(58)【調査した分野】(Int.Cl.,DB名)
前記大径部の前記中心軸に対する距離と前記小径部の前記中心軸に対する距離の比率と、前記大径部における前記被膜厚と前記小径部における前記被膜厚の比率とが略一致している請求項1に記載の超伝導加速空洞。
超伝導材料によって筒状に形成された空洞本体と、該空洞本体の周囲に設置され、該空洞本体の外周面との間に形成される空間に外部から供給口を介して供給される冷媒を貯蔵する冷媒槽とを備え、前記空洞本体の外周面が、前記超伝導材料よりも導電性の高い金属材料により被膜されている超伝導加速空洞の電解研磨方法であって、
電源の正極に接続された陽極部を前記供給口から挿入して前記空洞本体の前記外周面に接触させる陽極設置工程と、
前記電源の負極に接続された陰極部を前記空洞本体の内部に挿入する陰極設置工程と、
前記空洞本体の内部に電解液を供給する供給工程と、
前記電源による通電を開始して前記空洞本体の内面を電解研磨する電解研磨工程とを備えた超伝導加速空洞の電解研磨方法。
前記大径部の前記中心軸に対する距離と前記小径部の前記中心軸に対する距離の比率と、前記大径部における前記被膜厚と前記小径部における前記被膜厚の比率とが略一致している請求項6に記載の超伝導加速空洞の電解研磨方法。
【発明の概要】
【発明が解決しようとする課題】
【0005】
電解研磨が行われた後、超伝導加速空洞本体の周囲には、超伝導加速空洞を冷却するための液体ヘリウム等の冷媒を貯蔵する冷媒槽が設置される。この冷媒槽は、冷媒の漏れ等を防止するために、超伝導加速空洞の周囲を覆うように配置される複数の部材を溶接等により強固に接合することにより設置される(例えば、特許文献2参照。)。
【0006】
電解研磨が行われた超伝導加速空洞本体の内面は平滑で不純物が除去された状態となるが、外部からの荷電粒子が導かれる入口管と、外部へ荷電粒子を導く出口管を超伝導加速空洞本体に取り付ける際に、ゴミ等の異物が超伝導加速空洞本体の内部に侵入する可能性がある。ゴミ等の異物が超伝導加速空洞本体の内部に侵入すると、発熱や放電等を誘発することとなり、超伝導加速空洞の性能が低下してしまう。この性能の低下を解消するためには、再び電解研磨を行って超伝導加速空洞本体の内面を平滑にすればよい。
【0007】
しかしながら、冷媒槽を超伝導加速空洞本体の周囲に設置した後は、空洞本体の外面の任意の位置に電極を設置することが困難であるため、電極の接触の有無(接触状態)によって電解研磨の研磨度が不均一となる問題があった。したがって、冷媒槽を超伝導加速空洞本体の周囲に設置した後に、冷媒槽を取り外すことなく再び超伝導加速空洞本体の電解研磨を均一に行うことは、容易ではなかった。
【0008】
本発明は、このような事情を鑑みてなされたものであり、冷媒槽を設置した後でも再び電解研磨を行うことが容易な超伝導加速空洞、および超伝導加速空洞の電解研磨方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記目的を達成するために、本発明は、以下の手段を採用する。
本発明に係る超伝導加速空洞は、超伝導材料によって筒状に形成された空洞本体と、該空洞本体の周囲に設置され、該空洞本体の外周面との間に形成される空間に外部から供給口を介して供給される冷媒を貯蔵する冷媒槽とを備え、前記空洞本体の外周面が、前記超伝導材料よりも導電性の高い金属材料により被膜されている。
【0010】
本発明に係る超伝導加速空洞には、超伝導材料によって筒状に形成された空洞本体の周囲に冷媒槽が設置されている。この冷媒槽には、外部から冷媒が供給される供給口が設けられており、この供給口を介して電源の正極に接続された陽極部を冷媒槽の内部に挿入することが可能である。空洞本体の外周面は、超伝導材料よりも導電性の高い金属材料により被膜されているため、冷媒槽の内部に挿入された陽極部を空洞本体の外周面に接触させることにより、空洞本体を均一に電解研磨の陽極とすることができる。
【0011】
そして、空洞本体の内側に電源の負極に接続された陰極部を挿入し、空洞本体の内部に電解液を供給することにより、空洞本体の内面を電解研磨することができる。
