特許第6048196号(P6048196)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アイシン・エィ・ダブリュ株式会社の特許一覧

特許6048196ナビゲーションシステム、ナビゲーション方法、及びナビゲーションプログラム
<>
  • 特許6048196-ナビゲーションシステム、ナビゲーション方法、及びナビゲーションプログラム 図000002
  • 特許6048196-ナビゲーションシステム、ナビゲーション方法、及びナビゲーションプログラム 図000003
  • 特許6048196-ナビゲーションシステム、ナビゲーション方法、及びナビゲーションプログラム 図000004
  • 特許6048196-ナビゲーションシステム、ナビゲーション方法、及びナビゲーションプログラム 図000005
  • 特許6048196-ナビゲーションシステム、ナビゲーション方法、及びナビゲーションプログラム 図000006
  • 特許6048196-ナビゲーションシステム、ナビゲーション方法、及びナビゲーションプログラム 図000007
  • 特許6048196-ナビゲーションシステム、ナビゲーション方法、及びナビゲーションプログラム 図000008
  • 特許6048196-ナビゲーションシステム、ナビゲーション方法、及びナビゲーションプログラム 図000009
  • 特許6048196-ナビゲーションシステム、ナビゲーション方法、及びナビゲーションプログラム 図000010
  • 特許6048196-ナビゲーションシステム、ナビゲーション方法、及びナビゲーションプログラム 図000011
  • 特許6048196-ナビゲーションシステム、ナビゲーション方法、及びナビゲーションプログラム 図000012
  • 特許6048196-ナビゲーションシステム、ナビゲーション方法、及びナビゲーションプログラム 図000013
  • 特許6048196-ナビゲーションシステム、ナビゲーション方法、及びナビゲーションプログラム 図000014
  • 特許6048196-ナビゲーションシステム、ナビゲーション方法、及びナビゲーションプログラム 図000015
  • 特許6048196-ナビゲーションシステム、ナビゲーション方法、及びナビゲーションプログラム 図000016
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6048196
(24)【登録日】2016年12月2日
(45)【発行日】2016年12月21日
(54)【発明の名称】ナビゲーションシステム、ナビゲーション方法、及びナビゲーションプログラム
(51)【国際特許分類】
   G01C 21/26 20060101AFI20161212BHJP
   G01C 21/34 20060101ALI20161212BHJP
   G08G 1/0969 20060101ALI20161212BHJP
   G08G 1/137 20060101ALI20161212BHJP
   G09B 29/00 20060101ALI20161212BHJP
   G09B 29/10 20060101ALI20161212BHJP
【FI】
   G01C21/26 C
   G01C21/34
   G08G1/0969
   G08G1/137
   G09B29/00 F
   G09B29/10 A
【請求項の数】8
【全頁数】23
(21)【出願番号】特願2013-28353(P2013-28353)
(22)【出願日】2013年2月15日
(65)【公開番号】特開2014-157092(P2014-157092A)
(43)【公開日】2014年8月28日
【審査請求日】2016年2月15日
(73)【特許権者】
【識別番号】000100768
【氏名又は名称】アイシン・エィ・ダブリュ株式会社
(74)【代理人】
【識別番号】100107308
【弁理士】
【氏名又は名称】北村 修一郎
(74)【代理人】
【識別番号】100120352
【弁理士】
【氏名又は名称】三宅 一郎
(74)【代理人】
【識別番号】100152087
【弁理士】
【氏名又は名称】伏木 和博
(72)【発明者】
【氏名】足立 和英
【審査官】 相羽 昌孝
(56)【参考文献】
【文献】 特開2013−025634(JP,A)
【文献】 国際公開第2004/075137(WO,A1)
【文献】 特開2010−218373(JP,A)
【文献】 特開2009−230334(JP,A)
【文献】 特開2006−053132(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01C 21/00−21/36
G01C 23/00−25/00
G08G 1/00−99/00
G09B 23/00−29/14
(57)【特許請求の範囲】
【請求項1】
目的地の候補となり得る地点に関連する案内情報を提供するナビゲーションシステムであって、
ユーザの行動傾向を複数の行動パターンに分類して定義し、複数のユーザの地点間の移動履歴を記録した移動履歴データを前記行動パターンのいずれかに関連付けて格納した移動履歴データベースと、
前記複数の行動パターンの中から、前記案内情報の提供対象となる対象ユーザの行動傾向に合う対象行動パターンを決定する対象行動パターン決定部と、
予め定められた条件に従って案内基準地点を設定する基準地点設定部と、
前記移動履歴データベースから、前記案内基準地点を含む前記移動履歴データを抽出するデータ抽出部と、
前記データ抽出部により抽出された前記移動履歴データのうち、前記対象行動パターンに関連付けられた前記移動履歴データに基づいて、前記案内基準地点との間の移動頻度が相対的に高い地点を第一推薦地点として前記対象ユーザに提示するとともに、前記対象行動パターンとは異なる別行動パターンに関連付けられた前記移動履歴データに基づいて、前記案内基準地点との間の移動頻度が相対的に高い地点を第二推薦地点として前記第一推薦地点と共に提示する推薦地点提示部と、
を備えるナビゲーションシステム。
【請求項2】
複数段階の評価が可能であり各行動パターンを分類するための基礎となる事項を分類基礎項目と定義するとともに、前記分類基礎項目のそれぞれの評価段階を表す区分を評価区分と定義して、
前記複数の行動パターンは、複数の分類基礎項目のそれぞれについての複数の評価区分に基づいてそれぞれ規定され、
前記別行動パターンは、前記対象行動パターンを規定する各分類基礎項目の評価区分の組み合わせに対して、1つの分類基礎項目の評価区分が異なる行動パターンである請求項1に記載のナビゲーションシステム。
【請求項3】
前記複数の分類基礎項目は、少なくとも目的地間の移動距離の長さに関する事項を含み、
前記別行動パターンは、前記対象行動パターンを規定する各分類基礎項目の評価区分の組み合わせに対して、目的地間の移動距離の長さに関する評価区分が異なる行動パターンである請求項2に記載のナビゲーションシステム。
【請求項4】
前記複数の分類基礎項目は、少なくとも食事の開始時期に関する事項を含み、
前記別行動パターンは、前記対象行動パターンを規定する各分類基礎項目の評価区分の組み合わせに対して、食事の開始時期に関する評価区分が異なる行動パターンである請求項2に記載のナビゲーションシステム。
【請求項5】
複数のユーザのそれぞれを識別するための識別情報に関連付けて、各ユーザの行動履歴のデータである行動履歴データを収集するデータ収集部と、
ユーザ毎に収集された前記行動履歴データに基づいて、複数のユーザのそれぞれの行動傾向に合う行動パターンを前記複数の行動パターンの中から決定する履歴行動パターン決定部と、
前記識別情報と、各ユーザについて決定された前記行動パターンと、前記行動履歴データから抽出される移動履歴データとを互いに関連付けて、移動履歴データベースに格納するデータベース生成部と、
をさらに備える請求項1から4のいずれか一項に記載のナビゲーションシステム。
【請求項6】
前記基準地点設定部は、前記対象ユーザにより目的地が指定された場合に、当該指定された目的地を前記案内基準地点に設定し、
前記推薦地点提示部は、前記第一推薦地点及び前記第二推薦地点を次の目的地の候補として提示する請求項1から5のいずれか一項に記載のナビゲーションシステム。
【請求項7】
目的地の候補となり得る地点に関連する案内情報を提供するナビゲーション方法であって、
ユーザの行動傾向を複数の行動パターンに分類して定義し、複数のユーザの地点間の移動履歴を記録した移動履歴データを前記行動パターンのいずれかに関連付けて格納した移動履歴データベースを用い、
前記複数の行動パターンの中から、前記案内情報の提供対象となる対象ユーザの行動傾向に合う対象行動パターンを決定する対象行動パターン決定ステップと、
予め定められた条件に従って案内基準地点を設定する基準地点設定ステップと、
前記移動履歴データベースから、前記案内基準地点を含む前記移動履歴データを抽出するデータ抽出ステップと、
