(58)【調査した分野】(Int.Cl.,DB名)
前記入射光は1つの波長を有し、ここにおいて前記第1の回折光学素子(DOE)と前記第2の回折光学素子(DOE)は、前記それぞれの区域が、特定の波長域において前記入射光の波長に依存せず無関係に、前記表面をタイルを貼るように覆うように構成される、ことを特徴とする請求項1−3のいずれか1つの請求項に記載の装置。
前記第1の回折光学素子(DOE)によって生成された分離した出力光の光線角度が前記入力光線波長で増加または減少し、かつ前記回折パターンが前記波長で同様に増加または減少する立体角を有しており、前記光線角度における変化を補償するようになっている請求項4に記載の装置。
【発明の概要】
【0006】
本発明のある実施形態では、第1の回折光学素子(DOE)は第2のDOEの近くに配置される。第1のDOEは1つの入射光を回折し1つの0次光線を含む第1の回折パターンを生成する。第2のDOEは0次光線を受光し、それより第2の回折パターンを生成する。2つの回折パターンは1つの空間に投影するため、第1及び第2の回折パターンはその空間内の1つの所定の表面に対し、其々その表面の第1及び第2の区域を覆う。典型的に2つの区域は比較的小さな隙間および/または重なりが有っても、その表面全体を効率的に覆う。
典型的に第1の区域は第1の矩形と第1の矩形の中の第2の小さい矩形の間の区域に画定される。2つの矩形は共通の中心点と平行な辺を有し、互いに対称に配置される。第2の区域は第2の矩形で囲まれる区域である。或いは2つの区域は、一方が他方の中に存する非矩形の形状で画定されてもよい。
【0007】
2つのDOEを使用することにより、第1のDOEからの0次光線は第2の回折パターンを形成するのに使用されて効率的に減衰される。その結果2つの区域全体で測定したピーク対平均電力比は、典型的に1つのDOEを使用するシステムに比べて有意に減少する。
2つのDOEが組合わされることにより、回折パターンの形成が2つのDOEに分散されるようにDOEが構成されることが可能になる。このように分散した回折パターンの形成は、ここでは2つのDOEの1つの分散設計と呼ばれる。分散設計により0次光線が第2のDOEに使用されるため、第1のDOEの0次光線の制御されないエネルギー成分が有意に減少した、1つの全体回折パターンの形成が可能となる。言い換えれば、本発明の実施形態は従来システムで典型的に好ましくないと考えられていた0次光線の余剰エネルギーという特徴を利用し、使用している。
【0008】
結果的に、本発明の分散設計により形成された回折パターンは、1つのDOEを使用した回折パターン形成の効率に比べて全体的効率性を向上させた。さらに以下に述べるある実施形態では、2つのDOEにより要求された分散角度が1つのDOEを使用した場合より小さいため、分散設計により形成された光線の明暗コントラストは典型的に1つのDOEを使用した場合より大きい。
【0009】
他の実施形態では、第1の回折パターンは複数の実質的に平行な光線からなる。典型的に第1のDOEは1つのダマン格子(Dammann grating)である。第2のDOEは其々の光線を回折し其々の回折パターンを形成するパターン生成装置として機能する。この実施例における分散設計において、其々の回折パターンは、少なくとも部分的にその面を覆うため1つの面の其々の区域上に投影し、それらの区域はその面全体を覆う。あるいはさらに、回折パターンは1つの既定の空間を満たすサブ空間に投影する。一般的に、全てのパターン生成装置は単一のDOE上に設置可能であるが、第1の回折パターンの異なる光線は同一のパターン生成装置を通過する必要はない。第1の回折パターンの光線はそれぞれ第2のDOEの対応区域を通過して適切に方向づけられる。このようにこの実施形態で生成されるタイルは同一であってもなくてもよい。
【0010】
さらに他の実施形態では、1つのDOEが1つの0次光線を有する1つの回折パターンを形成し、1つの干渉フィルタがその0次光線を受光するように配置される。干渉フィルタは、フィルタへの1つの除去方向角度からの入射光に対し1つの狭帯域除去フィルタとして作動し、除去角度以外の角度からの入射光を通過させるように構成される。フィルタは0次光線がフィルタ上に除去角度で衝突するように配置され配向される。0次光線以外の回折パターンの光線はフィルタと除去角度とは異なる角度を作り、従ってフィルタを通過する。0次光線の無い回折パターンはこのようにフィルタを通過し、既定の1つの空間に投影し、そして/あるいは1つの面の既定の1つの区域上に投影する。