このように、本発明に係る超伝導加速空洞によれば、冷媒槽を設置した後でも再び電解研磨を行うことが容易な超伝導加速空洞を提供することができる。
【0012】
本発明の第1態様の超伝導加速空洞は、前記空洞本体が、大径部と、該大径部よりも該空洞本体の中心軸に対する距離が短い小径部とが
該空洞本体の軸方向に沿って交互に形成された形状となっており、
前記軸方向における前記供給口
の位置が、
前記軸方向における前記大径部
の位置と一致している。
このようにすることで、冷媒槽の供給口に近接した位置に配置された空洞本体の大径部に対して、供給口から挿入される陽極部を容易に接触させることができる。
【0013】
本発明の第2態様の超伝導加速空洞は、前記空洞本体が、大径部と、該大径部よりも該空洞本体の中心軸に対する距離が短い小径部とが
該空洞本体の軸方向に沿って交互に形成された形状となっており、前記大径部における前記金属材料の被膜厚が、前記小径部における前記金属材料の被膜厚よりも厚くなっている。
【0014】
このようにすることで、電解研磨が行われる際に陰極が配置される空洞本体の中心軸に近い小径部よりも、中心軸から遠い大径部で、より電流を流れやすくすることができる。これにより、空洞本体の内面において電解研磨による研磨度が不均一になる不具合を抑制することができる。
【0015】
本発明の第2態様の超伝導加速空洞においては、前記大径部の前記中心軸に対する距離と前記小径部の前記中心軸に対する距離の比率と、前記大径部における前記被膜厚と前記小径部における前記被膜厚の比率とが略一致しているようにしてもよい。
このようにすることで、空洞本体の大径部における被膜厚と小径部における被膜厚とを、電解研磨が行われる際に陰極が配置される空洞本体の中心軸からの距離に応じた適切な被膜厚とすることができる。
【0016】
本発明の超伝導加速空洞の電解研磨方法は、超伝導材料によって筒状に形成された空洞本体と、該空洞本体の周囲に設置され、該空洞本体の外周面との間に形成される空間に外部から供給口を介して供給される冷媒を貯蔵する冷媒槽とを備え、前記空洞本体の外周面が、前記超伝導材料よりも導電性の高い金属材料により被膜されている超伝導加速空洞の電解研磨方法であって、電源の正極に接続された陽極部を前記供給口から挿入して前記空洞本体の前記外周面に接触させる陽極設置工程と、前記電源の負極に接続された陰極部を前記空洞本体の内部に挿入する陰極設置工程と、前記空洞本体の内部に電解液を供給する供給工程と、前記電源による通電を開始して前記空洞本体の内面を電解研磨する電解研磨工程とを備える。
【0017】
本発明の電解研磨方法によれば、空洞本体の外周面が、超伝導材料よりも導電性の高い金属材料により被膜されているため、陽極設置工程により陽極部を空洞本体の外周面に接触させることにより、空洞本体を均一に電解研磨の陽極とすることができる。
そして、陰極設置工程により空洞本体の内側に電源の負極に接続された陰極部を挿入し、供給工程により空洞本体の内部に電解液を供給することにより、空洞本体の内面を電解研磨することができる。
このように、本発明に係る超伝導加速空洞の電解研磨方法によれば、冷媒槽を設置した後でも再び電解研磨を行うことが容易な超伝導加速空洞の電解研磨方法を提供することができる。
【0018】
本発明の第1態様の超伝導加速空洞の電解研磨方法は、前記空洞本体が、大径部と、該大径部よりも該空洞本体の中心軸に対する距離が短い小径部とが
該空洞本体の軸方向に沿って交互に形成された形状となっており、
前記軸方向における前記供給口
の位置が、
前記軸方向における前記大径部
の位置と一致している。
このようにすることで、冷媒槽の供給口に近接した位置に配置された空洞本体の大径部に対して、供給口から挿入される陽極部を容易に接触させることができる。
【0019】
本発明の第2態様の超伝導加速空洞の電解研磨方法は、前記空洞本体が、大径部と、該大径部よりも該空洞本体の中心軸に対する距離が短い小径部とが
該空洞本体の軸方向に沿って交互に形成された形状となっており、前記大径部における前記金属材料の被膜厚が、前記小径部における前記金属材料の被膜厚よりも厚くなっている。