前記データ抽出ステップで抽出された前記移動履歴データのうち、前記対象行動パターンに関連付けられた前記移動履歴データに基づいて、前記案内基準地点との間の移動頻度が相対的に高い地点を第一推薦地点として前記対象ユーザに提示するとともに、前記対象行動パターンとは異なる別行動パターンに関連付けられた前記移動履歴データに基づいて、前記案内基準地点との間の移動頻度が相対的に高い地点を第二推薦地点として前記第一推薦地点と共に提示する推薦地点提示ステップと、
を含むナビゲーション方法。
【請求項8】
目的地の候補となり得る地点に関連する案内情報を提供するナビゲーションプログラムであって、
ユーザの行動傾向を複数の行動パターンに分類して定義し、複数のユーザの地点間の移動履歴を記録した移動履歴データを前記行動パターンのいずれかに関連付けて格納した移動履歴データベースを参照し、
前記複数の行動パターンの中から、前記案内情報の提供対象となる対象ユーザの行動傾向に合う対象行動パターンを決定する対象行動パターン決定機能と、
予め定められた条件に従って案内基準地点を設定する基準地点設定機能と、
前記移動履歴データベースから、前記案内基準地点を含む前記移動履歴データを抽出するデータ抽出機能と、
前記データ抽出機能の実現により抽出された前記移動履歴データのうち、前記対象行動パターンに関連付けられた前記移動履歴データに基づいて、前記案内基準地点との間の移動頻度が相対的に高い地点を第一推薦地点として前記対象ユーザに提示するとともに、前記対象行動パターンとは異なる別行動パターンに関連付けられた前記移動履歴データに基づいて、前記案内基準地点との間の移動頻度が相対的に高い地点を第二推薦地点として前記第一推薦地点と共に提示する推薦地点提示機能と、
をコンピュータに実現させるナビゲーションプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、目的地の候補となり得る地点に関連する案内情報を提供するナビゲーションシステムに関する。また、本発明は、そのようなナビゲーション方法及びナビゲーションプログラムに関する。
【背景技術】
【0002】
上記のようなナビゲーションシステムにおいて、複数のユーザから収集した行動履歴データに基づいて、同じ目的地を訪問した他のユーザが他にも訪問した目的地をお勧めの目的地として提示する技術(レコメンド技術)が組み込まれたものが知られている。例えば国際公開第2004/075137号(特許文献1)に記載された情報提供装置は、複数のユーザの訪問履歴を記録し、記録された訪問履歴に基づいて、ユーザの訪問の多い区画に存在する施設に関する情報を提供するように構成されている。特許文献1には、類似する他人の行動パターンからお勧めの場所(推薦地点)を提示することで、ユーザが不慣れな地域を訪問した場合であっても有益な情報が提供可能であると記載されている。
【0003】
しかし、特許文献1では「類似する他人の行動パターン」に基づいて情報を提供することが謳われてはいるものの、実際に考慮されているのは、他のユーザが多く訪問した目的地(複数の目的地の組み合わせ)である。つまり、特許文献1における「行動パターン」とは、基準期間(例えば1日)内での目的地の単純な遍歴を表す概念として用いられている。この意味で、特許文献1の装置は指定された目的地に対して相関性の高い他の目的地を推薦地点として一律に提案しているに過ぎず、例えば目的地間の移動態様等に関するユーザの行動傾向(本願で言う「行動パターン」)を考慮した情報を提供するものではない。このため、ユーザによっては、行動傾向に合致しないためにそのユーザにとってはあまり有益ではない場所が推薦地点として提案される場合がある。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】国際公開第2004/075137号
【発明の概要】
【発明が解決しようとする課題】
【0005】
そこで、各ユーザにとって有益である可能性が高い地点を優先的に推薦地点として提案することができるナビゲーションシステムの実現が望まれる。
【課題を解決するための手段】
【0006】
本発明に係る、目的地の候補となり得る地点に関連する案内情報を提供するナビゲーションシステムの特徴構成は、ユーザの行動傾向を複数の行動パターンに分類して定義し、複数のユーザの地点間の移動履歴を記録した移動履歴データを前記行動パターンのいずれかに関連付けて格納した移動履歴データベースと、前記複数の行動パターンの中から、前記案内情報の提供対象となる対象ユーザの行動傾向に合う対象行動パターンを決定する対象行動パターン決定部と、予め定められた条件に従って案内基準地点を設定する基準地点設定部と、前記移動履歴データベースから、前記案内基準地点を含む前記移動履歴データを抽出するデータ抽出部と、前記データ抽出部により抽出された前記移動履歴データのうち、前記対象行動パターンに関連付けられた前記移動履歴データに基づいて、前記案内基準地点との間の移動頻度が相対的に高い地点を第一推薦地点として前記対象ユーザに提示するとともに、前記対象行動パターンとは異なる別行動パターンに関連付けられた前記移動履歴データに基づいて、前記案内基準地点との間の移動頻度が相対的に高い地点を第二推薦地点として前記第一推薦地点と共に提示する推薦地点提示部と、を備える点にある。
【0007】
この特徴構成によれば、データ抽出部により、移動履歴データベースに格納された移動履歴データのうち、予め定められた条件に従って設定された案内基準地点を含むデータが抽出される(第1の抽出)。また、データ抽出部により、対象ユーザの行動傾向に合致する対象行動パターンに関連付けられたデータが抽出される(第2の抽出)。これらの両者を経て最終的に抽出された移動履歴データは、対象ユーザの行動傾向に合致する他のユーザが、案内基準地点を過去に訪問した際に合わせて訪問した他の地点の情報を含むものとなる。このような移動履歴データに含まれる複数の地点のうち、案内基準地点との間の移動頻度が相対的に高い地点を第一推薦地点とすることで、対象ユーザの意図に適合する可能性の高い地点を優先的に第一推薦地点として提案することができる。よって、対象ユーザに対して、有益である可能性が高い情報を提供することができる。
【0008】
また、上記の特徴構成によれば、データ抽出部により、対象ユーザの行動傾向とは異なる行動パターンに関連付けられたデータが抽出される(第3の抽出)。第1及び第3の抽出を経て最終的に抽出された移動履歴データは、対象ユーザの行動傾向とは異なる行動傾向を示す他のユーザが、案内基準地点を過去に訪問した際に合わせて訪問した他の地点の情報を含むものとなる。このような移動履歴データに含まれる複数の地点のうち、案内基準地点との間の移動頻度が相対的に高い地点を第二推薦地点とすることで、対象ユーザにとって意外性のある地点を第二推薦地点として提案することができる。よって、対象ユーザに対して、有益である可能性が高い情報を提供しつつ、合わせて、新たな興味を喚起し得る情報を提供することができる。
【0009】
ここで、複数段階の評価が可能であり各行動パターンを分類するための基礎となる事項を分類基礎項目と定義するとともに、前記分類基礎項目のそれぞれの評価段階を表す区分を評価区分と定義して、前記複数の行動パターンは、複数の分類基礎項目のそれぞれについての複数の評価区分に基づいてそれぞれ規定され、前記別行動パターンは、前記対象行動パターンを規定する各分類基礎項目の評価区分の組み合わせに対して、1つの分類基礎項目の評価区分が異なる行動パターンであると好適である。
【0010】
この構成によれば、複数の分類基礎項目のそれぞれについて判定される評価区分の組み合わせに基づいて、複数の行動パターンを系統的に分類することができる。また、対象行動パターンを規定する各分類基礎項目の評価区分の組み合わせに対して1つの分類基礎項目の評価区分が異なる行動パターンを別行動パターンとすることで、別行動パターンは対象行動パターンと比較的類似する行動パターンとなる。これにより、対象ユーザの行動傾向からみてその意図から大きくかけ離れた地点が第二推薦地点として提示されることを抑制できる。よって、新たな興味を喚起する可能性が比較的高い情報を提供することができる。
【0011】
なお、分類基礎項目としては、例えば目的地間の移動距離の長さ、目的地での滞在時間の長さ、及び予め定められた特定行動の開始時期又は終了時期等に関する事項が例示される。目的地間の移動距離の長さの程度に基づいて、行動パターンを例えば行動範囲の広さに応じて分類することができる。また、目的地での滞在時間の長さの程度に基づいて、行動パターンを例えば所定の行動に費やす時間の長さに応じて分類することができる。また、特定行動の開始時期又は終了時期に基づいて、行動パターンを例えば特定行動を行うタイミングに応じて分類することができる。そして、これらを複数組み合わせることで、行動パターンをより精緻に分類することができる。
【0012】
また、前記複数の分類基礎項目は、少なくとも目的地間の移動距離の長さに関する事項を含み、前記別行動パターンは、前記対象行動パターンを規定する各分類基礎項目の評価区分の組み合わせに対して、目的地間の移動距離の長さに関する評価区分が異なる行動パターンであると好適である。
【0013】