【0011】
上記の実施形態は特に回折光学素子について述べているが、本発明の原理はあるいは屈折要素を含む光学システム、詳しくは屈折及び回折要素両方を含むシステムに適用されうる。
【0012】
さらに本発明の1実施形態によれば、1つのパターンを投影する装置であって、
複数の離れた出力光を生成するために1つの入射光を回折するように構成された第1の1つの回折光学素子(DOE)と、複数の回折パターンのそれぞれを1つの表面のそれぞれの区域に形成するために、複数の離れた出力光に対し回折効果を適用するように構成された第2の1つの回折光学素子(DOE)と、ここにおいてそれぞれの区域は共同してその表面を少なくとも部分的に覆い、を有することを特徴とする装置が提供される。
【0013】
またさらに他の実施形態によれば、1つのパターンを投影する方法であって、複数の離れた出力光を生成するために、1つの入射光を第1の1つの回折光学素子(DOE)で回折するステップと、複数の回折パターンのそれぞれを1つの表面のそれぞれの区域に形成するために、第2の1つの回折光学素子(DOE)で複数の離れた出力光に対し回折効果を適用するステップと、ここにおいてそれぞれの区域は共同してその表面を少なくとも部分的に覆い、を有することを特徴とする方法が提供される。
【0014】
本発明は図面を参照した以下の詳細な説明により、より十分に理解される。
【発明を実施するための形態】
【0016】
本仕様および請求項において1つの平面の1つの区域における1つのタイルは、その区域を有意の重なり又は有意の隙間なく埋め尽くす複数の平面図形又は複数のタイルの1つの集合体から構成されるものとする。
図1Aは本発明の第1の参考例に基づく1つの光学装置10の概略側面図であり、
図1Bは本発明の第1の参考例に基づく上記光学装置10が投影する区域の概念図である。光学装置10は1つの第1の光学回折素子(DOE)12と、1つの第2の光学回折素子14からなる。例示のため以下の記述では、DOE12とDOE14とは互いに実質的に平行で距離「d
1」離れて配置されるものとする。しかしこの2つのDOEは平行である必要はなく、好適ないかなる角度で配置されてもよい。光学装置10においてDOE12とDOE14は、例示のため、1つの透明な光学素子16の第1と第2の面に形成されるものとする。他の実施形態では、DOE12とDOE14は分離された光学素子上に形成されてもよい。DOE12とDOE14は透過型素子であるが、以下で記述される本実施形態および他の実施形態の原理は、2つの反射型DOEまたは透過型と反射型のDOEの1つの組合せによっても実行されうる。
【0017】
光線発生装置18は、典型的にはレーザである波長λ
1の1つの入射光線20を発生する。典型的に、例えば光線発生装置18が多重モードレーザからなる場合は、入射光線20は楕円形の断面を有する。ある実施形態では入射光線20は円形の断面である。入射光線20は平行光線または非平行光線であり、非平行光線の場合の非平行度、即ち光線の分散または収斂は、非平行光線の異なる部分からの回折縞が重ならないように典型的には設定される。以下の記述では、例示のため、入射光線は平行光線と仮定する。
【0018】
以下で詳細に説明される通り、DOE12とDOE14は、多重の光線からなるそれぞれ異なる回折パターンを生成する。
光学素子16はDOE12が光線を受けるように配置され、例示のため、DOE12は光線にほぼ垂直であると仮定する。DOE12は光線20の断面に一致するように構成された1つの光学活性部位17を有する。光学活性部位17はまた、光線20からDOE12により形成された1つの全体回折パターンが、光学素子16の遠方側の側面に入射する1つの第一の回折パターン23と、1つの0次光線32から構成されるように構成される。第一の回折パターン23は、1つの平面24の1つの区域22上に対応する1つの回折像22Iを投影する。(作図の便利さと明確化のため、
図1Aと
図1Bの実施形態は回折パターンの特定の1つの平面への投影に関しているが、実際には回折パターンは、後続の図面に示されるように、1つの空間に投影され、その空間は平面24に対している。)例示のため、第一の回折像は以下では1組の分散した点30からなり、各点30はDOE12の1つの回折次元の光線に対応するものとする。ある実施形態では、およそ10
6の回折次元がDOE12により形成される。およそ10