【0020】
このようにすることで、電解研磨が行われる際に陰極が配置される空洞本体の中心軸に近い小径部よりも、中心軸から遠い大径部でより電流が流れやすくすることができる。これにより、空洞本体の内面において電解研磨による研磨度が不均一になる不具合を抑制することができる。
【0021】
本発明の第3態様の超伝導加速空洞の電解研磨方法においては、前記大径部の前記中心軸に対する距離と前記小径部の前記中心軸に対する距離の比率と、前記大径部における前記被膜厚と前記小径部における前記被膜厚の比率とが略一致しているようにしてもよい。
このようにすることで、空洞本体の大径部における被膜厚と小径部における被膜厚とを、電解研磨が行われる際に陰極が配置される空洞本体の中心軸からの距離に応じた適切な被膜厚とすることができる。
【発明の効果】
【0022】
本発明によれば、冷媒槽を設置した後でも再び電解研磨を行うことが容易な超伝導加速空洞、および超伝導加速空洞の電解研磨方法を提供することができる。
【発明を実施するための形態】
【0024】
〔第1実施形態〕
以下、本発明の第1実施形態の超伝導加速器100について、
図1を用いて説明する。
図1は、本発明の第1実施形態の超伝導加速器の構成を示す縦断面図である。
【0025】
図1において、超伝導加速器100は、超伝導加速空洞30と、超伝導加速空洞30を収容する真空容器90とを備えている。超伝導加速空洞30は、ニオブ(Nb)等の超伝導材料によって筒状に形成された空洞本体10と、空洞本体10の周囲に設置される冷媒槽20とを備えている。冷媒槽20は、空洞本体10の外周面との間に形成される空間に外部から供給口20aを介して供給される冷媒を貯蔵するものである。冷媒としては、例えば、液体ヘリウムが用いられる。
【0026】
空洞本体10の外周面は、超伝導材料よりも導電性の高い金属材料により被膜されている。この被膜された部分が金属被膜層10aとなっている。導電性の高い金属材料としては、例えば、銅、金、銀、アルミニウム等が用いられる。空洞本体10の外周面を導電性の高い金属材料により被膜しているのは、後述するように、電解研磨を行う際に空洞本体10を陽極として機能させるためである。本実施形態において、金属被膜層10aの膜厚は、空洞本体10の中心軸方向の位置に関わらず略一定であるものとする。金属被膜層10aの膜厚を一定とすることで、空洞本体10の全体に略一定の電位を与えることができる。
【0027】
空洞本体10は、中心軸Aからの距離がR1となる赤道部(大径部)10d,10e,10f,10gを備えている。また、空洞本体10は、中心軸Aからの距離がR2となるアイリス部(小径部)10h,10i,10jを備えている。
図1に示すように、赤道部10d,10e,10f,10gの中心軸Aに対する距離R1よりも、アイリス部10h,10i,10jの中心軸Aに対する距離R2の方が短い。
図1に示すように、空洞本体10は、赤道部10d,10e,10f,10gと、アイリス部10h,10i,10jとは、中心軸A方向に沿って交互に形成された形状となっている。
【0028】
冷媒槽20には冷媒が貯蔵されるため、冷媒槽20と空洞本体10とは、互いに接触する箇所が溶接等によって強固に接合されている。そのため、冷媒槽20を空洞本体10に接合した後は、再び冷媒槽20を空洞本体10から除去することが困難な構造となっている。
【0029】
供給口20aは冷媒を供給する供給管40に接続されている。供給管40は、外部の冷媒タンク(不図示)から供給される冷媒を供給口20aに供給するための管である。供給管40から供給されて冷媒槽20に貯蔵された液体ヘリウムは、空洞本体10を極低温に冷却して超伝導状態に保つために用いられる。
【0030】
冷媒槽20に貯蔵された液体ヘリウムの一部は、空洞本体10で発生した熱を吸収することによってガス化してヘリウムガスとなる。ヘリウムガスは、排出口20bから超伝導加速空洞30の外部に排出され、排出管50を介して超伝導加速器100の外部に排出される。外部に排出されたヘリウムガスは、圧縮器(不図示)によって圧縮することで再び液化し、冷媒タンクへ戻される。
