(58)【調査した分野】(Int.Cl.,DB名)
【背景技術】
【0002】
個々の粒子の又は細胞の検出及び分析は、医学的研究及び生物学的研究において重要である。濃度、数、生存能力、同定及び大きさのような、粒子の特徴を測定することができることは特に重要である。ここに記載された個々の粒子又は細胞は、例えば、細菌、ウイルス、DNA断片、細胞、分子、及び全血の成分を含む。
【0003】
典型的には、粒子のかかる特徴は、フローサイトメータ(flow cytometers)を使用して測定される。フローサイトメータでは、本来的に蛍光性の粒子か、蛍光マーカー又はラベルで標識された粒子のいずれかが、被覆流体中で流体力学的に収束され、粒子又はラベルを励起して蛍光の発生を引き起こす放射エネルギーのビームを通過させられる。一つ以上の光検出器が、粒子が光ビーム中を流れるときに、選択された波長で粒子又はラベルによって放出された蛍光を検出し、粒子を表す出力信号を発生する。ほとんどのサイトメータでは、光検出器が、光の前方散乱を測定するのにも使用されて、全ての粒子の存在及び大きさを示す信号を発生する。
【0004】
米国特許第5547849号には、未処理の生物学的流体試料を蛍光標識した結合剤と反応させる走査型映像サイトメータが記載されている。反応した試料が所定の寸法の毛管内に封入される前に、反応した試料は最小限の処理を受ける。
毛管は封入した試料とともに光学的に走査され、蛍光励起が、毛管に沿った複数の円柱状の領域から記録される。各円柱状の領域は、一般的に、励起ビームのスポットサイズと毛管の深さ寸法とによって定められる。空間フィルタの十分なピンホール直径は、各円柱状領域で全ての蛍光目標を同時に容積的に検出できるように選択される。細胞の成分又は粒子は、それらの濃度として特定される。
【発明を実施するための形態】
【0013】
本発明の上述の目的及び他の目的は、添付の図面と関連して読むときに、以下の詳細な説明からより明らかに理解されるであろう。
【0014】
図1を参照すると、本発明の一つの実施形態による粒子分析器が概略的に図示される。ここに使用される「粒子」とは、粒子及び細胞、例えば、細菌、ウイルス、DNA断片、血液細胞、分子及び全血の成分を意味する。毛管11は、キュベット又はガラス瓶14内に保持された試料溶液13内に浸されるようになっている吊り下げ端12を有する。四角い毛管が図示されているけれども、毛管は、円筒形、又は、例えば、マイクロチャンネルのような他の形状のものでもよいことが明らかになるであろう。試料流体は、矢印6によって示されるように、毛管の端の中へ吸い込まれる。ほどなく説明されるように、流体又は液体の試料は、毛管の他端に連結された目盛り付きのポンプによって、毛管を介して吸い込まれる。寸法すなわち毛管11のボアは、粒子18が観察又は分析容積19を通過する際に、粒子18が単独になるように選択される。光源、好ましくは、レーザー21は、選択した波長の光22を放射する。光は集束光学系23によって受けられ、集束光学系23は、前記光を集束させてビーム24を形成し、かつ、ビーム24を毛管へ向け、毛管では、ビーム24が分析容積を通過する。集束光学系は、平らで薄い矩形のビームを形成するように形成され、ビームは毛管11に当たる。平らなビームの厚さ及び毛管の肉厚が、分析容積を定める。検出容積を横切る全ての粒子、即ち、蛍光を発するように標識された粒子及び非標識粒子を計数するため、散乱光が検出される。或る実施形態では、ビーム遮断物26が、ビームが毛管11を通過した後、ビームを遮るように位置決めされている。ビームを通過する粒子によって散乱した光が、レンズ28によって検出器27へ向けられる。検出器は、粒子がビームを通過して光を散乱するとき、ピーク29によって図示したもののような出力信号を提供する。ピークの大きさは粒子の大きさに対応し、ピークの出現は、容積19中の粒子(蛍光性又は非蛍光性)が光の薄いビームを横切ったことを示す。別の方策は、
図15に示すように、軸外し検出器を採用することである。かかる場合には、ビーム遮蔽物は必要ない。下記の粒子を検出するインピーダンス法もある。
【0015】
もし、粒子が本来的に蛍光性であれば、或いは、粒子が蛍光染料で標識されていれば、粒子が、蛍光を励起する光の薄いビームによって定められた容積を通過する際に、固有波長で光31を放射するであろう。蛍光は、ビーム軸線に対して或る角度で検出され、したがって、直接ビーム光は検出されない。