この構成によれば、例えば行動範囲が比較的広いユーザに対して、案内基準地点に近接する位置にある人気の高い地点を第二推薦地点として提示することができる。よって、そのようなユーザに対して、近距離に存在する地点にも意識を向けさせることができる。逆に、例えば行動範囲が比較的狭いユーザに対して、案内基準地点から遠方の位置にある人気の高い地点を第二推薦地点として提示することができる。よって、そのようなユーザに対して、遠距離に存在する地点にも意識を向けさせることができる。
【0014】
また、前記複数の分類基礎項目は、少なくとも食事の開始時期に関する事項を含み、前記別行動パターンは、前記対象行動パターンを規定する各分類基礎項目の評価区分の組み合わせに対して、食事の開始時期に関する評価区分が異なる行動パターンであると好適である。
【0015】
この構成によれば、例えば早めに食事をとる傾向にあるユーザに対して、比較的遅めの時間帯に食事をとるユーザに人気の高い地点を第二推薦地点として提示することができる。逆に、例えば遅めに食事をとる傾向にあるユーザに対して、比較的早めの時間帯に食事をとるユーザに人気の高い地点を第二推薦地点として提示することができる。よって、各ユーザに対して、本来の食事開始時期の傾向とは無関係に、他の人気レストラン等が存在する地点にも意識を向けさせることができる。
【0016】
また、複数のユーザのそれぞれを識別するための識別情報に関連付けて、各ユーザの行動履歴のデータである行動履歴データを収集するデータ収集部と、ユーザ毎に収集された前記行動履歴データに基づいて、複数のユーザのそれぞれの行動傾向に合う行動パターンを前記複数の行動パターンの中から決定する履歴行動パターン決定部と、前記識別情報と、各ユーザについて決定された前記行動パターンと、前記行動履歴データから抽出される移動履歴データとを互いに関連付けて、移動履歴データベースに格納するデータベース生成部と、をさらに備えると好適である。
【0017】
この構成によれば、複数のユーザのそれぞれの行動履歴データを収集し、収集された行動履歴データから各ユーザの移動履歴データを生成するので、移動履歴データベースを効率的に構築できる。また、収集された行動履歴データに基づいて、各ユーザの行動傾向に合う行動パターンを決定することができる。そして、各ユーザに割り当てられた識別情報に基づいて、各ユーザについての移動履歴データを、決定されたそれぞれの行動パターンに適切に関連付けて移動履歴データベースに格納することができる。
【0018】
なお、前記行動履歴データに含まれる各ユーザの行動履歴としては、例えば各地点への到着時刻、各地点での滞在時間、2つの地点間の移動時間、及び2つの地点間の移動距離等が例示される。各ユーザの行動履歴が各地点への到着時刻の情報を含むことで、それに基づいて所定の行動(例えば観光や食事、ショッピング等)の開始時期に関する行動傾向を推測することができる。また、各ユーザの行動履歴が各地点での滞在時間の情報を含むことで、それに基づいて所定の行動に費やす時間に関する行動傾向を推測することができる。また、各ユーザの行動履歴が2つの地点間の移動時間又は移動距離の情報を含むことで、それに基づいて行動範囲の広さに関する行動傾向を推測することができる。そして、これらの各情報を複数組み合わせて含むことで、複数のユーザのそれぞれの行動傾向に合う行動パターンを精度良く決定することが可能となる。
【0019】
また、前記基準地点設定部は、前記対象ユーザにより目的地が指定された場合に、当該指定された目的地を前記案内基準地点に設定し、前記推薦地点提示部は、前記第一推薦地点及び前記第二推薦地点を次の目的地の候補として提示すると好適である。
【0020】
この構成によれば、対象ユーザが訪問を希望する目的地に関する案内を行うことを前提としつつ、その後の訪問地点の候補として、対象ユーザの意図に適合する可能性の高い地点と意外性のある地点とを合わせて提示することができる。よって、対象ユーザの意思を尊重しつつ、付加的に有益な情報及び新たな興味を喚起し得る情報を提供することができる。
【0021】
以上の各構成を備えた本発明に係るナビゲーションシステムの技術的特徴は、目的地の候補となり得る地点に関連する案内情報を提供するナビゲーション方法やそのようなナビゲーションプログラムにも適用可能である。そのため、本発明は、そのような方法やプログラムも権利の対象とすることができる。
【0022】
その場合における、ナビゲーション方法の特徴構成は、ユーザの行動傾向を複数の行動パターンに分類して定義し、複数のユーザの地点間の移動履歴を記録した移動履歴データを前記行動パターンのいずれかに関連付けて格納した移動履歴データベースを用い、前記複数の行動パターンの中から、前記案内情報の提供対象となる対象ユーザの行動傾向に合う対象行動パターンを決定する対象行動パターン決定ステップと、予め定められた条件に従って案内基準地点を設定する基準地点設定ステップと、前記移動履歴データベースから、前記案内基準地点を含む前記移動履歴データを抽出するデータ抽出ステップと、前記データ抽出ステップで抽出された前記移動履歴データのうち、前記対象行動パターンに関連付けられた前記移動履歴データに基づいて、前記案内基準地点との間の移動頻度が相対的に高い地点を第一推薦地点として前記対象ユーザに提示するとともに、前記対象行動パターンとは異なる別行動パターンに関連付けられた前記移動履歴データに基づいて、前記案内基準地点との間の移動頻度が相対的に高い地点を第二推薦地点として前記第一推薦地点と共に提示する推薦地点提示ステップと、を含む点にある。
【0023】
その場合における、ナビゲーションプログラムの特徴構成は、ユーザの行動傾向を複数の行動パターンに分類して定義し、複数のユーザの地点間の移動履歴を記録した移動履歴データを前記行動パターンのいずれかに関連付けて格納した移動履歴データベースを参照し、前記複数の行動パターンの中から、前記案内情報の提供対象となる対象ユーザの行動傾向に合う対象行動パターンを決定する対象行動パターン決定機能と、予め定められた条件に従って案内基準地点を設定する基準地点設定機能と、前記移動履歴データベースから、前記案内基準地点を含む前記移動履歴データを抽出するデータ抽出機能と、前記データ抽出機能の実現により抽出された前記移動履歴データのうち、前記対象行動パターンに関連付けられた前記移動履歴データに基づいて、前記案内基準地点との間の移動頻度が相対的に高い地点を第一推薦地点として前記対象ユーザに提示するとともに、前記対象行動パターンとは異なる別行動パターンに関連付けられた前記移動履歴データに基づいて、前記案内基準地点との間の移動頻度が相対的に高い地点を第二推薦地点として前記第一推薦地点と共に提示する推薦地点提示機能と、をコンピュータに実現させる点にある。
【0024】
当然ながら、これらのナビゲーション方法やナビゲーションプログラムも、上述したナビゲーションシステムに係る作用効果を得ることができる。さらに、これらのナビゲーション方法やナビゲーションプログラムに、上述したナビゲーションシステムの好適な構成の例として挙げたいくつかの付加的技術を組み込むことも可能である。その場合、それぞれの付加的技術に対応する作用効果を得ることができる。
【図面の簡単な説明】
【0025】
図1】ナビゲーションシステムの全体構成を示す模式図
図2】車載端末装置の概略構成を示すブロック図
図3】管理サーバの概略構成を示すブロック図
図4】行動履歴データの一例を示す図
図5】行動履歴データベースのデータ例を示す図
図6】各ユーザと行動パターンとの対応付けの一例を示す図
図7】行動パターンの決定手法の一例を示す図
図8】移動履歴データベースのデータ例を示す図
図9】移動履歴データベースから把握される地点間相関度を示す概念図
図10】第2のフィルタリング後の地点間相関度を示す概念図の一例
図11】第2のフィルタリング後の地点間相関度を示す概念図の他の例
図12】対象ユーザへの推薦地点の提示方法を示す模式図
図13】行動履歴データベース生成の処理手順を示すフローチャート
図14】移動履歴データベース生成の処理手順を示すフローチャート
図15】推薦地点提示の処理手順を示すフローチャート
【発明を実施するための形態】
【0026】
1.ナビゲーションシステムの構成
本発明の実施形態について、図面を参照して説明する。図1に示すように、本実施形態に係るナビゲーションシステム1は、車両に搭載されたナビゲーション装置等の車載端末装置2と、複数の車載端末装置2と通信可能に設けられた管理サーバ5とにより構成されている。このナビゲーションシステム1では、複数の車載端末装置2が、無線基地局4を介して、インターネット等の通信網3に接続されている。車載端末装置2と無線基地局4との間の無線通信は、例えば携帯電話網や無線LAN(Local Area Network)等を利用して行うことができる。また、管理サーバ5も、通信網3に接続されている。
【0027】
