特許第6049277号(P6049277)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ キヤノン株式会社の特許一覧

<>
  • 特許6049277-振動型駆動装置 図000002
  • 特許6049277-振動型駆動装置 図000003
  • 特許6049277-振動型駆動装置 図000004
  • 特許6049277-振動型駆動装置 図000005
  • 特許6049277-振動型駆動装置 図000006
  • 特許6049277-振動型駆動装置 図000007
  • 特許6049277-振動型駆動装置 図000008
  • 特許6049277-振動型駆動装置 図000009
  • 特許6049277-振動型駆動装置 図000010
  • 特許6049277-振動型駆動装置 図000011
  • 特許6049277-振動型駆動装置 図000012
  • 特許6049277-振動型駆動装置 図000013
  • 特許6049277-振動型駆動装置 図000014
  • 特許6049277-振動型駆動装置 図000015
  • 特許6049277-振動型駆動装置 図000016
  • 特許6049277-振動型駆動装置 図000017
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6049277
(24)【登録日】2016年12月2日
(45)【発行日】2016年12月21日
(54)【発明の名称】振動型駆動装置
(51)【国際特許分類】
   H02N 2/04 20060101AFI20161212BHJP
【FI】
   H02N2/04
【請求項の数】5
【全頁数】14
(21)【出願番号】特願2012-62262(P2012-62262)
(22)【出願日】2012年3月19日
(65)【公開番号】特開2013-198264(P2013-198264A)
(43)【公開日】2013年9月30日
【審査請求日】2015年3月19日
(73)【特許権者】
【識別番号】000001007
【氏名又は名称】キヤノン株式会社
(74)【代理人】
【識別番号】100126240
【弁理士】
【氏名又は名称】阿部 琢磨
(74)【代理人】
【識別番号】100124442
【弁理士】
【氏名又は名称】黒岩 創吾
(72)【発明者】
【氏名】小島 信行
【審査官】 土田 嘉一
(56)【参考文献】
【文献】 特開平04−004772(JP,A)
【文献】 特開平09−019173(JP,A)
【文献】 特開2004−140948(JP,A)
【文献】 実開平02−079195(JP,U)
(58)【調査した分野】(Int.Cl.,DB名)
H02N 2/00 − 2/18
(57)【特許請求の範囲】
【請求項1】
電気−機械エネルギー変換素子と、前記電気−機械エネルギー変換素子が接合された振動板とを有する振動子と、
前記振動子の接触部と加圧接触する摩擦面を備えており該振動子に対して前記摩擦面に沿う相対移動方向に相対駆動する被駆動体と、を有する振動型駆動装置であって、前記振動子を保持する保持部材と、
前記保持部材を前記摩擦面の法線方向に沿って移動可能にガイドするガイド機構と、前記摩擦面に対する前記法線方向に沿う押圧力と共に前記相対移動方向に沿う押圧力を、前記保持部材に発生させる加圧手段と、
を有することを特徴とする振動型駆動装置。
【請求項2】
前記振動型駆動装置は、前記被駆動体を挟んで対向するように配置された第一の振動子と第二の振動子を有し、
前記二つの振動子を保持する保持部材は、前記第一の振動子を保持する第一保持部材と、前記第二の振動子を保持する第二保持部材とによって構成され、
前記第一保持部材と前記第二保持部材とが、前記ガイド機構によって前記摩擦面の法線方向に移動可能にガイドされ、