図1乃至3の実施形態では、集光レンズ32が粒子からの蛍光を受け、蛍光を検出器36及び37に集束させる。我々は、初めに我々が、いかなる迷光をも遮断するために、薄いビームの方向に向けたスリット33又は34を入れたことを知っている。しかしながら、我々は、ビームが薄い平らなビームへ適当に集束されるならば、迷光は問題でなくなることを知っている。これは、スリットを注意深く整列させる必要がないので、分析器の組立を大変簡単化する。光は二色性ビームスプリッタへ当たり、ニ色性ビームスプリッタは、選択された波長の光を、フィルタ39を介して検出器36へ通し、かつ、他の選択された波長の光を偏光して、フィルタ41を介して光検出器37へ通す。例えば、ニ色性ビームスプリッタは、620nm未満の波長を有する光を反射し、かつ、より大きな波長を有する光を透過させる。フィルタ39及び41は、蛍光を発する粒子に期待された蛍光波長に対応する波長を通すように選択される。或る実施例では、フィルタ39及び41は、それぞれ、580nm及び675nmの光を通すように選択される。これは、光ビームに応答してこれらの波長で放射する蛍光物質で標識された粒子の識別及び計数を可能にした。光検出器の出力は、42及び43で概略的に示すようなパルスである(
図1参照)。
【0016】
図2及び
図3は、支持盤51に取り付けられた上記の実施形態による粒子分析器の構成要素を示す。支持盤51は、吊り下げた毛管11を受け入れかつ支持するようになっている光学ブロック52を支える。毛管11は、ハブ53を有し、ハブ53は、窪み54に入れられて毛管を光学ブロック内に保持しかつ位置決めする(
図3及び
図6)。毛管11は、毛管11を狭いスロット(図示せず)にねじ込むことによって、光学ブロック52内に位置決めされ、ねじ穴56及び57に挿入されたナイロン付き止めねじによって適所に保持される。毛管が光学ブロックの中に挿入されるとき、毛管を視界口58から観察することができる。毛管の端は、試料液体又は試料を含むガラス瓶又はキュベット内へ挿入するために、吊り下げられて下方に延びる。毛管を他の支持構造によって位置決めし、かつ吊り下げることができることは明らかである。
【0017】
或る実施形態では、二つのアーム59を有する回転自在なガラス瓶支持部材が、ベースに固定されたガイド柱60によって、回転自在かつ摺動自在に受け入れられる。ガラス瓶ホルダ61が各アームの端に配置される。運転中、ガラス瓶支持部材を、ガイド柱59に沿って下向きに移動させ、回転させてガラス瓶を毛管の下に持ってきて、上向きに移動させ、それによって、毛管の端を試料流体に浸す。試料流体が分析されているとき、別の試料流体を有する別のガラス瓶が他のガラス瓶ホルダに配置され、それによって、先の試料の分析が完了したら直ちに、別のガラス瓶を毛管の先端と協働的な関係に持ってくることができる。
【0018】
レーザ及びビーム24を形成する集束光学系用のハウジング23は、取付ブロック62で支持される。集束光学系は
図4及び
図5に示される。集束光学系はレーザ21から平行光22を受けて、光ビーム24を発生させ、光ビーム24は毛管11に当たる。集束光学系は、例えば、第一平凸レンズ63、第二平凸レンズ64、及び、シリンドリカルレンズ66を含むのがよい。レンズ組立体の働きは、シート状の薄い矩形ビームを形成することであり、一例では、毛管の長手方向に沿って厚さが20μm、垂直方向に400μm幅であり、それによって、試料の矩形容積が照明される。
図4及び
図5の矢印67及び68は、それぞれ、ビームの薄く広い形状を示す。
【0019】
光検出器27は、光学ブロック52に取り付けられ、ビーム24の軸線に関して軸線方向に支持される。ビーム遮断棒26は、光学ブロック52内に取り付けられ、直接ビームが毛管11を通過した後で、直接ビームを遮って阻止する。ビーム遮断棒26の周囲を通る散乱光は、レンズ28によって検出器27に集光される。かくして、散乱光は、観測容積19を通過したあらゆる標識粒子又は非標識粒子についての出力信号を提供し、かくして、全粒子数を提供する。そのうえ、検出器の出力は、粒子の粒子又はクラスタの通過の表示であり、かつ、粒子中の粒子又はクラスタの寸法の表示である。以下に説明するように、これは、蛍光信号と共に得られ、試料の分析を可能にする。検出器27が軸線を外れて配置されるならば、検出器27は散乱光だけを受けるであろうし、ビーム遮断棒は必要ない。その上、この検出器27は、低レベル粒子信号を隠すことがある広帯域レーザ雑音を伝える前方向の迷光に対して小さい感度をもつであろう。