5の回折次元光線が点を形成するのに使用され、残りの回折次元光線は抑制される。
【0019】
しかし、第一の回折像22Iは離れた複数の点から構成されるのではなく、例えば1組の類似の又は異なる強度の線、段階的に強度が変化する1つ以上の区域を有する1つの像、又は点、線、および/または段階的に強度が変化する区域の1つの組合せからなる1つの像、からなる。
第1の回折パターン23の投影はDOE14の1つの光学的に不活性な透明部位31を経由して行われ、それにより第一の回折パターン23は実質的に部位31により変化を受けない。
図1Bは1組の複数の点30を概略的に示す。これらの点はDOE12により、回折像22Iとして平面24の区域22上に形成される。
【0020】
例示として、区域22は以降では1つの外部境界として1つの矩形26を、内部境界として1つの矩形28を有し、この2つの矩形は共通の中心点を有するものとする。このように区域22は実質的に、DOE12により回折像が形成されない1つの中心区域27を有する1つの「環状」区域である。区域22の環状の形状は、回折パターン23が1つの中空の円錐または角錐の形状であることの結果である。しかし、区域22はこの特定の環状の形状である必要はなく、典型的には区域22は好適な環状の区域であってよい。この区域22は典型的には、平面24の中心区域27にある実質的にどんな形でもよい1つの場所を有し、この場所にはDOE12により回折像が形成されない。ある実施形態では、矩形26に対する平面角度、即ち第1の0次光線32に対する矩形の隅がなす角度、の最大値はおよそ30度である。
【0021】
上記の第1の回折像の形成に加えて、回折された光線20のエネルギーのある部分は実質的に非分散の0次光線32としてDOE12から出力する。0次光線32は、典型的にDOE12の製造における限界によりもたらされるが、しかし0次光線に十分なエネルギーを供給するため、少なくとも部分的に光学回折素子DOEの設計および製造に組み込まれうる。0次光線32を装置10により後に形成される0次光線と区別するため、0次光線32を以降初期0次光線32と呼ぶ。初期0次光線32は一般的に入射光線20と類似の断面を有する。
【0022】
DOE14は、DOEの光学活性部位33で初期0次光線32を受光し、その光線から、DOE14の遠方野に投影する1つの第2の回折パターン29と1つの0次光線37からなる、1つの全体回折パターン39を形成するように構成されている。DOE14は、DOE14で形成された第2の回折パターン29が1つの第2の回折像27Iを中心区域27上に投影し、典型的に上記中心区域27を覆うように設計されている。中心区域27全体は、第2の回折像27Iと第1の回折像22Iとの間の隙間または重複が典型的に少ないように覆われ、それによりこの2つの回折像は共同して平面24の1つの部位25を覆う。ある実施形態では、隙間または重なりの直線寸法は、2つの回折像の内小さい方の回折像の最大直線寸法のおよそ0.1%より小さい。例えば、像27Iが像22Iより小さく、その最大寸法が100mmの場合、隙間または重なりはおよそ0.1mmより小さい。このように区域22と中心区域27は少なくとも部分的に部位25をカバーし、実質的にその部位を覆うように構成されてもよい。
【0023】
0次光線37は、以降第2の0次光線とも呼ばれるが、第1の0次光線32により画定される方向から分散しない。0次光線37は点37Iとして区域27のほぼ中心に投影する。
例として矩形28に対する平面角度、即ち第2の0次光線37に対して測定される矩形の隅に対する角度の最大値は、典型的に約10度である。
上記の記述は第1と第2の回折パターンの寸法を記述するのに平面角度を使用するが、寸法はそれぞれ第1及び第2の回折パターンに対する第1の立体角および第2の立体角と表示されることが好ましい。
【0024】
上記の第1の回折パターン23に対する第1の0次光線32のエネルギー流束の総量は、典型的には入射光線20の入射エネルギー流束の約5%である。上記の第2の回折パターン29に対する第2の0次光線37のエネルギー流束の総量は典型的には第1の0次光線32のエネルギー流束の総量の約1%である。このように第2の0次光線37のエネルギー流束の総量は入射光線20の入射エネルギー流束の0.1%より小さく、典型的には約0.05%である。第2の0次光線37のエネルギー流束の減衰により、2つの区域で測定された回折光子のピーク対平均電力比は1つの光学回折素子DOEを使用した場合に比べ有意に低下する。