前記加圧手段によって、弾性力を発生させることで前記被駆動体における前記振動子の接触部との前記摩擦面に前記法線方向に沿う押圧力を与えると共に、前記ガイド機構に対して前記相対移動方向に沿う押圧力を発生させることを特徴とする請求項1に記載の振動型駆動装置。
【請求項3】
前記振動子は、前記被駆動体を挟んで対向するように配置された第一の振動子と転動部材によって構成されると共に、
前記振動子を保持する保持部材は、前記第一の振動子を保持する第一保持部材と、前記転動部材を保持する第二保持部材とによって構成され、
前記第一保持部材と前記第二保持部材とが、前記ガイド機構によって前記摩擦面の法線方向に移動可能にガイドされ、
前記加圧手段によって、弾性力を発生させることで前記被駆動体における前記振動子の接触部との前記摩擦面に前記法線方向に沿う押圧力を与えると共に、前記ガイド機構に対して前記相対移動方向に沿う押圧力を発生させることを特徴とする請求項1に記載の振動型駆動装置。
【請求項4】
前記ガイド機構は、略円筒状の穴と略円柱状の部材とによる嵌め合いを含み構成されていることを特徴とする請求項1から3のいずれか1項に記載の振動型駆動装置。
【請求項5】
前記加圧手段は、前記法線方向に対して傾斜して配置され引っ張り力を発生するコイルばねで構成されていることを特徴とする請求項1から4のいずれか1項に記載の振動型駆動装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は振動型駆動装置に関する。特に、異なる振動モードの振動を組み合わせることにより超音波振動子と被駆動体を相対移動させる振動型駆動装置に関する。
【背景技術】
【0002】
超音波振動子に異なる振動モードの振動を発生させてこれらの振動を組み合わせることにより超音波振動子と被駆動体を相対移動させる振動型駆動装置が提案されている。
この振動型駆動装置には超音波振動子と被駆動体との間に摩擦力を発生させるための加圧構造が備えられる。また、発生する出力を増やすために同形状の超音波振動子を二つ用いる振動型駆動装置が、例えば特許文献1等において提案されている。
特許文献1に開示されているような振動型駆動装置では、超音波振動子と被駆動体に押圧力を与えるための一つの加圧ばねと、二つの超音波振動子を保持固定するための4つの支持ばねを備えている。
また、これらのばねが弾性力を発生できるように略箱形状のケース部品でばねや超音波振動子を囲んでいる。
一対の支持ばねで一つの超音波振動子の長手方向両端、即ち相対運動方向に加圧、支持が行われている。二つの超音波振動子それぞれが同様に加圧、支持されている。
このような構成により、振動波駆動装置が出力を発生させるときに生じる反力による超音波振動子のずれやガタつきを抑制している。
【0003】
以上のほか超音波振動子を2つ用いる振動型駆動装置として、例えば図15図16に示す形態を採るものが知られている。
図15は従来例における振動型駆動装置の斜視図、図16は同振動型駆動装置の分解斜視図である。
振動型駆動装置1は略各棒状の被駆動体20を備える。被駆動体20は超音波振動子と摩擦接触するので例えばステンレス材等の耐摩耗性に優れる材料で形成される。
被駆動体20に対して図中−Z側に超音波振動子を備える第一の振動子ユニット3−1が配される。
第一の振動子ユニット3−1は振動子ユニット固定部材24に固定される。被駆動体20の図中+Z側に超音波振動子を備える第二の振動子ユニット3−2が配される。第二の振動子ユニット3−2は振動子ユニット固定部材25に固定される。
振動子ユニット固定部材24には、略図中Z方向に向けて丸穴形状に形成される二つのガイド穴24bが形成される。
振動子ユニット固定部材24には、後述する弾性部材27と組み合わされる二つの突起部24cが形成されている。
同様に振動子ユニット固定部材25には、略図中Z方向に向けて丸穴形状に形成される二つのガイド穴25bが形成される。振動子ユニット固定部材25には、後述する弾性部材27と組み合わされる二つの突起部25cが形成されている。