本実施形態では、各車載端末装置2は、対応するユーザの行動履歴データAを生成し、その行動履歴データAを、一種のプローブ情報として管理サーバ5に送信する。管理サーバ5は、複数の車載端末装置2から収集された複数ユーザのそれぞれに関する行動履歴データAから、移動履歴データTを抽出する。管理サーバ5は、抽出された移動履歴データTを各ユーザの行動パターン(行動傾向の分類結果)に関連付けて記憶するとともに、集約後の移動履歴データTを各車載端末装置2に配信する。車載端末装置2は、目的地までの経路案内等のナビゲーション処理を行いつつ、受信した移動履歴データTに基づいて、目的地の候補となり得る地点に関連する案内情報Gを提供する。
【0028】
より具体的には、対象ユーザ(案内情報Gの提供対象となるユーザ)に対して、当該対象ユーザと行動パターンの類似する他のユーザが過去に訪問した地点のうちのいずれかを、代替案も含めて、お勧めの目的地として提示する。本実施形態に係るナビゲーションシステム1は、以下に説明するように、対象ユーザの行動パターン(地点間の移動態様等に関する行動傾向)に適合した、利便性の高い目的地レコメンド機能を実現可能に構成されている。また、合わせて補助的に、対象ユーザにとって意外性のある目的地レコメンド機能を実現可能に構成されている。
【0029】
図2は、車載端末装置2の概略構成を示すブロック図である。車載端末装置2は、自位置決定部21、ナビゲーション用演算部22、行動履歴データ生成部23、更新処理部24、通信制御部25、基準行動パターン決定部26、基準地点設定部27、データ抽出部28、及び推薦地点提示部29を備えている。これらの各機能部は、入力されたデータに対して種々の処理を行うための演算部がハードウェア又はソフトウェア(プログラム)或いはその両方により構成されている。また、車載端末装置2は、GPS受信機31、方位センサ32、距離センサ33、カレンダータイマー34、通信インターフェース35、表示入力装置36、及び音声出力装置37に接続されている。また、車載端末装置2は、地図データベース41、行動履歴データベース42、及び移動履歴データベース43に接続されている。これらは、互いに情報の受け渡しを行うことができるように構成されている。
【0030】
図3は、管理サーバ5の概略構成を示すブロック図である。管理サーバ5は、通信制御部51、データ収集部52、行動履歴データベース生成部53、履歴行動パターン決定部54、及び移動履歴データベース生成部55を備えている。これらの各機能部も、入力されたデータに対して種々の処理を行うための演算部がハードウェア又はソフトウェア(プログラム)或いはその両方により構成されている。また、管理サーバ5は、通信インターフェース58、行動履歴データベース62、及び移動履歴データベース63に接続されている。これらは、互いに情報の受け渡しを行うことができるように構成されている。
【0031】
なお、車載端末装置2及び管理サーバ5は、CPU(Central Processing Unit)等の演算処理装置、ハードディスクや光ディスク等の記憶装置、及びRAM(Random Access Memory)等の一時記憶装置等、汎用コンピュータと同様のハードウェア構成を含んで構成されている。
【0032】
車載端末装置2に設けられた地図データベース41には、地図データMが記憶(格納)されている。地図データベース41は、地図データMを構成する道路ネットワークの情報が格納されている。地図データMには、複数のノードと各ノード間を接続する道路に対応する複数のリンクとにより構成される道路ネットワークデータが含まれる。また、地図データMには、各リンクのそれぞれについてのリンクコストの情報が含まれている。リンクコストは、各リンクのリンク長や道路属性(制限速度や道路種別等)に応じて設定されている。地図データMは、ナビゲーション用演算部22により、地図表示処理や経路探索処理等の実行の際に参照される。
【0033】
また、地図データベース41には、施設データFも記憶(格納)されている。施設データFには、各施設の位置を表す座標情報や、名称及びジャンル等を表す属性情報等が含まれている。また、施設データFには、営業時間や駐車場の有無等についての付加情報がさらに含まれていても良い。施設データFは、ナビゲーション用演算部22により、目的地検索処理等の実行の際に参照される。
【0034】
自位置決定部21は、車載端末装置2が搭載されている車両の現在位置を示す自位置情報を取得する機能部である。自位置決定部21は、GPS(Global Positioning System)受信機31に接続されている。本実施形態では、さらに方位センサ32及び距離センサ33にも接続されている。自位置決定部21は、GPS受信機31、方位センサ32、及び距離センサ33からの出力に基づいて、自位置を特定する演算を行う。車両にカメラ等の撮像装置が搭載されている場合には、画像認識機能を利用したさらに高精度な自位置特定を行うように構成されても良い。
【0035】
ナビゲーション用演算部22は、自位置表示、出発地から目的地までの経路探索、目的地までの経路案内、目的地検索等の各種のナビゲーション処理を実行する機能部である。また、ナビゲーション用演算部22は、地図画像や目的地検索画面等、ナビゲーション処理に必要な各種の画像を生成し、表示入力装置36に表示させる等の処理を行う。また、ナビゲーション用演算部22は、音声出力装置37による音声案内等による案内等も行う。なお、表示入力装置36は、例えば液晶ディスプレイ等の表示装置とタッチパネル等の入力装置とが一体となった装置とすることができる。音声出力装置37は、例えばスピーカ等により構成することができる。
【0036】
行動履歴データ生成部23は、車載端末装置2(すなわち、車載端末装置2が搭載されている車両を操作するユーザ)の行動履歴を記録した行動履歴データAを生成する機能部である。行動履歴データ生成部23は、自位置決定部21によって決定される自位置情報を受け取るとともに、カレンダータイマー34から提供される年・月・日・時刻等の情報を受け取り、両者を関連付けて行動履歴データAを生成する。本実施形態では、行動履歴データAには特に、所定時間以上滞在したと判定された地点の遍歴についての情報が含まれる。行動履歴データAは、予め定められた基準期間(本例では1日)内での地点遍歴の情報とすることができる。
【0037】
なお、所定時間以上の滞在は、自位置情報に示される自位置が予め定められた基準時間(例えば20分等)に亘って移動しないこと等に基づいて判定することができる。基準時間の長さは、単なる休憩のための一時滞在等と区別可能な長さ等を考慮して、適宜設定することができる。ユーザにより目的地が設定された場合には、実際の滞在時間によらずに、当該目的地では所定時間以上の滞在があったと一律に判定しても良い。以下では、所定時間以上滞在したと判定された地点と目的地に設定された地点とを総称して「訪問地点」と言う。図4に、行動履歴データ生成部23により生成される行動履歴データAの一例を示す。この図に示すように、本実施形態では、行動履歴データAに含まれる各ユーザの行動履歴には、自宅の出発時刻、帰宅時刻、訪問地点の地点ID、各訪問地点への到着時刻、及び各訪問地点での滞在時間の情報が含まれている。
【0038】
なお、行動履歴データAには、各訪問地点の位置の情報も含まれている(図示せず)。各訪問地点の位置は、例えば地点IDに関連付けて地図データベース41に予め記憶(格納)されているので、地点IDに基づいて地図データベース41から取得することができる。各訪問地点の位置の情報は、例えば緯度及び経度によって特定される座標情報として取得される。また、行動履歴データAには、各訪問地点での行動内容の情報も含まれている。地図データベース41に格納された施設データFには各施設のジャンルを表す属性情報が含まれているので、各施設のジャンルに基づいて各訪問地点での行動内容を判定することができる。例えば一例として、ある訪問地点が景勝地や寺社仏閣等に属する場合には「観光」が、スーパーマーケットやショッピングモール等に属する場合には「ショッピング」が、レストラン等に属する場合には「食事」が行われたと判定される。
【0039】
行動履歴データAには、2つの訪問地点間の移動時間や2つの訪問地点間の移動距離の情報がさらに含まれても良い。本実施形態では、これらの付加的な2つの情報は、各訪問地点の位置、到着時刻、及び滞在時間の情報に基づいて演算により取得されるものとされている。よって、行動履歴データAには含まれていなくても良い。
【0040】
更新処理部24は、行動履歴データ生成部23により生成された行動履歴データAを行動履歴データベース42に記憶(格納)させることにより、当該行動履歴データベース42を更新する機能部である。更新処理部24は、行動履歴データ生成部23により生成された行動履歴データAを順次行動履歴データベース42に記憶(格納)して、行動履歴データベース42を更新する。また、更新処理部24は、管理サーバ5から配信される移動履歴データTを受信した際には、移動履歴データベース43を最新の状態へと更新する役割も担う。移動履歴データTの詳細に関しては、後述する。なお、移動履歴データベース43の更新は、管理サーバ5から配信されるデータ形式に応じて、差分更新及び全更新のいずれであっても良い。
【0041】
