トランジスタ(第4トランジスタ)MN14のゲート、ソース、及びドレインは、ノード(第3ノード)N18、負電圧源VSS(例えば、接地)、及びノードN1へ夫々接続されている。
トランジスタ(第5トランジスタ)MN15のゲート、ソース、及びドレインは、ノードN18、負電圧源VSS(例えば、接地)、及びノードN18へ夫々接続されている。
電流源I5は、正電圧源VDDとノードN18との間に接続されている。
即ち、トランジスタMP13,MP1はカレントミラーを形成し、電流源I5とトランジスタMN14,MN15とはもう1つのカレントミラーを形成する。
【0035】
制御信号CONがトランジスタMP1をOFFすることを示すとき、制御信号CONは電流源I5を調整して、トランジスタMN15への電流の出力を停止させる。トランジスタMP1は遮断状態になり、ダメージを受けることはない。
制御信号CONがトランジスタMP1をONすることを示すとき、制御信号CONは電流源I5を調整して、トランジスタMN15への電流を出力させる。電流源I5とトランジスタMN14及びMN15とで構成されるカレントミラーと、トランジスタMP13とMP1とで構成されるカレントミラーを介して、トランジスタMP1が導電状態になる。
トランジスタMP1をONするための電圧VN1と、正電圧源VGHとの電圧との間の電圧差(即ち、トランジスタMP13を通ることによって生成される電圧降下)は、閾値TH以下であって、トランジスタMP1の閾値電圧よりも大きくなるように設計されている。
したがって、トランジスタMP1をダメージから防ぐ。
【0036】
さらに、トランジスタ(第3トランジスタ)MN16のゲート、ソース、及びドレインはノードN2、負電圧源VGL、及びノードN2へ夫々接続されている。
電流源I6は、ノードN2と負電圧源VGL_5との間に接続されている。
要するに、トランジスタMN16とMN1はカレントミラーを形成する。
なお、負電圧源(第2負電圧源)VGL_5の電圧と(第1負電圧源)VGLの電圧との間の電圧差は閾値TH以下であり、そしてこの負電圧源VGL_5・VGL間の電圧差はトランジスタMN1の閾値電圧よりも大きい。
例えば、閾値THが5Vのとき、負電圧源VGL_5の電圧は負電圧源VGLの電圧と5Vとの和である(即ちVGL_5=VGL+5)。
【0037】
制御信号CONがトランジスタMN1をOFFすることを示すとき、制御信号CONの反転信号CONBは電流源I6を調整して、トランジスタMN16への電流の出力を停止させる。トランジスタMN1は遮断状態になり、ダメージを受けることがない。
制御信号CONがトランジスタMP1をONすることを示すとき、反転信号CONBは電流源I6を調整して、トランジスタMN16への電流を出力させ、トランジスタMN1をONする。
トランジスタMN1をONするための電圧VN2と、負電圧源VGLの電圧との間の電圧差(即ち、トランジスタMP13を通ることによって生成される電圧降下)は、閾値TH以下であって、トランジスタMN1の閾値電圧よりも大きくなるように設計されている。
したがって、トランジスタMN1をダメージから防ぐ。
電圧生成ユニット700を介して、駆動モジュール70は、制御信号CONに応じて、電流源I5、I6が電流を出力するか判定することで、トランジスタMP1とMN1との導電状態を切り替えて、ディスプレイ装置でのディスプレイ部品を駆動するために用いられる駆動信号としての出力電圧VOUTを出力端OUTにて生成する。さらに、電圧生成ユニット700は各トランジスタMP1,MN1のゲート・ソース間の電圧差が閾値THより小さくなるように制限し、トランジスタMP1,MN1がダメージを受けることを回避する。
【0038】
この実施形態において、駆動モジュール70は抵抗やコンデンサのような受動素子を必要としない。しかし、トランジスタMN1、MN14〜MN16、MP1、及びMP13は特別なプロセスによって実装される必要がある。
【0039】
差分を適用すること及び設計の概念に基づいて、当業者は、適切な変更や変形を認めることができる。例えば、
図2に示す駆動モジュール20の抵抗R1〜R3と、
図4に示す駆動モジュール40の抵抗R4及びR5は、プロセス変動の影響を低減するために、トランジスタによって実現してもよい。また、トランジスタMP1及びMN1の夫々のゲート・ソース間にかかる電圧を制限するために利用される閾値THは、適宜変更することができる。
一例として、電圧VN1と正電圧源VGHとの間の電圧差が閾値(第1の閾値)TH1よりも小さく、電圧VN2と負電圧源VGLとの間の電圧差が閾値(第2の閾値)TH2よりも小さい。
【0040】
まとめると、上述した実施形態の駆動モジュールは、出力段における各トランジスタのゲート・ソース間電圧を制限する電圧生成ユニットを使用することで、出力段のトランジスタがダメ―ジを受けることを回避することができる。
また、上記実施形態の駆動モジュールは、従来の高耐圧プロセスの構成要素(部品:Component)を必要とせず、特定のプロセスの構成要素によって実現できる。これにより、トランジスタは、トランジスタのソース・ドレイン間の電圧差及びトランジスタのゲート・ドレイン間の電圧差が過剰に大きくなることによるダメージを受けなくすることができる。
従って、製造コストと製造時間を大幅に低減される。
【0041】
当業者は、本発明の教示を保持しながら、多くの改変および装置及び方法の変更がなされ得ることを観察する。添付の特許請求の範囲によってのみ限定されるため、上記の開示は、解釈されるべきである。