【0004】
振動型駆動装置1は伝達部材16を備える。伝達部材16は振動型駆動装置1の発生する出力を外部へ伝達する伝達部16a、及び略図中Z方向へ延出する四つの伝達ピン16bを備える。
伝達部材16の二つの伝達ピン16bは振動子ユニット固定部材24の二つのガイド穴24bと嵌合されてガイド機構を形成する。
同様に伝達ピン16bと振動子ユニット固定部材25の二つのガイド穴25bとが嵌合されてガイド機構を形成する。
このように組み合わされることで伝達部材16に対して振動子ユニット固定部材24及び25は図中Z方向にのみ移動可能となる。
振動子ユニット3−1、3−2で被駆動体20を挟むように対向して配置しており、また、振動子ユニット3−1、3−2は被駆動体20に対して図中Z方向即ち接触部の押圧方向に相対移動可能である。
振動子ユニット固定部材24と25がZ方向に互いに引っ張り合うように二つの弾性部材27により弾性的な力が作用している。
このように、前述したガイド機構により二つの超音波振動子とスライダの摺動面とに所望の押圧力を与えることを阻害せず、X方向への発生力の伝達を行う作用が得られる。
ただし、ここで示したガイド機構は丸棒と丸穴が滑るように嵌合させているために図中X方向に数〜10マイクロメートル程度の隙間が生じることは避けられない。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2001−86777号公報([0013]等、図1
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1により開示されている振動型駆動装置における超音波振動子の支持構造の場合、超音波振動子と被駆動体との間に押圧力を発生させるための加圧ばね、及び超音波振動子を保持固定するための4つの支持ばねの計5つのばね部品を備えている。
加えて、上記振動型駆動装置は略箱形状のケース部品を要している。
このように上記振動型駆動装置では、超音波振動子を支持固定するために複数の部品とスペースが必要となるという課題を有する。
また、図15及び図16で説明した振動型駆動装置においては、部品点数や小型化に関しては有効な構成であるが、前述したガイド機構に内在する隙間によるガタつきが生じるために高精度の位置決めや応答性能が得られないという課題を有する。
【0007】
本発明は、上記課題に鑑み、部品点数を増加させず小型化することができ、位置決め精度や応答性能の向上を図ることが可能となる振動型駆動装置の提供を目的とする。
【課題を解決するための手段】
【0008】
本発明の振動型駆動装置は、電気−機械エネルギー変換素子と、前記電気−機械エネルギー変換素子が接合された振動板とを有する振動子と、
前記振動子の接触部と加圧接触する摩擦面を備えており該振動子に対して前記摩擦面に沿う相対移動方向に相対駆動する被駆動体と、を有する振動型駆動装置であって、
前記振動子を保持する保持部材と、
前記保持部材を前記摩擦面の法線方向に沿って移動可能にガイドするガイド機構と、
前記摩擦面に対する前記法線方向に沿う押圧力と共に前記相対移動方向に沿う押圧力を、前記保持部材に発生させる加圧手段と、
を有することを特徴とする。
【発明の効果】
【0009】
本発明によれば、部品点数を増加させず小型化することができ、位置決め精度や応答性能の向上を図ることが可能となる振動型駆動装置を実現することができる。
【図面の簡単な説明】
【0010】
図1】本発明の実施形態1における振動型駆動装置の構成例を示す斜視図。
図2】本発明の実施形態1における振動型駆動装置の構成例を示す平面図。
図3】本発明の実施形態1における振動型駆動装置の構成例を示す分解斜視図。
図4】本発明の実施形態1における振動型駆動装置の構成例を示す断面図。
図5】本発明の実施形態1における振動型駆動装置を用いた駆動機構の斜視図。
図6】本発明の実施形態1における超音波振動子の斜視図。