通信制御部25は、管理サーバ5との間の情報の送受信を制御する機能部である。通信制御部25は、予め定められたタイミングで、行動履歴データベース42に記憶された行動履歴データAを管理サーバ5へ送信する処理を行う。例えば、通信制御部25は、車載端末装置2が搭載された車両に乗車したユーザが1日の行動を終えて帰宅した際に、その日に生成された行動履歴データAを、通信インターフェース35を介して、管理サーバ5へ送信する。通信インターフェース35としては、専用の通信モジュールを用いても良いし、携帯電話端末等の汎用通信機器を利用しても良い。なお、ユーザの行動が連続する複数日に亘る場合は、途中の宿泊地に到着する毎にその日の行動履歴データAを送信しても良いし、帰宅した際にまとめて各日の行動履歴データAを送信しても良い。ユーザが帰宅したか否かは、予め設定された自宅の位置と、自位置決定部21により特定される自位置の情報とに基づいて判定することができる。ユーザが宿泊地に到着したか否かの判定に関しても、同様である。
【0042】
なお、各車載端末装置2には、複数のユーザ(車載端末装置2)のそれぞれを識別するためのユーザIDが付与されている。車載端末装置2(通信制御部25)が行動履歴データAを送信する際には、ユーザIDの情報が合わせて送信される。本実施形態では、ユーザIDが本発明における「識別情報」に相当する。
【0043】
また、通信制御部25は、管理サーバ5に対して、最新の移動履歴データTの配信を要求する処理を行う。例えば、通信制御部25は、定期的(例えば1週間毎、1ヵ月毎等)に管理サーバ5にアクセスして、その時点での最新の移動履歴データTの配信を要求する。或いは、通信制御部25は、ユーザによって手動にて指定されたタイミングで管理サーバ5にアクセスして、その時点での最新の移動履歴データTの配信を要求する。
【0044】
管理サーバ5の通信制御部51は、各車載端末装置2との間の情報の送受信を制御する機能部である。通信制御部51は、各車載端末装置2から行動履歴データAの送信や最新の移動履歴データTの配信要求があった場合に、その車載端末装置2との接続を確立した上で、通信インターフェース58を介して各データの送受信を行う。
【0045】
データ収集部52は、各ユーザの行動履歴データAを収集する機能部である。上記のとおり、車載端末装置2が行動履歴データAを送信する際には、ユーザIDの情報が合わせて送信される。データ収集部52は、これらのユーザIDと行動履歴データAとを関連付け、複数ユーザの行動履歴データAをそれぞれのユーザIDに関連付けて収集する。
【0046】
行動履歴データベース生成部53は、行動履歴データベース62を生成及び更新する機能部である。行動履歴データベース生成部53は、データ収集部52により収集された複数ユーザの行動履歴データAを行動履歴データベース62に記憶(格納)することにより、行動履歴データベース62を生成及び更新する。行動履歴データベース生成部53は、複数ユーザの行動履歴データAを、それぞれのユーザIDに関連付けて、行動履歴データベース62に記憶する(図5を参照)。
【0047】
履歴行動パターン決定部54は、ユーザ毎に収集された行動履歴データAに基づいて、複数のユーザのそれぞれの行動傾向に合う行動パターンを複数の行動パターンの中から決定する機能部である。ここで、本願で言う「行動パターン」とは、訪問地点間の移動態様等に関する行動傾向や各訪問地点での滞在形態等に関する行動傾向を表す概念である。履歴行動パターン決定部54は、ユーザの行動傾向を複数の行動パターンに分類して定義し、各ユーザの行動傾向に合う行動パターンを、定義された複数の行動パターンの中から択一的に決定する。
【0048】
行動パターンは、訪問地点間の移動距離の長さの程度、訪問地点での滞在時間の長さの程度、及び予め定められた特定行動の開始時期又は終了時期、のうちの少なくとも1つに基づく分類とすることができる。本実施形態では、一例として、訪問地点間の移動距離、訪問地点での滞在時間、出発時刻、及び昼食時刻に基づいて、行動パターンが分類されている(図6を参照)。これらは、それぞれ、複数段階の評価が可能であって各行動パターンを分類するための基礎となる事項であり、「分類基礎項目」と称することができる。
【0049】
履歴行動パターン決定部54は、訪問地点間の移動距離に関する行動傾向を、「短い」/「標準的」/「長い」のいずれかによって評価する。また、訪問地点での滞在時間に関する行動傾向を、「短い」/「標準的」/「長い」のいずれかによって評価する。また、出発時刻に関する行動傾向を、「早い」/「標準的」/「遅い」のいずれかによって評価する。また、昼食時刻に関する行動傾向を、「早い」/「標準的」/「遅い」のいずれかによって評価する。これらの「標準的」/「短い」/「長い」/「早い」/「遅い」等は、それぞれ、各分類基礎項目の評価段階を表す区分であり、「評価区分」と称することができる。
【0050】
履歴行動パターン決定部54は、統計的手法を用いて、各分類基礎項目についての評価を行う。図7には、訪問地点間の移動距離についての評価手法が模式的に示されている。図7の上段に示すように、履歴行動パターン決定部54は、注目しているユーザの複数の行動履歴データAに含まれる移動距離を参照して、その長さに応じた区分毎の頻度を算出する。次に、中段に示すように、履歴行動パターン決定部54は、移動距離に関する全てのデータの中から、イレギュラーな可能性のある推定無効データを削除し、それ以外の推定有効データのみを抽出する。例えば、移動距離順にソートした場合における上位及び/又は下位の所定数のデータ(例えばそれぞれ5%等)を推定無効データとすることができる。
【0051】
次に、下段に示すように、履歴行動パターン決定部54は、推定有効データを母集団とする代表値を算出する。このような代表値としては、例えば平均値や最頻値、中央値等が例示され、本例では平均値が算出される。そして、履歴行動パターン決定部54は、算出された代表値と、予め定められた少なくとも1つ(本例では2つ)の判定閾値とを比較して、それらの大小関係に基づいて移動距離に関する行動傾向を多段階評価(本例では3段階評価)で判定する。なお、訪問地点での滞在時間、出発時刻、及び昼食時刻に関しても、同様の手法により、それぞれに関する行動傾向が判定される。
【0052】
履歴行動パターン決定部54は、ユーザ毎に、各分類基礎項目についての評価区分の組み合わせに応じて、行動パターンを分類する。本例では、履歴行動パターン決定部54は、上記4つの分類基礎項目についてそれぞれ3段階評価を行い、それらの評価区分の組み合わせによって規定される計81パターンの中から、1つの行動パターンを決定する。なお、図6には、一例として、「P1」〜「P6」のユーザIDによって特定された各ユーザの行動パターンが、それぞれ「ABcc」、「BBbb」、「CCbc」、「AAaa」、「ACbc」、及び「CCba」に分類された例が示されている。
【0053】
移動履歴データベース生成部55は、移動履歴データベース63を生成及び更新する機能部である。移動履歴データベース生成部55は、複数ユーザの行動履歴データAから移動履歴データTを抽出し、この移動履歴データTを移動履歴データベース63に記憶(格納)させることにより、移動履歴データベース63を生成及び更新する。ここで、移動履歴データTは、複数のユーザの訪問地点間の移動履歴(訪問地点の遍歴)を記録したデータである。例えば図5の最前面に示される「P1」ユーザの行動履歴データAを参照すれば、当該「P1」ユーザは、D1→D9→D2→D12の順に各訪問地点を訪問したことが分かる。移動履歴データベース生成部55は、これに基づいて、「P1」ユーザがD1からD9に移動したこと、D9からD2に移動したこと、及びD2からD12に移動したこと、をそれぞれ表す移動履歴データTを生成する(図8を参照)。移動履歴データベース生成部55は、他のユーザに関しても、同様にして移動履歴データTを生成する。
【0054】
移動履歴データベース生成部55は、各ユーザについての移動履歴データTを、定義された複数の行動パターンのいずれかに関連付けて移動履歴データベース43に格納する。移動履歴データベース生成部55は、ユーザIDと、履歴行動パターン決定部54により各ユーザについて決定された行動パターンと、行動履歴データAから抽出された移動履歴データTとを、互いに関連付けて移動履歴データベース63に格納する。本実施形態では、移動履歴データTがユーザIDを含む情報として生成される(図8を参照)とともに、ユーザIDに関連付けて各ユーザの行動パターンが記憶されている(図6を参照)。これにより、ユーザIDを介して、各ユーザの行動パターンと移動履歴データTとが適切に関連付けられている。本実施形態では、移動履歴データベース生成部55が本発明における「データベース生成部」に相当する。なお、移動履歴データベース生成部55は、上述の行動履歴データベース生成部53とは異なる機能部であり、これらのうちの一方を第1のデータベース生成部と称し、他方を第2のデータベース生成部と称することもできる。
【0055】