【0031】
冷媒槽20の供給口20aの中心軸A方向の位置は、赤道部10dと一致している。また、冷媒槽20の排出口20bの位置は、赤道部10gと一致している。このようにしているのは、後述するように、電解研磨を行う際に空洞本体10を陽極として機能させる際に、供給口20aおよび排出口20bから挿入される陽極部230,240を、空洞本体10の外周面に形成された金属被膜層10aに接触させるのを容易にするためである。
【0032】
空洞本体10は、中心軸方向の両端部に開口部である入口部10
cおよび出口部10
bが設けられている。入口部10
cは外部からの荷電粒子が導かれる入口管70に接続されており、入口管70から導かれる荷電粒子を空洞本体10に導く。また、出口部10
bは外部へ荷電粒子を導く出口管80に接続されており、空洞本体10で加速された荷電粒子を出口管80に導く。
【0033】
導波管60は、空洞本体10の
出口部10bに接続するように設けられており、クライストロン等の高周波源(不図示)が発生する高周波電力を空洞本体10の内部に導入するための管である。導波管60を介して外部から高周波電力が投入されると、空洞本体10の内表面に正電極と負電極とが生成され、荷電粒子を加速させる加速電界が発生する。
【0034】
超伝導加速空洞30は、真空容器90の内部に配置されている。真空容器90は、真空装置(不図示)により内部を略真空の状態に保ち、真空容器90外部の熱が超伝導加速空洞30に伝わるのを防ぐ。
【0035】
次に、
図2を用いて本実施形態の電解研磨装置200について説明する。
図2は、本実施形態の超伝導加速空洞30および電解研磨装置200を示す縦断面図である。電解研磨装置200は、
図2に示す構成のうち、超伝導加速空洞30を除く他の部分から構成されている。なお、
図2では、後述する
図7で示す一対の回転保持具300の図示が省略されている。
【0036】
電解研磨装置200は、電解液を空洞本体10の内部で循環させる電解液供給装置210と、空洞本体10の内部に配置された陰極部220と、冷媒槽20の供給口20aに挿入された陽極部230と、冷媒槽20の排出口20bに挿入された陽極部240とを備える。陰極部220は電源250の負極に接続されており、陽極部230,240は電源250の正極に接続されている。電源250から各電極への電流の供給の有無は、スイッチ260により切り換えることが可能となっている。
【0037】
空洞本体10の両端部には、電解液の漏洩を防ぐキャップ270,271がそれぞれ取り付けられている。また、中空の筒状部材である陰極部220は、キャップ270およびキャップ271により両端が支持されることにより、空洞本体10の中心軸と同軸に配置されている。ポンプ280を作動させることによりタンク290内の電解液がキャップ270を介して陰極部220の内部に供給される。電解液としては、種々のものを用いることが可能であるが、例えば、フッ化水素,硫酸等が用いられる。
【0038】
中空の筒状部材である陰極部220には、複数の開口部
220aが設けられている。陰極部220の内部を流れる電解液は、複数の開口部
220aから空洞本体10の内部に流出し、空洞本体10の内部に電解液が供給される。開口部
220aから流出せずに陰極部220の内部を流れる電解液は、キャップ271を経由して再びタンク290に戻される。
【0039】
陽極部230は、ケーブル接続部231と、ロッド部232と、接触部233と、キャップ234により構成されている。陽極部230を構成する各部材は、銅等の導電性の高い金属により構成されている。陽極部230を構成する各部材は、電源250の正極と略同電位となる。
【0040】
ケーブル接続部231には電源250の正極と連結されたケーブルが接続される。ケーブル接続部231はロッド部232と連結されており、ロッド部232は接触部233と連結されている。ロッド部232は外周面に雄ねじが形成された棒状の部材であり、キャップ234の中心部に設けられた穴の内周面に形成された雌ねじと係合している。キャップ234は冷媒槽20の供給口20aに設けられたフランジに対してボルトで締結されている。