図7】本発明の実施形態1における超音波振動子の振動モードを表わす図。
図8】本発明の実施形態1における振動子ユニットを示す斜視図。
図9】本発明の実施形態1における振動型駆動装置の他の形態を示す斜視図。
図10】本発明の実施形態2における振動型駆動装置の構成例を示す分解斜視図。
図11】本発明の実施形態2における振動型駆動装置の構成例を示す斜視図。
図12】本発明の実施形態3における振動型駆動装置の構成例を示す斜視図。
図13】本発明の実施形態3における振動型駆動装置の構成例を示す分解斜視図。
図14】本発明の実施形態3における振動型駆動装置の構成例を示す断面図。
図15】従来例における振動型駆動装置の構成を示す斜視図。
図16】従来例における振動型駆動装置の構成を示す分解斜視図。
【発明を実施するための形態】
【0011】
以下、本発明の実施形態について図面を参照しながら詳述する。
(実施形態1)
実施形態1として、振動型駆動装置の構成例について、図1を用いて説明する。
先ず、本実施形態における振動型駆動装置の概要について説明する。
図1に示すように、振動型駆動装置1は略角棒状の被駆動体20を備える。
被駆動体20は超音波振動子2と摩擦接触するので、例えばステンレス材等の耐摩耗性に優れる材料で形成される。
被駆動体20に対して、図中−Z側に第一の振動子ユニット3−1が配される。振動子ユニット3−1は、後述する超音波振動子2の突起部11bが被駆動体20と当接するように向きが決められている。
第一の振動子ユニット3−1は、振動子ユニット固定部材(第一保持部材)14に固定される。
また、被駆動体20の図中+Z側に、第二の振動子ユニット3−2が配される。振動子ユニット3−2は、後述する超音波振動子2の突起部が被駆動体20と当接するように向きが決められている。
第二の振動子ユニット3−2は、振動子ユニット固定部材(第二保持部材)15に固定される。
【0012】
振動型駆動装置1は伝達部材16を備える。
伝達部材16は振動子ユニット固定部材14及び15を保持すると共に振動型駆動装置1の発生する出力を外部へ伝達する作用を成す。
さらに、振動子ユニット固定部材14と15とに保持される、二つの弾性部材(加圧手段)17が配される。
本実施形態においては弾性部材17としてコイルばねを用いている。コイルばねであればサイズに対して発生力が得られるので結果として振動型駆動装置1の小型化を達成し易い。
ただし、弾性部材17としては板バネ等、他の形態を用いても良い。
【0013】
つぎに、本発明の実施形態1における超音波振動子2の構成について、更に説明する。
図6に、実施形態1で用いる超音波振動子2の斜視図を示す。
超音波振動子2は金属材料により略板状に形成される振動板11、及び電気−機械エネルギー変換素子である圧電素子材料により略矩形形状に形成される圧電素子板12を接着等により接合され一体化して形成される。
超音波振動子2には圧電素子板12と外部との電気的な接続を行う不図示のフレキシブル基板等が備えられる。
振動板11は略中央に位置する矩形状の振動部11a、振動部11aの上面における図中X方向2箇所に形成される突起部11b、及び振動部11aのX方向両側に形成される固定部11cを備えている。
振動板11はX方向及びY方向に略対称形状である。二つの突起部11bの上端は不図示の被駆動体の摩擦面と加圧接触する箇所である。
【0014】
図7を用いて、以上で説明した超音波振動子2に励起される二つの振動モードについて説明する。
本実施形態では圧電素子板12に交流電圧を印加して超音波振動子2に二つの面外曲げ振動モード(MODE−AとMODE−B)を励振する。
MODE−Aは超音波振動子2の長手方向である図中X方向に略平行に二つの節が現れる一時の面外曲げ振動モードで、YZ面に略対称な形状である。