実質的に区域25全体を覆うように像を形成する2つの回折パターンに加えて、ある実施形態では、2つの回折パターンは典型的に区域25全体の回折像の強度分布が概して均一であるように構成される。
【0025】
上述のような、区域25全体に渡って覆い、均一な強度分布を得るために、DOE12とDOE14の以下の独立パラメータが変えられる:
・入射光線20の波長λ
1
・第1の回折パターンの外側及び/または内側の立体角
・初期の0次光線のエネルギー流束
・第2の回折パターンの立体角
・第2の0次光線のエネルギー流束
・入射光線20の寸法やDOE間の距離d
1等の幾何学的要素
・光学活性部位33の寸法
【0026】
上記独立パラメータの相互依存は当業者にとっては明らかであろう。例えば、ある回折パターンの立体角が増加すると、それぞれの回折パターンの0次光線のエネルギー流束は増加する傾向にある。パラメータの選択は、他のパラメータの選択とともに、従来技術の光学回折素子DOEを位相マスクとして設計することにより典型的に行われる。例えばDOEは、ゲルヒベルグ・サックス反復アルゴリズムあるいはその変形の1つを使用して設計されうる。
あるいは、標準的又は特別仕様のソフトウェアがDOEの設計に使用されうる。例えば‘Phase Retrieval Algorithms:A Comparison,’J.R.Fienup著、Applied Optics 21,2758−2769(1982年8月1日)に記載の設計方法を使用することができる。
【0027】
ある実施形態では、DOE12とDOE14は上記の全体を覆う効果(タイル効果)が入射光の波長λ
1の変化に実質的に無関係に適用される。回折パターンに対する波長の変化の影響は以下で
図3A、3Bの装置160を参照して説明される。当業者であればその説明を装置10に対する波長変化の影響に適用することが出来よう。
部位25全体の強度分布が均一である要求は無く、ある実施形態では2つの異なる回折パターンの間に比較的大きな強度の差異がある。このような変化の1つの例を
図3A、3Bを参照しながら説明する。
【0028】
本発明の第2の参考例に基づく光学装置110の概略側面図を
図2に示す。装置10(
図1A,1B)に使用されるいくつかの要素は装置110の要素の機能と同じであり、両図において同一の参照番号を付した要素は類似の構成及び機能を有する。装置110は回折パターンを空間102に投影するように構成されている。
装置110は1つの第1の光学回折素子DOE112及び第2の光学回折素子DOE114を有し、以下記述を除き、装置10のDOE12及びDOE14について上述したように稼働し、構成される。このようにDOE12及びDOE14は距離「d
4」離れて互いに平行に配置され、1つの単一の透明光学要素116の第1及び第2の表面に形成される。
装置10と同様に装置110における入射光線20はこの例では平行光線と仮定する。
【0029】
透明光学要素116はDOE112が入射光線20を受光し、ほぼ入射光線20に対し垂直であるように配置される。DOE112は1つの光学活性部位117を有し、その寸法は入射光線20の断面に一致する。光学活性部位117はDOE112により入射光線20から形成される1つの全体回折パターン121が第1の1つの回折パターン123を有するように構成される。第1の回折パターン123は第1の回折パターン23と一般的に類似の特性を持ち、典型的に平行光線または空間102のそれぞれの区域に焦点を結ぶ光線を有し、それらの光線は入射光線20により形成される異なる回折次元の光線である。回折パターン123はこのように空間102内で1つの中空中心区域127を有する概ね切頭角錐の1つの形状125に投影する。全体回折パターン121はさらに1つの初期0次光線132を有し、それは初期0次光線32と類似の特性を有し、切頭角錐形状125の1つの対称軸にほぼ沿った方向に向いている。
【0030】
第1の回折パターン123の投影は、回折パターン123が実質的に変化を受けないように、DOE114の光学的不活性部位131を経由する。
DOE114はまたDOEの光学的活性部位133で初期0次光線132を受け、1つの第2の回折パターン129と1つの第2の0次光線137からなる1つの全体回折パターン139を初期0次光線132から形成する。DOE114は、第2の回折パターン129が光学的活性部位133からの出力光を中心区域127に投影し、その中心区域127全体を覆う1つのほぼ切頭角錐の形状129を形成するように設計される。DOE114は、典型的にはその出力光が平行であるか、または空間102に焦点を合わされるように構成される。