【0041】
ロッド部232に連結されたケーブル接続部231を回転させることにより、ロッド部232はキャップ234に対してロッド部232の軸方向に移動する。この移動に伴ってロッド部232の先端部に連結された接触部233が空洞本体10の赤道部10dの外周面に設けられた金属被膜層10aに近接または離間する。
【0042】
冷媒槽20の供給口20aに設けられたフランジにキャップ234をボルトで締結し、ケーブル接続部231を回転させることにより、接触部233を徐々に金属被膜層10aに近づけることができる。そして、接触部233は、空洞本体10の赤道部10dの外周面に設けられた金属被膜層10aに接触するように調整される。このようにすることで、電源250の正極と金属被膜層10aとが電気的に接続された状態となり、金属被膜層10aが電解研磨の陽極として機能するようになる。
【0043】
陽極部240は、ケーブル接続部241と、ロッド部242と、接触部243と、キャップ244により構成されている。陽極部240を構成する各部材は、銅等の導電性の高い金属により構成されている。陽極部240を構成する各部材は、電源250の正極と略同電位となる。
【0044】
ケーブル接続部241には電源250の正極と連結されたケーブルが接続される。ケーブル接続部241はロッド部242と連結されており、ロッド部242は接触部243と連結されている。ロッド部242は外周面に雄ねじが形成された棒状の部材であり、キャップ244の中心部に設けられた穴の内周面に形成された雌ねじと係合している。キャップ244は冷媒槽20の排出口20bに設けられたフランジに対してボルトで締結されている。
【0045】
ロッド部242に連結されたケーブル接続部241を回転させることにより、ロッド部242はキャップ244に対してロッド部242の軸方向に移動する。この移動に伴ってロッド部242の先端部に連結された接触部243が空洞本体10の赤道部10gの外周面に設けられた金属被膜層10aに近接または離間する。
【0046】
冷媒槽20の排出口20bに設けられたフランジにキャップ244をボルトで締結し、ケーブル接続部241を回転させることにより、接触部243を徐々に金属被膜層10aに近づけることができる。そして、接触部243は、空洞本体10の赤道部10gの外周面に設けられた金属被膜層10aに接触するように調整される。このようにすることで、電源250の正極と金属被膜層10aとが電気的に接続された状態となり、金属被膜層10aが電解研磨の陽極として機能するようになる。
【0047】
電解研磨装置200には、
図7に示すように超伝導加速空洞30を中心軸A回りに回転可能に保持する一対の回転保持具300と、回転保持具300に保持された超伝導加速空洞30を中心軸A回りに回転させる回転装置(不図示)とが備えられている。
図7は、
図2に示す超伝導加速空洞30および電解研磨装置200のA−A矢視断面図である。
【0048】
回転保持具300は、中心軸Aに直交する平面内に配置された円環状のレール部310と、レール部310を接地面Gに対して支持する支持部320,330を備えている。支持部320,330は、接地面Gに対してレール部310を固定している。
図7には陽極部230の位置に存在する回転保持具300が示されているが、陽極部240の位置にも他の回転保持具300が存在する。
【0049】
従って、中心軸Aに沿って陽極部230の位置と陽極部240の位置に配置された一対の回転保持具300により、超伝導加速空洞30は接地面Gに対して保持される。一対の回転保持具300により保持される超伝導加速空洞30は、回転装置(不図示)により、中心軸A回りに回転する。
【0050】
回転装置には、超伝導加速空洞30の外周面に設けられた歯車(不図示)と連結される他の歯車を回転させるモータ(不図示)が備えられている。モータを回転させることにより超伝導加速空洞30が中心軸A回りに回転する。