MODE−Aの振動により二つの突起部11bには被駆動体と接触する面と垂直な方向(Z方向)に変位する振幅が励振される。MODE−Bは超音波振動子2の図中Y方向に略平行に三箇所の節が現れる支持の面外曲げ振動モードで、YZ面に逆対称且つXZ面に略対称な形状である。
MODE−Bの振動によって二つの突起部11bには被駆動体と接触する面と平行な方向(X方向)に変位する振幅が励振される。
これら二つの振動モードを組み合わせることで接触部である二つの突起部11bの上面に略XZ面内の楕円運動成分が発生し、略X方向に被駆動体を駆動させる力が発生する。
このように生成可能とされた楕円運動による駆動力によって、超音波振動子2と被駆動体とは略X方向に相対移動する。
【0015】
図8に、超音波振動子2を用いた振動子ユニット3の斜視図を示す。
振動子ユニット3は図6等を用いて説明した超音波振動子2と、振動子保持部材13とから形成される。
振動子保持部材13は略板状に形成される基部13a、一つの面に突出している二つの振動子固定部13bが形成される。
振動子固定部13bは超音波振動子2の固定部11cと接着や溶接等の手段で接合される。
【0016】
図1に戻り、本実施形態における振動型駆動装置1について、更に詳細な説明をする。
図2に示す本実施形態の振動型駆動装置の平面図をY方向から見た分解斜視図を、図3に示す。
これら図1図3を用いて振動型駆動装置1を説明する。
振動子ユニット固定部材14には、略図中Z方向に向けて丸穴形状に形成される二つのガイド穴14bが形成される。
振動子ユニット固定部材14には、弾性部材17と組み合わされる二つの突起部14cが形成されている。
同様に振動子ユニット固定部材15には、略図中Z方向に向けて丸穴形状に形成される二つのガイド穴15bが形成される。
振動子ユニット固定部材15には、弾性部材17と組み合わされる二つの突起部15cが形成されている。
【0017】
伝達部材16は振動型駆動装置1の発生する出力を外部へ伝達する伝達部16a、及び略図中Z方向へ延出する四つの伝達ピン(略円柱状の部材)16bを備える。
伝達部材16の二つの伝達ピン16bは振動子ユニット固定部材14の二つのガイド穴(略円筒状の穴)14bと嵌合されてガイド機構を形成する。
同様に、伝達ピン16bと振動子ユニット固定部材15の二つのガイド穴15bとが嵌合されてガイド機構を形成する。
このように組み合わされることで、伝達部材16に対して振動子ユニット固定部材14及び15は図中Z方向にのみ移動可能となる。
振動子ユニット3−1、3−2で被駆動体20を挟むように対向して配置しており、また、振動子ユニット3−1、3−2は被駆動体20に対して図中Z方向、即ち接触部の押圧方向に相対移動することが可能である。
このことから、後述するように加圧力を与えた時にその力が押圧力として作用する。
ただし、ここで示したガイド機構は丸棒と丸穴が滑るように嵌合させているために図中X方向に数〜10マイクロメートル程度の隙間が生じることは避けられない。
ガイド機構としてはここで説明した構成に限定されず、二つの振動子ユニット固定部材14と15とがX方向にガイドされる構成を選択すれば良い。
ただし、一般的な滑りを伴う位置規制機構においては同様の隙間が避けられない。
振動子ユニット固定部材14の二つの突起部14cと振動子ユニット固定部材15の二つの突起部15cとを繋ぐように二つの弾性部材17が配される。
この弾性部材17により生じる弾性力で二つの振動子ユニット固定部材14、15が互いに引張られることで被駆動体20と二つの超音波振動子2の突起部11bとに押圧力が生じる。
【0018】
二つの弾性部材17は図2に示すようにZ方向に対してXZ面内で角度を持つように配され、弾性部材17はX方向の引張り力を発生する。
図4は伝達部材16の伝達ピン16bを含むXZ面における振動型駆動装置の断面を模式的に表わしたものである。
二つの弾性部材17により振動子ユニット固定部材14は+Z方向の力と共に+X方向の力を受ける。