【0031】
しかし、第2の回折パターン129は、少なくとも空間102内の幾つかの面において、角錐形状125に重なってもよく、このような重複域は1つの影の区域141として示される(明確化のため、このような重複において起こる、全体回折パターン139を示す線の変化は
図2には記載していない)。初期0次光線132と第2の0次光線137は典型的には上記の装置10の初期0次光線32と第2の0次光線37に類似したエネルギー流束を持つ。
【0032】
装置110はこのように第1の回折パターン及び第2の回折パターンを有する、空間102に投影する1つの合成回折パターンを形成することができる。装置10と同様に、2つのDOEを使用し、第2のDOEはその回折パターンを第1のDOEの0次光線から形成して、装置110はその合成回折パターンを効率よく形成し、そのため第2の0次光線には不望のエネルギーは殆ど存在しない。
装置10及び装置110の操作に関する考察により、合成回折パターンの異なる部位は要求される回折効果を2つのDOEで配分することにより形成されることがわかる。このような配分、または分散は以降2つのDOEの配分設計と呼ばれる。本発明の配分設計により、第1のDOEの0次光線の制御されないエネルギー成分を減少させる、1つの全体回折パターンの形成が可能となる。それは、配分設計が0次光線を所望の回折パターンの一部の形成に使用するためである。
【0033】
本発明の第1の実施例を
図3A、3Bに示す。
図3Aは1つの光学装置160の概略図である。
図3Bは装置160による1つの平面163に投影された複数の区域を概念的に示す図である。装置10と装置160に示された素子のいくつかは一般的に同じ機能であり、両図において同一の参照番号を付した要素は類似の構成及び機能を有する。
【0034】
装置160において光線発生装置18は入射光線20に類似の1つの入射光線162を生成し、その波長はλ
2である。装置160は光線162をDOEの光学的活性部位161で受光する第1のDOE164または1次DOE164を有する。第1のDOE164の形状は入射光線162の断面に一致するように構成されてもよい。装置160はまた第2の1つのDOE166または2次DOE166を有する。例示のため以下ではDOE164及びDOE166は距離「d
2」離れて互いに実質的に平行に配置されるものと仮定する。しかし2つのDOEは互いに平行である必要はなく、好適な角度で対向してもよい。例示のため、DOE164とDOE166は単一の透明光学要素168の対向する2つの表面に形成される。しかしある実施形態では2つのDOEは異なる光学素子に形成されてもよい。
【0035】
装置10とは異なり、1次DOE164は多重のほぼ平行な比較的狭い幅のDOEからの出力光線174を生成するように構成される。DOE164はダマン(Dammann)格子として形成されると有利である。ある実施形態では、DOE164は出力光線174が、入射光線162に垂直な、1つの対称な点のパターン172を有する1つの仮想平面170を横切る様に構成される。対称な1つの点のパターンの1例を
図176に示す。複数の点172は平面170の一部を覆う合同な矩形の隅に配置される。
DOE164の出力光により形成される複数の点の対称パターンの他の事例は当業者にとって自明であり、本発明の範囲に含まれる。さらなる実施形態では、平面170の上に形成される複数の点のパターンは部分対称または非対象である。例えばDOE164に針クッション型のゆがみが有るときのように、上述の合同矩形の対象パターンは変形され、矩形の隅は非矩形の4面体の隅となる。典型的には出力光線174の1つは入射光線162に関して実質的に非分散でありDOE164に対する1つの0次元光線と同等である。
【0036】
1次DOE164は典型的に出力光線174が同等のエネルギー流束及び一般的に類似の断面を有するように形成される。装置10と同様に、1次DOE164は0次光線に相当する出力光線174における総エネルギーが、製造上の限界によるエネルギーも含んで、所望の値を有するように構成される。
2次DOE166はそれぞれの光学活性区域169で光線174を受光するように構成される。光学活性区域169はそれぞれの光線によりそれぞれの全体回折パターン184を形成する。このように2次DOEが1次DOEから受光した1つの0次光線を回折する装置10と異なり、装置160では2次DOEは1次DOEから受光した多重の出力光線174を効率的に回折する。