陽極部230のケーブル接続部231は、レール部310と係合しながら回転する回転部材となっている。また、ケーブル接続部231は、導電性のあるレール部310を介し、レール部310の外周面に接続された電源250の正極と電気的に接続されている。
したがって、超伝導加速空洞30を回転させることにより、空洞本体10の内面の全体に電解液が行き渡り、内面が均一に電解研磨される。
【0051】
次に、
図3を用いて本実施形態の電解研磨方法について説明する。
図3は、本実施形態の超伝導加速空洞30の電解研磨方法を示すフローチャートである。本実施形態の電解研磨方法は、
図1に示す超伝導加速器100に超伝導加速空洞30を組み込んで超伝導加速器100として動作させた後、超伝導加速空洞30の内部に異物が混入していることが疑われる測定結果が出た場合等に実行される。
【0052】
本実施形態の電解研磨方法を実行するにあたっては、
図1に示す超伝導加速器100から、超伝導加速空洞30の部分を予め真空容器90の外部に取り外しておくものとする。
【0053】
ステップS301は、冷媒槽20の供給口20aに陽極部230を設置し、冷媒槽20の排出口20bに陽極部240を設置する陽極設置工程である。供給口20aに陽極部230を設置し、ケーブル接続部231を回転させて接触部233の位置を調整し、接触部233を空洞本体10の金属被膜層10aに接触させる。同様に、排出口20bに陽極部240を設置し、ケーブル接続部241を回転させて接触部243の位置を調整し、接触部243を空洞本体10の金属被膜層10aに接触させる。
【0054】
このように、陽極設置工程S301は、電源250の正極に接続された陽極部230を供給口20aから挿入して空洞本体10の外周面の金属被膜層10aに接触させる工程である。また、陽極設置工程S301は、電源250の正極に接続された陽極部240を排出口20bから挿入して空洞本体10の外周面の金属被膜層10aに接触させる工程である。陽極設置工程S301を実行することにより、電源250の正極と金属被膜層10aとが電気的に接続された状態となり、金属被膜層10aが電解研磨の陽極として機能するようになる。
【0055】
ステップS302は、空洞本体10の中心軸と同軸に陰極部220を設置する陰極設置工程である。陰極部220を空洞本体10の内部に挿入し、キャップ270を空洞本体10の
出口部10bに設置し、キャップ271を空洞本体10の
入口部10cに設置することにより、空洞本体10の中心軸と同軸に陰極部220が設置される。陰極部220が設置された後、電解液供給装置210による電解液の供給が可能となるように、キャップ270,271が電解液供給装置210の配管と接続される。また、陰極部220が電解研磨の陰極として機能するように、電源250の負極と陰極部220が電気的に接続される。
【0056】
ステップS303は、空洞本体10の内部に電解液を供給する電解液供給工程である。電解液供給装置210のポンプ280を駆動させ、タンク290内の電解液を陰極部220に供給することにより、開口部
220aを介して空洞本体10の内部に電解液が供給される。空洞本体10への電解液の供給量が予め設定された所定量に達すると、ポンプ280の駆動を停止させて空洞本体10への電解液の供給を停止させる。
【0057】
ステップS304は、陽極部230,240と陰極部220が設置され、内部に電解液が供給された空洞本体10を電解研磨する電解研磨工程である。ステップS304で、スイッチ260がオフ状態からオン状態に切り替えられる。スイッチ260がオン状態となることにより、陽極部230,240が電源250の正極と同電位となり、陰極部220が電源250の負極と同電位となって陰極となる。
【0058】
陽極部230,240は、空洞本体10の外周面の金属被膜層10aに接触しているので、金属被膜層10aの全体が陽極として機能する。陰極部220は軸方向の全長に渡って導電性の金属部材により構成されているので、軸方向の全長に渡って陰極として機能する。したがって、陰極部220の軸方向の全長に渡って、陰極部220と空洞本体10の内周面の間に電解液を介して電流が流れ、電解液の電気分解が起こる。この電気分解によって、空洞本体10の内周面が研磨される。