複数ユーザの移動履歴データTは、複数の訪問地点間の相関性(地点間相関度)を算出するために利用される。図9には、移動履歴データベース63に記憶された移動履歴データTから把握される地点間相関度を概念的に示している。なお、ここに示されるのは、全ユーザデータに基づく地点間相関度である。この図において、2つの地点間を結ぶ線は、両地点間を移動するユーザが過去に有意に存在していたことを示している。各線の太さは相関性の高さを表しており、太くなるに従って相関性が高くなる(過去の移動頻度が高かった)ことを示し、細くなるに従って相関性が低くなる(過去の移動頻度が低かった)ことを示している。例えば図9の例では、地点D1に注目すると、当該地点D1は、地点D9との相関性が非常に高く、地点D2との相関性が高く、地点D4との間にある程度の相関性が認められ、地点D6との間には有意な相関性は認められない。他の地点間の相関性も、同様に考えることができる。このような地点間相関度の概念に基づいて、目的地レコメンド機能が実現される。この点については、後述する。
【0056】
管理サーバ5(通信制御部51)は、各車載端末装置2からの配信要求に従い、移動履歴データTを配信する。車載端末装置2の更新処理部24は、受信した移動履歴データTに基づいて移動履歴データベース43を新規に生成し、或いは、既存の移動履歴データベース43を最新の状態へと更新する。この意味で、各車載端末装置2の移動履歴データベース43は、実質的に管理サーバ5の移動履歴データベース63の複製であり、本発明において両データベース43,63は同一視することができる。すなわち、更新頻度の差に起因するデータ内容のズレを除き、両データベース43,63の内容は同一である。このようにして、管理サーバ5に生成された移動履歴データベース63の実質的複製である移動履歴データベース43が、各車載端末装置2に生成される。
【0057】
車載端末装置2の基準行動パターン決定部26は、対象ユーザにとっての、予め定められた基準行動パターンを決定する機能部である。基準行動パターンとは、データ抽出部28による後述する第2及び第3のフィルタリングの実行のための基準となる行動パターンである。本実施形態では、このような基準行動パターンには、対象行動パターンと別行動パターンとが含まれる。対象行動パターンとは、対象ユーザの行動傾向に合う行動パターンである。別行動パターンとは、対象行動パターンとは異なる行動パターンである。
【0058】
基準行動パターン決定部26は、基準行動パターンの一種として、対象行動パターンを決定する。基準行動パターン決定部26は、管理サーバ5の履歴行動パターン決定部54によって定義されるのと同一の複数の行動パターンの中から、対象行動パターンを択一的に決定する。基準行動パターン決定部26による対象行動パターンの決定手法としては、各種の態様が採用可能である。例えば、基準行動パターン決定部26は、行動履歴データベース42に記憶された行動履歴データAに基づいて、履歴行動パターン決定部54と同様の又は類似する統計的手法により対象行動パターンを決定しても良い。また、基準行動パターン決定部26は、その対象ユーザについての履歴行動パターン決定部54による判定結果の情報を取得し、それに基づいて対象行動パターンを決定しても良い。或いは、対象ユーザの手動による直接入力により対象行動パターンを決定しても良い。これらは、対象ユーザについての行動履歴データAの蓄積量等に応じて変更可能であっても良い。本実施形態では、基準行動パターン決定部26が本発明における「対象行動パターン決定部」に相当する。
【0059】
また、基準行動パターン決定部26は、基準行動パターンの一種として、別行動パターンを決定する。本実施形態では、基準行動パターン決定部26は、対象行動パターンを規定する各分類基礎項目の評価区分の組み合わせに対して、特定の1つの分類基礎項目の評価区分が異なる特定の1つの行動パターンを、別行動パターンとして決定する。例えば図6の例において対象行動パターンが「CCbc」に決定された「P3」ユーザに関しては、一例として、4つの分類基礎項目のうちの1つである「移動距離」の評価区分が「長い」から「短い」に強制的に変更された「ACbc」を、別行動パターンとして決定する。或いは、4つの分類基礎項目のうちの1つである「昼食時刻」の評価区分が「遅い」から「早い」に強制的に変更された「CCba」を、別行動パターンとして決定する。もちろん、これら以外の他の分類基礎項目の評価区分を変更したものを、別行動パターンとして決定しても良い。
【0060】
基準地点設定部27は、予め定められた条件(案内基準地点設定条件)に従って案内基準地点を設定する機能部である。案内基準地点とは、案内情報Gに含まれる目的地の候補となり得る地点を決定するための基準となる地点である。このような案内基準地点には、対象ユーザにより指定された目的地(経由地を含む)や、自位置情報に示される自位置等が設定され得る。本実施形態では、案内基準地点設定条件は、対象ユーザによる目的地の指定の有無に関する条件とされている。基準地点設定部27は、対象ユーザにより目的地が指定された場合には、当該指定された目的地を自動的に案内基準地点に設定する。目的地が指定されていない場合には、基準地点設定部27は、自位置を自動的に案内基準地点に設定しても良い。なお、基準地点設定部27は、目的地が指定された場合であっても、特に対象ユーザからの指定があった場合等には、自位置を案内基準地点に設定しても良い。また、その他の地点を案内基準地点に設定しても良い。
【0061】
データ抽出部28は、移動履歴データベース43から、所定の行動パターンに関連付けられているとともに案内基準地点を含む移動履歴データTを抽出する機能部である。データ抽出部28は、移動履歴データベース43に格納された移動履歴データTのうち、設定された案内基準地点に関する情報を含むデータを抽出する。すなわち、データ抽出部28は、全ての移動履歴データTを対象に、対象ユーザに関して現に設定されている案内基準地点を含むか否かに基づいて、第1のフィルタリングを行う。
【0062】
また、データ抽出部28は、第1のフィルタリング後の移動履歴データTのうち、対象行動パターン(対象ユーザの行動傾向に合致する行動パターン)に関連付けられたデータを抽出する。すなわち、データ抽出部28は、第1のフィルタリング後の移動履歴データTを対象に、対象ユーザと同一の行動傾向を示す他のユーザの移動履歴データTであるか否かに基づいて、第2のフィルタリングを行う。また、データ抽出部28は、第1のフィルタリング後の移動履歴データTのうち、別行動パターン(対象ユーザの行動傾向とは異なる行動パターン)に関連付けられたデータを抽出する。すなわち、データ抽出部28は、第1のフィルタリング後の移動履歴データTを対象に、対象ユーザとは異なりかつ類似する行動傾向を示す他のユーザの移動履歴データTであるか否かに基づいて、第3のフィルタリングを行う。
【0063】
これら3つのフィルタリングの順序は、特に限定されない。上記の説明とは反対に、行動パターンに基づく第2及び第3のフィルタリングを行った後に、案内基準地点に基づく第1のフィルタリングを行っても良い。但しこの場合、第2のフィルタリング後の移動履歴データT及び第3のフィルタリング後の移動履歴データTに対して、それぞれ第1のフィルタリングを行う必要がある。このようなフィルタリング処理の冗長性を回避する観点からは、上記で説明したように、先にまとめて第1のフィルタリングを行うように構成することが好ましい。
【0064】
いずれにしても、第1及び第2の2つのフィルタリングを経て最終的に抽出される移動履歴データTは、対象ユーザの行動傾向に合致する他のユーザが、案内基準地点を過去に訪問した際に合わせて訪問した他の地点の情報を含むものとなる。また、第1及び第3の2つのフィルタリングを経て最終的に抽出される移動履歴データTは、対象ユーザとは異なりかつ類似する行動傾向を示す他のユーザが、案内基準地点を過去に訪問した際に合わせて訪問した他の地点の情報を含むものとなる。
【0065】
なお、第2のフィルタリング後の移動履歴データTに基づいて把握される地点間相関度(「加工後地点間相関度」と称する)は、全ユーザデータに基づく地点間相関度(図9を参照)とは異なり得る。また、加工後地点間相関度は、対象行動パターンが互いに異なる対象ユーザどうしの間でも異なり得る。例えば図10には、訪問地点間の移動距離が比較的短いユーザについての加工後地点間相関度が示される。また図11には、訪問地点間の移動距離が比較的長いユーザについての加工後地点間相関度が示される。これらは、互いに全く異なる形態を示すことが明確に理解できる。
【0066】
例えば地点D9に注目した場合、全ユーザデータを考慮した場合には、地点D1との相関度が最も高い(図9を参照)。これに対して、移動距離が比較的短いユーザについてフィルタリングした場合には、地点D1との相関度はほとんどなくなるとともに、地点D8との相関度が最も高くなる(図10を参照)。また、移動距離が比較的長いユーザについてフィルタリングした場合には、地点D1との相関度が低くなるとともに、地点D2との相関度が最も高くなる(図11を参照)。なお、概念的に示された図9図11における各線の太さは相対的なものであるので、フィルタリングにより相対的な相関度が高まった結果として、新たな線分が現れる場合がある。このように、本実施形態では、対象ユーザ毎に、その対象行動パターンに応じて、訪問地点間の移動態様等に関する行動傾向に適合する可能性の高い加工後地点間相関度が決定される。第3のフィルタリング後の移動履歴データTに基づいて把握される地点間相関度も、同様に考えることができる。