【0020】
上述のように、固有の蛍光粒子、又は、蛍光染料又は蛍光物質で標識されている粒子からの蛍光によって放射された光は、ビーム軸線に対してある角度で検出される。
図2を参照すると、集光レンズ31は、光学ブロック52によって支持される。集光レンズ31は、蛍光を受光し、それを検出器36及び37に集光し、検出器36及び37は、光電子増倍管、電荷結合ダイオード(CCDs)又は他の光検出器であるのがよい。より詳細には、集光レンズ31からの蛍光は、ビームを二つの波長に分割するニ色ビームスプリッター38に当たり、一つは、ニ色ビームスプリッタを通過し、一つは、ニ色ビームスプリッタ38によって反射される。フィルタ39及び41は、蛍光波長の光だけを通し、他の波長の光を遮光するように、透過光及び反射光を濾光する。スリット33及び34が存在すれば、それらは、薄い矩形ビーム24によって形成された容積19の外側領域からのどんな迷光をも遮光する。しかしながら、上述のように、迷光の作用が最小にされるから、スリットを必要としなくともよい。光電子増倍管又は他の光検出器は、それぞれ、濾光した波長の光の強度を表す出力信号を提供する。上述のように、ニ色ビームスプリッタは、620nm未満の波長を有する光を反射し、より長い波長を有する光を透過する。フィルタ39は580nmの光を通し、一方、フィルタ41は675nmの光を通す。これは、独立に計数されるべき580nm及び675nmで光を放射する蛍光物質で標識されている粒子の分析を可能にする。光電子増倍管の出力は、
図1に概略的に示したもののように、特定の波長の光を放射する各粒子について一つのパルス42及び43である。フィルタのために選択された波長が、粒子に添付されたマーカー又はラベルの蛍光波長によることは明らかである。
【0021】
容積測定法で流体中の粒子を識別して計数するため、流体の体積は、所定の容積中で検出された粒子の和と相関しなければならない。本発明では、流体試料は、電気的に作動され構成されたポンプ即ちシリンジ71によって、一定の速度で毛管の中を通って吸い込まれる(
図6)。ポンプは、既知の容積の試料を毛管の中を通して吸い込むことができる他のタイプのポンプでもよい。ポンプは、毛管に、導管即ちチューブ72によって連結される。これは、毛管11を、清浄な毛管や、粒子若しくは細胞の種々のタイプ及び寸法に必要とされるであろう異なる直径を有する毛管に交換することを可能にする。図示したように、ポンプはシリンジポンプからなり、シリンジポンプ内でプランジャ73を動かすことによって、試料流体が毛管の中へ吸い込まれる。ポンプ71はまた、バルブ76を有する廃棄物導管、即ちドレイン導管74に接続される。バルブが閉じているとき、ポンプは、試料をガラス瓶又はキュベットから毛管11を通して検出容積19を通過して吸い込む。分析が完了した後、バルブ76が開かれ、それによって、プランジャ73の方向の反転により、流体を、導管74を通して廃棄物容器77へ流れ込ませる。本発明の特徴によれば、廃棄物チューブ74の直径は、毛管の直径の多数倍、即ち10倍以上になるように選択され、それによって、シリンジからの実質的に全部の流体が廃棄物の中へ放出される。例えば、直径に10倍の比率があれば、無視できる量である、流体のたった1/10000が毛管の中を通って戻るであろう。
【0022】
ポンプは、プランジャ73の所定の移動が、試料の既知の体積を、毛管を通して吸い込むように設計される。プランジャを既知の距離だけ移動することによって、流体をポンプ内へ吸い込み、次いで、流体を放出し、放出した流体の体積を測定することによって、ポンプを各毛管について較正することができる。その後は、プランジャの所定の移動のため、分析容積の中を流れる試料の体積が分かる。プランジャの移動量を測定するか、プランジャの移動が時間の関数として目盛り付けされているならば、体積は、プランジャを移動させる時間を測定するかのいずれかによって決定される。シリンジポンプを説明するが、毛管を通して流体の既知の体積を吸い込むことができる他のタイプのポンプを使用してもよい。
【0023】
好ましくは、毛管は、矩形形状のものである。
図7及び
図8は、
図7の領域82、又は
図8の領域83上で除かれる不透明コーティング81を有する毛管を示す。
図7の実施形態では、ビームは、ビーム24を受け入れる、矩形形状を有する窓82を貫通する。