【0037】
それぞれの1つの出力光線174によって形成された各回折パターン184は典型的に狭い立体角を有し、それぞれ1つの0次光線180からなり、それはそれぞれの第2の0次光線180とも呼ばれる。ある実施形態では、各全体回折パターン184はその第2の0次光線180に対し垂直に測定して、変形した矩形の断面を持ち、その変形は典型的に針クッション型のゆがみを有する。各第2の0次光線180はそれぞれの出力光線174のエネルギー流束の約1%以下のエネルギー流束を有し、それぞれの第2の0次光線180は平面163に1つの点180Iを形成する。各出力光線174がほぼ同じエネルギー流束を有し、15本の光線がある場合は、各第2の0次光線180は入射光線162のエネルギー流束の約0.07%以下のエネルギー流束を持つ。
【0038】
各全体回折パターン184は、それぞれの回折像185Iを、入射光162に垂直な平面163の1つの部位178の1つの区域185上に投影すると仮定する。区域185は一般に互いに形状が類似し、それぞれほぼその中心に点180Iが位置する。ある実施形態では、区域185は上述の針クッション効果により変形した矩形である。DOE164とDOE166は、区域185従って像185Iが部位178全体を覆うように構成される。典型的に、区域185の重なりは少なく、或いは存在せず、区域は部位178全体をほぼ覆う。
【0039】
ある実施形態では、第2のDOE166により生成された回折像185Iは複数の点を有し、装置10に関して上述したように、各点はDOEの1つの回折次元に相当する。ある実施形態では、DOE164とDOE166は、部位178全体にわたる像185Iの強度分布が概して均一であり、隣接する像185Iとの間が僅かであるか、或いは明確に区別できないように構成される。装置10と同様に、像185Iの強度分布が全体的に均一である必要はなく、ある実施形態では高強度の像185Iと低強度の像185Iとの間の強度比は約1:2である。
【0040】
本発明のある実施形態では、DOE164とDOE166は、上述のタイル効果が入射光162の波長λ
2と実質的に無関係に起こるように構成される。DOE164がダマン格子からなる場合、波長λ
2の増減は入射光線162と出力光線174とがなす角度を増減するように影響する。さらに波長λ
2の増減とともに回折パターン184の立体角が増減する。この2つの影響は同時に起こり、上記のタイル効果を維持するように働き、出力光線174の角度の変化は回折パターン184の立体角の変化により補償される。その補償は距離d
2が減少するに従って増大し、距離d
2が小さい場合、波長λ
2の変化に対しタイル効果は実質的にほぼ維持され、距離d
2が実質的に0の場合、正確に維持される。
【0041】
上記の記述は、DOE164とDOE166が配分設計方式において、所望の像を平面163上に投影するためにいかに構成されるかを示している。しかし実際には、像は
図3Aの空間187のような1つの空間に投影され、空間内に存在する平面163または非平面の面全てを照明する。各回折パターン184は空間187のそれぞれのサブ空間189に投影し、サブ空間189は典型的に空間187全体を覆う。
図3Aでは明確化のため2つのサブ空間189のみ示されている。
従前の実施形態と同様に、
図3A、3Bの実施形態の原理は他のDOEの構成を使用して実現可能である。例えば、光軸上のDOE164とDOE166の順番は逆転してもよい。さらにあるいは、少なくとも1つのDOEは図で示される透過型ではなく、反射型であってもよい。
【0042】
本発明の第2の実施例に基づく光学装置200の概略図を
図4に示す。装置10(
図1A,1B)に使用されるいくつかの要素は装置200の要素の機能と同じであり、両図において同一の参照番号を付した要素は類似の構成及び機能を有する。
装置200において光線発生装置18は入射光線20に類似の1つの入射光線202を生成し、その波長はλ
3である。装置200はある実施形態では入射光線202に垂直で、寸法が光線202の断面に一致するDOEの光学的活性部位210で入射光線202を受光する、1つのDOE204を有する。装置200においてDOE204が光線202に垂直なように構成する方が便利であるが、そうなければならない要求はない。装置200はさらにDOE204と離れて位置し、1つの位置調整可能な台205に搭載された1つの光学素子(OE)208を有する。