【0059】
電解研磨工程S304の実行中において、超伝導加速空洞30は、回転装置によって軸線回りに回転した状態となっている。超伝導加速空洞30を回転させることにより、空洞本体10の内面の全体に電解液が行き渡り、内面が均一に電解研磨される。電解研磨工程S304において研磨される研磨量は、電源250の出力電圧や電解研磨を行う時間等により調整可能であるが、例えば100μm程度の研磨量に設定される。
【0060】
ステップS305は、電解研磨工程S304の後に実行される後処理工程である。後処理工程には、空洞本体10の内部に滞留する電解液を外部に排出する処理や、空洞本体10の内周面を過酸化水素水や超純水で洗浄する洗浄処理が含まれている。また、後処理工程S305には、陽極部230,240と陰極部220を超伝導加速空洞30から取り外す処理が含まれている。
後処理工程S305の後、電解研磨が行われた超伝導加速空洞30を再び真空容器90の内部に設置することにより、超伝導加速器100が再び利用可能となる。
【0061】
次に、
図4を用いて陽極部230,240の変形例について説明する。
図4は、冷媒槽20に設置される陽極部の変形例を示す図であり、超伝導加速空洞30を正面から見たときの断面図を拡大した図である。陽極部230,240は、ロッド部232,242の外周面に設けられた雄ねじにより接触部233,243の位置を調整するものであった。それに対して、
図4に示す陽極部400は、コイルバネ404の弾性力により接触部403の位置を調整するものである。
【0062】
図4に示すように、変形例の陽極部400は、ケーブル接続部401と、キャップ402と、接触部403と、コイルバネ404と、金属バネ405により構成されている。陽極部400を構成する各部材は、銅等の導電性の高い金属により構成されている。陽極部400を構成する各部材は、電源250の正極と略同電位となる。
【0063】
ケーブル接続部401には電源250の正極と連結されたケーブルが接続される。ケーブル接続部401はキャップ402と連結されている。キャップ402は冷媒槽20の供給口20aまたは排出口20bに設けられたフランジに対してボルトで締結されている。キャップ402には筒部が設けられており、この筒部の内周径と略同径のコイルバネ404が筒部の内部に挿入されている。
【0064】
キャップ402の筒部の周囲には筒部の外径よりも内径の大きい筒状の接触部403が配置されている。接触部403には、キャップ402の筒部に挿入されたコイルバネ404により、空洞本体10の金属被膜層10aに接触する方向の付勢力が与えられている。
【0065】
キャップ402の筒部の外周面と接触部403の内周面との間には、金属バネ405が設けられている。金属バネ405により、キャップ402の筒部の外周面と接触部403の内周面とが電気的に接触した状態となり確実に通電するようになっている。コイルバネ404の付勢力によって、接触部403は空洞本体10の金属被膜層10aに接触した状態で配置される。このようにして、電源250の正極と金属被膜層10aとが電気的に接続された状態となり、金属被膜層10aが電解研磨の陽極として機能するようになる。
【0066】
次に、
図5を用いて陽極部230,240の他の変形例について説明する。
図5は、冷媒槽20に設置される陽極部の変形例を示す図であり、超伝導加速空洞30を側面(中心軸方向)から見たときの断面図を拡大した図である。
図5中に示す陽極部230は
図2で説明した陽極部230と同様であるので説明を省略する。
図5は、接点部材235が追加されている点が
図2と異なっている。
【0067】
接点部材235は、接触部233の先端に設けられるものであり、接触部233と金属被膜層10aとの電気的な接触をよくするための部材である。接点部材235としては、平編銅線や銅製の板バネ等、電気的な接触を高めることが可能な各種の素材を用いることができる。接点部材235を設けることにより、接触部233と金属被膜層10aとの電気的な接触をより良くし、金属被膜層10aを電解研磨の陽極としてより確実に機能させることができる。