図8では、スリットは、毛管の壁をマスクし、壁による光の回折を防止する。二つのマスクの組み合わせは、検出光を、毛管の中を移動する粒子によって放出されたものに制限し、いかなる迷光も遮る。
【0024】
図9及び
図10を参照すると、今、蛍光を発しない粒子と、本来的に蛍光を発し、或いは、二つの異なる波長、例えば580nm及び675nmで蛍光を発するようにマークされ又は標識された粒子とを含有する試料を分析する装置の作動例を提供する。
【0025】
シリンジポンプのプランジャ73が延ばされてポンプを空にした状態で、粒子を含む試料ガラス瓶を、毛管11の端を試料に浸すように位置決めされる。次いで、制御装置121から制御信号を付与してポンプ71を始動させることによって、試料を、毛管を通して吸い込む。制御装置121は、処理装置122からの指令を受ける。ポンプ71を一定速度で駆動させ、それによって、分析容積19を通過する試料の体積を、計数期間を計ることによって測定することができる。
新たな試料が分析容積19に到達したことを確実にするために、所定の時間の間、試料がガラス瓶から吸い込まれた後、処理装置は、散乱光検出器からの出力29と光検出器からの出力42及び43とを処理することを開始し、分析容積を通過する試料の既知の体積を示す所定の時間の間それを行う。処理時間は、
図10Aに曲線123によって概略的に図示される。
図10Bは、散乱光検出器からの出力パルス28を図示する。軌跡124を与える単独の粒子と、軌跡126を与える集団の粒子とがあることが分かる。
図10Cは、第一の波長、例えば、675nmで蛍光を発する粒子について軌跡126を示す。注目すべきは、集団126が、三つのかかる粒子を含むという事実である。
図10Dは、別の波長、例えば、750nmで蛍光を発する粒子について軌跡127を示す。注目すべきは、一つのかかる粒子128も集団126中にある事実である。処理装置は、多数の分析周期を取り出すことができる。最後に、分析が完了したときに、処理装置は、制御装置に、バルブ76を開き、ポンプを逆転させて、分析済みの試料を廃棄物容器77へ放出するように指示する。次いで、新たな試料キュベットを取り付け、新たな試料を分析することができる。処理装置は、多数の周期に関して計数値を平均し、かつ、種々の粒子の濃度、粒子の数等を表わす出力を作るように計数値を処理するように形成することができる。適当なラベル又はマーカーを使用すれば、生存能力検査及び抗体スクリーニング検査を行うことができ、或いは、細胞消滅をモニターすることができる。
【0026】
装置をニ色分析について説明してきたが、装置を四色分析について容易に変更することができる。これは
図11に概略的に示される。入力光ビーム24は、分析容積19に当たる。光検出器27及び連合したレンズ28は、散乱信号を提供する。蛍光31は、レンズ32によって集光されて、三つのニ色性ビームスプリッタ81,82及び83を通過し、三つのニ色性ビームスプリッタ81,82及び83は、フィルタ86,87及び88を通った三つの異なる波長の光を光検出器91,92及び93へ反射する。三つのニ色性ビームスプリッタ81,82及び83を通過した四番目の波長の光は、フィルタ94を通って光検出器96へ達する。かくして、四つの異なる波長で本来的に蛍光を発し、或いは蛍光を発するように標識される四つの異なる粒子を、ニ色性ビームスプリッタ及びフィルタについて適当な反射波長を選択することによって分析することができる。
【0027】
図12は、光ビーム106,107及び108を所定の距離を隔てた分析容積111,112及び113に投射する複数の光源(図示せず)を使用する装置を概略的に示す。矢印114,116及び117によって指示された散乱光は、説明したタイプの個々の検出装置によって検出される。矢印118,119及び121によって表された蛍光は、上述のタイプの個々の分析装置によって検出される。この構成は、異なる蛍光標識又はマーカーを励起する光源の波長を選択することによって、異なるラベルで標識された粒子を分析することを可能にする。変形例として、複数の光ビームを信号分析容積へ投射させ、個々の分析装置は、異なる蛍光波長を受けてもよい。
【0028】
粒子によって散乱された光によってその粒子を検出するのではなく、粒子が流路の両側に間隔を隔てて配置された電極を通過する際の、電流の変化が、粒子検出することを可能にする。