【0043】
光学的活性部位210は、一般的に円錐形または角錐形の、1つの0次光線216を有する、1つの全体回折パターンを形成する。光学素子(OE)208は波長λ
3を除去可能に調整される1つのノッチフィルタとして構成される。ある実施形態では、ノッチフィルタは1つの狭帯域の帯域除去干渉フィルタからなる。このような実施形態では、狭帯域の帯域除去干渉フィルタの角度選択特性を使用する。このように、波長λ
3の放射光を除去するように構成された1つのフィルタは、放射光がある公称入射角でフィルタに入射した場合、放射光を効率的に除去する。そのフィルタは、上記公称入射角以外の入射角で入射する波長λ
3の放射光を透過する。
【0044】
この実施形態では、光学素子(OE)208は、空間ホログラフィ格子(VHG)又は空間ブラッグ格子(VBG)などの格子型ノッチフィルタを有する。(空間ホログラフィ格子は、例えば米国特許5,691,989に記載されており、その内容はここに参照として含まれる。製品はオンダックス社(Ondax, Inc.)、米国カリフォルニア州から入手可能である。)
光学素子(OE)208は、典型的に入射光線202の線幅と同じ帯域除去線幅を有するように構成される。このように光線発生装置18が半値全幅1nmの光線を生成する1つのレーザダイオードである場合、光学素子(OE)208は選択された公称入射角に対し同一の半値全幅を持つように構成される。あるレーザの構成では、VHGのような1つの格子要素はレーザキャビティの出力カプラとして使用され、ノッチ波長を反射しキャビティに戻し、それによりレーザがこの波長で固定される。同じ型の第2の格子要素は光学素子(OE)208として使用されうる。この素子は回折パターンの0次光線をレーザ波長において正確に除去する。
【0045】
操作においては、台205は、光学素子(OE)208が0次光線216の実質的に全てのエネルギーを吸収するように、回転されて光学素子(OE)208と調整される。典型的には調整後、0次光線216と光学素子(OE)208は選択された公称入射角に近い1つの角度を形成する。調整後は、光学素子(OE)208において回折パターン(0次光線の無い)が作る角度は0次光線の作る角度とは異なるため、光学素子(OE)208は回折パターン214内の実質的に全ての残存エネルギーを透過する。ある実施形態では、光学素子(OE)208が調整された後は、光学素子は1つの合成光学要素を形成するために、光学の従来技術で周知の方法でDOE204に固定され、台205は撤去される。
【0046】
DOE204と光学素子(OE)208は、上述の装置110で述べたように、回折パターン214が1つの既定の空間224に投影されるように構成される。あるいは2つの要素は、回折パターン214が1つの平面222の1つの区域220上に1つの回折像220Iを形成するように構成されてもよい。回折像は典型的に上記装置10を参照して記載された1つ以上の像に類似している。
【0047】
上記の記述はDOE204と光学素子(OE)208が離れた要素に配置されることを前提としているが、ある実施形態ではDOEと干渉フィルタは単一の透明な要素の両側に配置されてもよい。単一要素の場合には、対向する2つの面は平行でも非平行でもよい。これらの実施形態では、単一要素はそれを回転することで光線202に対して調整され、0次光線の実質的に全てのエネルギーは吸収される。
あるいは反射型の構成において、光学素子(OE)208は、0次光線が通過することを許容し、一方で回折像の残りを所望の空間に反射するように配置された、1つのノッチ・パスフィルタで代替されてもよい。
【0048】
上記の実施形態における要素は、組み合わせにより本発明の他の実施形態を形成することは理解されよう。例えば回折パターン23及び29に実質的に影響を与えることなく第2の0次光線37のエネルギーを実質的にゼロにするため、装置200(
図4)で記載された干渉フィルタに類似のフィルタが装置10(
図1A)のDOE14の後方に追加されてもよい。同様の追加が装置110のDOE114の後方に追加されてもよい。他の有利な組合せは当業者にとって自明である。
【0049】
上記の実施形態は例示のために引用されたものであり、本発明は上記に特に示され記載されたものに限定されない。むしろ本発明の範囲は、上記の記載を読んだ当業者が想起する先行技術にない上記に記載された種々の特徴の組合せやサブ組合せを含み、その変形や修正を含む。