【0067】
推薦地点提示部29は、目的地の候補として推奨される地点である推薦地点を対象ユーザに提示する機能部である。推薦地点提示部29は、データ抽出部28により抽出された移動履歴データTに基づいて推薦地点を決定し、それを対象ユーザに提示する。推薦地点提示部29は、互いに異なる特性を有する二種の推薦地点(第一推薦地点/第二推薦地点)を提示する。
【0068】
上述したように、第1及び第2のフィルタリングにより抽出された移動履歴データTは、対象ユーザの行動傾向に合致する他のユーザが、案内基準地点を過去に訪問した際に合わせて訪問した他の地点の情報を含んでいる。そこで、推薦地点提示部29は、それら2つのフィルタリングを経て最終的に抽出される移動履歴データTに含まれる、案内基準地点との間の移動頻度が相対的に高い地点を、第一推薦地点として決定する。言い換えれば、推薦地点提示部29は、案内基準地点を基準とした、対象行動パターンによる加工後地点間相関度が相対的に高い地点を、第一推薦地点として決定する。
【0069】
また、第1及び第3のフィルタリングにより抽出された移動履歴データTは、対象ユーザとは異なりかつ類似する行動傾向を示す他のユーザが、案内基準地点を過去に訪問した際に合わせて訪問した他の地点の情報を含んでいる。そこで、推薦地点提示部29は、それら2つのフィルタリングを経て最終的に抽出される移動履歴データTに含まれる、案内基準地点との間の移動頻度が相対的に高い地点を、第二推薦地点として決定する。言い換えれば、推薦地点提示部29は、案内基準地点を基準とした、別行動パターンによる加工後地点間相関度が相対的に高い地点を、第二推薦地点として決定する。なお、本実施形態では、案内基準地点との間の移動頻度を算出するに際しては、案内基準地点から他の訪問地点への移動と、他の訪問地点から案内基準地点への移動との両方がカウントされる。
【0070】
推薦地点提示部29は、それぞれ抽出された移動履歴データTに基づいて、案内基準地点との間の移動頻度が最も高い地点を含む少なくとも1つの地点を、第一推薦地点及び第二推薦地点として決定する。そして、推薦地点提示部29は、決定された各推薦地点を、現に設定されている目的地の次の目的地の候補として提示する。例えばその旨の案内情報Gを、表示入力装置36の表示領域に設定される案内枠に表示させたり、音声出力装置37から発声させたりする。図12には、一例として、案内基準地点との間の移動頻度が最も高い1つの地点(D2)を、第一推薦地点(次の目的地の候補)として表示及び音声案内する例が示されている。また、案内基準地点との間の移動頻度が最も高い方から2つの地点(D8,D11)を、第二推薦地点(次の目的地の他の候補)として表示及び音声案内する例が示されている。本実施形態では、第一推薦地点は第二推薦地点よりも強調表示される。図示の例では、第一推薦地点は、相対的に広い案内枠領域に、画像データを伴うテキストデータの形態で、より目立つように表示されている。
【0071】
2.ナビゲーション処理の手順
本実施形態に係るナビゲーションシステム1において実行されるナビゲーション処理の手順(ナビゲーション方法)について説明する。以下に説明するナビゲーション処理の手順は、ナビゲーションシステム1の各機能部を構成するハードウェア又はソフトウェア(プログラム)或いはその両方により実行される。各機能部がプログラムにより構成される場合には、ナビゲーションシステム1が有する演算処理装置が、上記の各機能部を構成するプログラムを実行する(各機能を実現させるための)コンピュータとして動作する。
【0072】
図13は、各車載端末装置2における行動履歴データベース42の生成処理の手順を示すフローチャートである。行動履歴データベース生成処理では、まず、その日の日付及び自宅(或いは、前日の宿泊地)の出発時刻が記録される(ステップ#01)。自位置情報に示される自位置が、そのユーザにとっての生活圏の外に位置するか否かが判定される(#02)。なお、生活圏の範囲は、自宅位置に基づいてユーザ毎に予め設定されている。
生活圏外であると判定されると(#02:Yes)、次に、訪問地点(目的地に設定された地点や、所定時間以上滞在したと判定された地点)の存在が確認される(#03)。訪問地点があると判定されると(#03:Yes)、その訪問地点についての地点ID、到着時刻、及び滞在時間が記録される(#04)。ステップ#03及び#04の処理が、自宅(或いは、その日の宿泊地)に到着するまで繰り返し実行される。帰宅が判定されると(#05:Yes)、その帰宅時刻が記録される(#06)。以上のようにして、当日の行動履歴データAが生成され、その行動履歴データAに基づいて行動履歴データベース42が生成(更新)される(#07)。
【0073】
図14は、管理サーバ5における移動履歴データベース63の生成処理の手順を示すフローチャートである。移動履歴データベース生成処理では、まず、各車載端末装置2から、ユーザ毎の行動履歴データAが収集される(#11)。収集された行動履歴データAに基づいて、全てのユーザの行動履歴データAを含む行動履歴データベース62が生成される(#12)。このとき、行動履歴データAは、ユーザIDに関連付けられた状態で記憶される。ユーザIDに基づいてユーザ毎の行動履歴データAが抽出され(#13)、これらに対して統計的手法を適用することにより、ユーザ毎の行動パターンが決定される(#14)。また、行動履歴データAから、移動履歴データTが抽出される(#15)。なお、行動パターンの決定と移動履歴データTの抽出とは、逆の順序で実行されても良い。抽出された移動履歴データTに基づいて、全てのユーザの移動履歴データTを含む移動履歴データベース63が生成される(#16)。このとき、移動履歴データTは、ユーザID及びそれぞれの行動パターンに関連付けられた状態で記憶される。そして、各車載端末装置2からの配信要求を受けて(#17:Yes)、移動履歴データTが配信される(#18)。
【0074】
図15は、各車載端末装置2における推薦地点の提示処理の手順を示すフローチャートである。推薦地点提示処理では、まず、対象ユーザの行動傾向に合致する行動パターン(対象行動パターン)が決定されるとともに(#21)、それとは異なる行動パターン(別行動パターン)が決定され(#22)、さらに案内基準地点が設定される(#23)。これらは、順不同で実行されても良い。次に、全ての移動履歴データTから、案内基準地点に関する情報を含むデータが抽出される(#24)。続いて、ステップ#24で抽出された移動履歴データTから、対象行動パターンに関連付けられたデータが抽出される(#25)。そして、ステップ#24及び#25の2つの抽出処理を経た後の移動履歴データTに含まれる、案内基準地点との間の移動頻度が相対的に高い地点が、第一推薦地点として決定される(#26)。
【0075】
また、ステップ#24で抽出された移動履歴データTから、別行動パターンに関連付けられたデータが抽出される(#27)。そして、ステップ#24及び#27の2つの抽出処理を経た後の移動履歴データTに含まれる、案内基準地点との間の移動頻度が相対的に高い地点が、第二推薦地点として決定される(#28)。これらの第一推薦地点及び第二推薦地点は、次の目的地の候補として対象ユーザに提示される(#29)。
【0076】
以上説明したように、本実施形態に係るナビゲーションシステム1及びナビゲーション方法は、目的地レコメンド機能を実現するに際して、対象行動パターンに基づくフィルタリング(第2のフィルタリング)後のデータを利用する点に特徴を有する。これにより、訪問地点間の移動態様等に関する各ユーザの行動傾向が適切に考慮された目的地レコメンド機能が実現される。すなわち、ユーザ毎に、その行動パターンに応じて、行動傾向に適合する可能性の高い地点を優先的に第一推薦地点として提案することができる。よって、ユーザが不慣れな地域を訪問した場合であっても、各ユーザのそれぞれに対して有益な情報を提供することができる。
【0077】
また、別行動パターンに基づくフィルタリング(第3のフィルタリング)後のデータを利用して、第一推薦地点以外の他の地点(第二推薦地点)を合わせて提示する点にも特徴を有する。よって、対象ユーザにとって意外性のある地点を第二推薦地点として提案することができ、対象ユーザに対して、新たな興味を喚起し得る情報を提供することができる。
【0078】
3.その他の実施形態
最後に、本発明に係るナビゲーションシステムの、その他の実施形態について説明する。なお、以下のそれぞれの実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することも可能である。
【0079】
(1)上記の実施形態では、基準行動パターン決定部26が、対象行動パターンとは異なる特定の1つの行動パターンを別行動パターンとして決定する例について説明した。しかし、本発明の実施形態はこれに限定されない。別行動パターンは、対象行動パターン以外の複数の行動パターンの論理和(集合)として規定されても良い。例えば、対象行動パターン以外の全ての行動パターンの論理和として規定されても良い。