図13を参照すると、毛管11は、毛管11内へ延びる、間隔を隔てた電極123及び124とともに示されている。電極は、分析容積19から毛管に沿って間隔を隔てられる。細胞又は粒子が電極間を流れるとき、電気伝導性作動流体が取って代わられ、結果として生ずる電流(インピーダンス)の変化を検出することができる。この方法はいかなるレーザー雑音問題をも回避する。電極を流体流路に沿って、レーザビーム24が毛管に当たる点の前又は後に配置することは、通常、機械的に最も都合よい。これは、インピーダンス検出器が蛍光検出器と異なる時点で細胞を検出し、一番目の細胞がインピーダンスチャネルに信号を発生させるのと同時に、一番目の細胞に近い二番目の細胞が蛍光検出器に信号を発生させることがあるという、というタイミングの問題を発生させる。これは、流速で除した二つの検出器間の距離と等しい量だけ、一方の信号を時間に関して他の信号に対して移動させ、一つの細胞からの二つの信号を一致させるために、遅延要素の使用を必要とする。この遅延要素は、遅延配列又は遅延回路を備えたハードウエアで実現できる。
図14は、インピーダンス細胞検知器からの出力信号126と、光電子増倍管の信号に対して遅延127を伴った蛍光信号42又は43(
図1)とを示し、それによって、信号どうしが相関される。これはまた、各検出器からの信号を検出器自身のデータストリームへサンプリングし、次いで、一方のデータストリームを他方のデータストリームに対して移動させることによって、ソフトウエアで実現することができる。この構成の更なる特徴は、二つの検出器間の物理的な距離が既知ならば、二つのチャネル間の最良の相関に対応する遅延を求めることによって、実際の流速を導き出すことができることであり、これは、詰まった毛管を識別することを試みるときに役立つ筈である。
【0029】
上で説明したように、我々は、毛管に交差する照明が薄い矩形のビームの形をとっているから、検出容積がビームの厚さと毛管11の肉厚とによって正確に定められることに気付いている。これを心に留めておいて、我々は、スリット33及び34を除去した実験を行った。我々は、様々に標識された粒子の試験で得られた結果が、スリットを用いて得られたものに匹敵することを見出した。
図15を参照すると、この発見を使用した発明の実施形態が、概略的に図示されている。粒子検出器は、光源、例えばレーザーを含み、その出力は、上述のように、光学系23によって光学的に集束されて、薄い平らなビーム24を形成する。ビームは毛管11と交差して、検出容積19を定める。散乱検出器は、集光レンズ26a及び検出器27aを含む軸線を外れた検出器組立体を含む。標識した細胞又は粒子から放出された蛍光は、なるたけ、軸線から外れた検出器組立体によって集束され、或いは捕らえられる。蛍光は、
図1に示すような集光レンズによって集束することができる。しかしながら、本実施形態では、蛍光は、光142を受け、かつ、それをビームスプリッタ143に伝える光ガイド141によって集められる。光ビームは、光学フィルタ144及び146に向けられ、ビームスプリッタ143に真直ぐに向けられる。検出器からの出力信号及び散乱信号は処理されて、粒子計数値、細胞生存能力、抗体スクリーニング等を提供する。
【0030】
例えば粒子の計数値、生存能力、濃度の測定及び粒子の識別のように、粒子を特徴付けるための、かつ、使用するのが容易な分析装置が提供されている。
分析装置は、毛管の中を流れる試料流体中の粒子を検出し、毛管は、試料流体内へ挿入するための試料採取端を有し、ポンプが、毛管を通じて試料を吸い込むために他端に連結される。光源が光ビームを毛管の所定の分析容積を通して放射して、その毛管の中を流れる粒子中の蛍光を励起させるために設けられる。少なくとも、一つの検出器が、励起された粒子からの蛍光を受けるために配置され、別の検出器が、分析容積の中を流れる全ての粒子を表す信号を作るために配置される。前記検出器の出力は、粒子の特徴を提供するように処理することができる信号を提供する。
【0031】
前述の本発明の特別な実施形態は、図示及び説明の目的で述べたものである。
それらは、網羅的なものでも、発明を開示された正確な形に限定するものでもなく、明らかに、上記の教示に照らして多くの変形及び変更が可能である。実施形態は、本発明の原理及びその実際的な適用を最も良く説明するために、選択され説明され、それによって、当業者が、本願発明、及び、考えられる特定の用途に適合するように種々の変更をした種々の実施形態を最も良く使用することを可能にする。本発明の範囲は、この文書に添付された特許請求の範囲及びその均等物によって定められるものである。