この+X方向の力は二つのガイド穴14bと伝達ピン16bとの接触面に作用して、伝達部材16に対して振動子ユニット固定部材14が+X方向に規制される。
同様に、二つの弾性部材17により振動子ユニット固定部材15は−Z方向の力と共に−X方向の力を受ける。
この−X方向の力は二つのガイド穴15bと伝達ピン16bとの接触面に作用して、伝達部材16に対して振動子ユニット固定部材15が−X方向に規制される。
このように、弾性部材(加圧手段)17によって、Z方向(法線方向)に弾性力を発生させることで被駆動体における振動子の接触部との摩擦面に押圧力を与えると共に、ガイド機構に対してX方向(相対移動方向)の押圧力を発生させることができる。
この結果、ガイド機構に内在する隙間に起因するガタつきを抑え、二つの振動子ユニット3の駆動力をダイレクトに伝達部材16に伝えることが可能となり、高精度の位置決め、応答性の高い振動型駆動装置1を実現することができる。
また、本実施形態の振動型駆動装置1は二つの超音波振動子2の発生力が合成されることで高出力を得ることができる。
【0019】
図5に振動型駆動装置1を用いた駆動機構4を示す。
駆動機構4はベース部材31、二つのガイド保持部材32,33、二つのガイド軸36,37、稼働部35を備えている。
ガイド保持部材32,33はベース部材31に固定される。二つのガイド軸36,37は各々の両端がガイド保持部材32,33に固定される。稼働部35は二つのガイド軸36,37と組み合わされて図中X方向に移動可能に保持される。振動型駆動装置1の被駆動体20はその両端をガイド保持部材32,33及び二つの被駆動体固定部材34により固定される。振動型駆動装置1に備えられる伝達部材16の固定部16aは稼働部35に固定される。
超音波振動子2と被駆動体との相対移動力により稼働部35が図中X方向に駆動される。
本発明は直動運動を発生する振動型駆動装置に限定しない。例えば、図9に示すように回転運動が得られる被駆動体21を用いた回転運動を発生する振動型駆動装置にも適用できる。
【0020】
(実施形態2)
実施形態2として、実施形態1のように超音波振動子を二つ用いる形態とは異なり、超音波振動子を一つ用いた振動型駆動装の構成例について、図10図11を用いて説明する。
図10は本実施形態における振動型駆動装置の分解斜視図であり、図11は斜視図である。
本実施形態のように、必要な出力に応じて超音波振動子を1個としても、本発明は適用可能である。
なお、本実施形態において、超音波振動子1、振動子ユニット3は実施形態1で説明したものと同一である。
また、振動子ユニット固定部材(第一保持部材)14、伝達部材16、被駆動体20も実施形態1で説明したものと同一である。よってこれらの構成品の説明は省略する。
【0021】
被駆動体20を挟んで振動子ユニット3と対向する位置に、ガイドローラ(転動部材)18が配される。
ガイドローラ18はガイドローラ保持部材(第二保持部材)19により自転可能に保持される。
ガイドローラ保持部材19には、略図中Z方向に向けた丸穴形状に形成される二つのガイド穴19bが形成される。
ガイドローラ保持部材19には、弾性部材17と組み合わされる二つの突起部19cが形成されている。
伝達部材16の二つの伝達ピン16bとガイドローラ保持部材19の二つのガイド穴19bとが嵌合されてガイド機構を形成する。
このように組み合わされることでガイドローラ18及びガイドローラ保持部材19は被駆動体20に対して図中Z方向に移動可能となる。
【0022】
振動子ユニット固定部材14の二つの突起部14cとガイドローラ保持部材19の二つの突起部19cとを繋ぐように二つの弾性部材17が配される。
この弾性部材17により生じる弾性力で振動子ユニット固定部材14とガイドローラ保持部材19が互いに引張られることで被駆動体20と超音波振動子2の突起部11bとに押圧力が生じる。
二つの弾性部材17は図2に示すようにZ方向に対してXZ面内で角度を持つように配され、弾性部材17はX方向の引張り力を発生する。