【0080】
(2)上記の実施形態では、基準行動パターン決定部26が、対象行動パターンを規定する各分類基礎項目の評価区分の組み合わせに対して、特定の1つの分類基礎項目の評価区分が異なる行動パターンを、別行動パターンとして決定する例について説明した。しかし、本発明の実施形態はこれに限定されない。別行動パターンは、対象行動パターンを規定する各分類基礎項目の評価区分の組み合わせに対して、特定の2つ以上の分類基礎項目の評価区分が異なる行動パターンとして決定されても良い。評価区分が異なる分類基礎項目の数が多くなるに従って、対象行動パターンとの乖離度が大きくなるために対象ユーザの行動傾向とは大きく異なる行動傾向を示すユーザが好む地点が、第二推薦地点として提示される可能性が高まる。この場合、各ユーザに対して、より意外性の高い地点を第二推薦地点として提案することができる。
【0081】
(3)上記の実施形態では、推薦地点提示部29が、案内基準地点との間の移動頻度が最も高い1つの地点を第一推薦地点として決定して対象ユーザに提示する例について説明した。また、案内基準地点との間の移動頻度が最も高い方から複数(上記の例では2つ)の地点を第二推薦地点として提示する例について説明した。しかし、本発明の実施形態はこれに限定されない。推薦地点提示部29が、案内基準地点との間の移動頻度が最も高い地点を含む複数の地点を第一推薦地点として提示しても良い。また、案内基準地点との間の移動頻度が最も高い1つの地点を第二推薦地点として提示しても良い。
【0082】
(4)上記の実施形態では、推薦地点提示部29が、案内基準地点を含む2地点間での移動方向(向き)を問うことなく、案内基準地点との間の移動頻度が相対的に高い地点を推薦地点として決定して対象ユーザに提示する例について説明した。しかし、本発明の実施形態はこれに限定されない。例えば、推薦地点提示部29が、2地点間での移動方向(向き)にも基づき、案内基準地点からの移動先となった頻度が相対的に高い地点を推薦地点として提示しても良い。
【0083】
(5)上記の実施形態では、行動履歴データAから移動履歴データTを抽出するに際して、直接的に移動した地点間の移動のみを抽出する例について説明した。しかし、本発明の実施形態はこれに限定されない。例えば、途中の訪問地点の経由を除外した、地点間の間接的な移動をも抽出しても良い(図5の例におけるD1→D2やD1→D12等)。この場合、間接的な地点間の移動に関する移動履歴データTを、直接的な地点間の移動に関する移動履歴データTに比べて、より小さく重み付けしても良い。つまり、地点間の移動頻度を集計するに際して、間接的な地点間の移動を「1」よりも小さな値でカウントするように構成しても良い。
【0084】
(6)上記の実施形態では、推薦地点提示部29が、決定された第一推薦地点及び第二推薦地点を、現に設定されている目的地の次の目的地の候補として提示する例について説明した。しかし、本発明の実施形態はこれに限定されない。例えば推薦地点提示部29が、第一推薦地点及び第二推薦地点の少なくとも一方を、現に設定されている目的地に到達するまでの立寄地の候補として提示しても良い。
【0085】
(7)上記の実施形態では、各ユーザの行動パターンが、出発時刻及び昼食時刻等の、特定行動の開始時期に基づいて分類された例について説明した。しかし、本発明の実施形態はこれに限定されない。例えば、1日の旅行行動全体の終了時期である帰宅時刻や、1日の行動の中の特定イベント(例えば、食事等)の終了時刻等に基づいて、各ユーザの行動パターンが分類されても良い。
【0086】
(8)上記の実施形態では、分類基礎項目としての訪問地点間の移動距離、訪問地点での滞在時間、出発時刻、及び昼食時刻についてそれぞれ3段階評価を行い、それら3段階の評価区分の組み合わせに基づいて行動パターンが分類される例について説明した。しかし、本発明の実施形態はこれに限定されない。分類基礎項目の項目数や、評価区分の段階数は任意とすることができる。分類基礎項目は、上記の実施形態における例と比較して少なくても良いしさらに多くても良い。評価区分の段階数に関しても、上記の実施形態における例と比較して少なくても良いしさらに多くても良い。また、分類基礎項目の内容としては、種々の事項を設定することができる。
【0087】
(9)上記の実施形態では、行動パターン分類のための各分類基礎項目についての評価に際して、全てのデータの中から推定無効データを削除して残った推定有効データを母集団とする代表値を算出し、その代表値に基づいて行動傾向を判定する例について説明した。しかし、本発明の実施形態はこれに限定されない。例えば、イレギュラーな可能性のあるデータをも含む全てのデータを母集団とする代表値を算出し、その代表値に基づいて行動傾向を判定しても良い。
【0088】
(10)上記の実施形態では、管理サーバ5による移動履歴データベース63の生成(更新)に際して、対象ユーザの行動履歴もが反映される例について説明した。しかし、本発明の実施形態はこれに限定されない。例えば、対象ユーザに対応する車載端末装置2が、管理サーバ5に対して行動履歴データAを送信しないように構成されても良い。そして、その車載端末装置2は、専ら他の車載端末装置2から収集された行動履歴データAに基づいて生成される移動履歴データTを利用して目的地レコメンド機能を実現するように構成されても良い。この場合、移動履歴データTは、管理サーバ5から配信されるものであっても良いし、車載端末装置2に予め記憶(格納)されたものであっても良い。
【0089】
(11)上記の実施形態では、車載端末装置2にデータ抽出部28及び推薦地点提示部29が備えられ、車載端末装置2側でデータ抽出処理、推薦地点決定処理、及び推薦地点提示処理が実行される例について説明した。しかし、本発明の実施形態はこれに限定されない。例えば、これらのうちのデータ抽出処理及び推薦地点決定処理が、管理サーバ5側で実行されても良い。この場合、管理サーバ5にデータ抽出部及び推薦地点決定部が備えられ、これらの機能部により、上記の実施形態と同様にして推薦地点が決定される。決定された推薦地点の情報が対象ユーザの車載端末装置2に送信され、当該推薦地点が目的地の候補として提示される。
【0090】
(12)上記の実施形態では、集約された移動履歴データTが、管理サーバ5と車載端末装置2との間で通信網3を介して直接的に配信される例について説明した。しかし、本発明の実施形態はこれに限定されない。移動履歴データTが、ユーザの手を介して配信されても良い。例えば、通信網3を介して配信される移動履歴データTを自宅のパーソナルコンピュータ等でダウンロードした各ユーザが、取得した移動履歴データTをフラッシュメモリ等のメディアを用いて車載端末装置2に移行させても良い。或いは、各ユーザが、フラッシュメモリや光ディスク等のメディアに記憶(格納)された状態で配信される移動履歴データTを車載端末装置2に移行させても良い。
【0091】
(13)上記の実施形態では、ナビゲーションシステム1を構成する車載端末装置2が、車両に固定された据付型のナビゲーション装置である例を想定して説明した。しかし、本発明の実施形態はこれに限定されない。車載端末装置2は、少なくともユーザと共に車両に搭載されていれば良く、必ずしも車両に固定されていなくても良い。そのような非据付型のナビゲーション装置としては、例えばPND(Portable Navigation Device)や、所定のナビアプリを実行可能に備えた多機能携帯電話等が例示される。なお、これらの装置を用いる場合、必ずしも車両に搭載されていなくても良い。すなわち、本実施形態に係るナビゲーションシステム1は、ナビゲーション機能を備えた移動端末装置と、複数の移動端末装置と通信可能に設けられた管理サーバ5とにより構成されても良い。
【0092】
(14)その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の実施形態はこれに限定されない。すなわち、本願の特許請求の範囲に記載されていない構成に関しては、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
【産業上の利用可能性】
【0093】
本発明は、目的地レコメンド機能を実行可能なナビゲーションシステムに利用することができる。
【符号の説明】
【0094】
1 :ナビゲーションシステム
26 :基準行動パターン決定部(対象行動パターン決定部)
27 :基準地点設定部
28 :データ抽出部
29 :推薦地点提示部
42 :行動履歴データベース
43 :移動履歴データベース
52 :データ収集部
54 :履歴行動パターン決定部
55 :移動履歴データベース生成部(データベース生成部)
62 :行動履歴データベース
63 :移動履歴データベース
A :行動履歴データ
T :移動履歴データ
G :案内情報
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15