実施形態1と同様に弾性部材17の発生力を用いて、超音波振動子2と被駆動体20との押圧力、及びガイド機構への図中X方向への位置関係を規制する力を発生させることができる。
この結果、振動子ユニット3の駆動力をダイレクトに伝達部材16に伝えられるので、高精度の位置決め、応答性の高い振動型駆動装置1を実現できる。
【0023】
(実施形態3)
実施形態3として、超音波振動子を一つ用いた振動型駆動装の上記実施形態2とは異なる形態の振動型駆動装置の構成例について、図12図13を用いて説明する。
図12は本実施形態における振動型駆動装置1の斜視図であり、図13は分解斜視図である。
本実施形態において、超音波振動子1、振動子ユニット3及び被駆動体20は実施形態1、2で説明したものと同じであるので説明を省略する。
また、振動子ユニット固定部材15は実施形態1で説明したものと同じであるので説明を省略する。
【0024】
振動型駆動装置1は振動子ユニット3−1を固定する振動子ユニット固定部材22を備える。
振動子ユニット固定部材22は振動子ユニット3−1を固定する固定部22a、振動型駆動装置1の発生する出力を外部へ伝達する伝達部22c及び略図中Z方向へ延出する二つの伝達ピン22bを備える。
更に二つの突起部22dを備える。
振動子ユニット3−1に備えられる超音波振動子2の発生力は、振動子ユニット固定部材22を介して直接外部に伝達することができる。
振動子ユニット固定部材22の二つの伝達ピン22bは振動子ユニット固定部材15のガイド穴15bと嵌合されて互いにZ方向に変位可能に組み合わされる。振動子ユニット固定部材15の二つの突起部15cと振動子ユニット固定部材22の二つの突起部22dとを繋ぐように二つの弾性部材17が配される。
この弾性部材17により生じる弾性力で二つの振動子ユニット固定部材15、22が互いに引っ張られることで被駆動体20と二つの超音波振動子2の突起部11bとに押圧力が生じる。
二つの弾性部材17は図2に示すようにZ方向に対してXZ面内で角度を持つように配され、弾性部材17はX方向の引張り力を発生する。
【0025】
図14は、振動子ユニット固定部材22の伝達ピン22bを含むXZ面における振動型駆動装置の断面を模式的に表わしたものである。
二つの弾性部材17により振動子ユニット固定部材22は+Z方向の力と共に+X方向の力を受け、振動子ユニット固定部材15は−Z方向の力と共に−X方向の力を受ける。
これらX方向の力は二つのガイド穴15bと伝達ピン22bとの接触面に作用して、振動子ユニット固定部材22に対して振動子ユニット固定部材15が−X方向に規制される。
この結果、振動子ユニット3−2の駆動力がダイレクトに振動子ユニット固定部材22に伝えられる。
前述のように振動子ユニット3−1の駆動力はダイレクトに振動子ユニット固定部材22に伝えられるので、二つの振動子ユニット3−、3−2の発生力をダイレクトに取り出すことができる。
この結果、高精度の位置決め、応答性の高い振動型駆動装置1を実現できる。
以上で説明した本発明の各実施形態の構成によれば、振動型駆動装置における超音波振動子の保持と出力伝達を行うガイド機構に内在する隙間に起因するガタつきを、部品点数を増加させることなく抑えることが可能となる。
これらにより、簡易で省スペースであると共に優れた位置決め精度や応答性能が得られる振動型駆動装置が実現できる。
【符号の説明】
【0026】
1:振動型駆動装置
2:超音波振動子
3:振動子ユニット
4:駆動機構
11:振動板
12:圧電素子板
13:振動子保持部材
14:振動子ユニット固定部材(第一保持部材)
15:振動子ユニット固定部材(第二保持部材)
16:伝達部材
17:弾性部材
18:ガイドローラ
19:ガイドローラ保持部材
20:被駆動体
21:被駆動体
22:振動子ユニット固定部材
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16