なお、前述した変形例の陽極部400の接触部403の先端にも接点部材235を設けるようにしてもよい。
【0068】
以上説明したように、本実施形態の超伝導加速空洞30は、空洞本体10の外周面が、超伝導材料よりも導電性の高い金属被膜層10aにより被膜されている。そのため、本実施形態の超伝導加速空洞30の電解研磨方法によれば、陽極設置工程S301により陽極部230,240を空洞本体10の外周面に接触させることにより、空洞本体10を均一に電解研磨の陽極とすることができる。
【0069】
そして、陰極設置工程S301により空洞本体10の内側に電源250の負極に接続された陰極部220を挿入し、電解液供給工程S303により空洞本体10の内部に電解液を供給することにより、空洞本体10の内周面を電解研磨することができる。
このように、本実施形態の超伝導加速空洞30の電解研磨方法によれば、冷媒槽20を設置した後でも再び電解研磨を行うことが容易な超伝導加速空洞の電解研磨方法を提供することができる。
【0070】
本実施形態の超伝導加速空洞30は、空洞本体10が、赤道部(大径部)10d,10e,10f,10gと、赤道部10d,10e,10f,10gよりも中心軸Aに対する距離が短いアイリス部(小径部)10h,10i,10
jとが軸方向に沿って交互に形成された形状となっている。また、冷媒の供給口20aの軸方向の位置が、赤道部10dの軸方向の位置と一致している。更に、冷媒の排出口20bの軸方向の位置が、赤道部10gの軸方向の位置と一致している。
【0071】
このようにすることで、冷媒槽20の供給口20aに近接した位置に配置された空洞本体10の赤道部10dに対して、供給口20aから挿入される陽極部230を容易に接触させることができる。また、冷媒槽20の排出口20bに近接した位置に配置された空洞本体10の赤道部10gに対して、排出口20bから挿入される陽極部240を容易に接触させることができる。
【0072】
〔第2実施形態〕
以下、本発明の第2実施形態の超伝導加速器の空洞本体600について、
図6を用いて説明する。
図6は、本発明の第2実施形態の超伝導加速空洞の空洞本体600を示す図である。空洞本体600の周囲には冷媒槽が設けられるが、
図6では冷媒槽の図示を省略してある。
第2実施形態は第1実施形態の変形例であり、以下で特に説明する場合を除き、第1実施形態と同様であるものとし、説明を省略する。
【0073】
第1実施形態の金属被膜層10aの膜厚は、空洞本体10の中心軸方向の位置に関わらず略一定であった。それに対して第2実施形態の金属被膜層600aの膜厚は、空洞本体600の中心軸A方向の位置によって異なっている。
【0074】
図6に示す空洞本体600は、中心軸Aからの距離がR3となる赤道部(大径部)600d,600e,600f,600gを備えている。また、空洞本体600は、中心軸Aからの距離がR
4となるアイリス部(小径部)600h,600i,600jを備えている。
図6に示すように、赤道部600d,600e,600f,600gの中心軸Aに対する距離R3よりも、アイリス部600h,600i,600jの中心軸Aに対する距離R4の方が短い。
図6に示すように、空洞本体600は、赤道部600d,600e,600f,600gと、アイリス部600h,600i,600jとは、中心軸A方向に沿って交互に形成された形状となっている。
【0075】
空洞本体600の外周面は、超伝導材料よりも導電性の高い金属材料により被膜されている。この被膜された部分が金属被膜層600aとなっている。導電性の高い金属材料としては、例えば、銅、金、銀、アルミニウム等が用いられる。空洞本体600の外周面を導電性の高い金属材料により被膜しているのは、電解研磨を行う際に空洞本体600を陽極として機能させるためである。
【0076】
図6に示すように、金属被膜層600aの膜厚は、空洞本体600の中心軸A方向の位置によって異なっている。具体的には、赤道部(大径部)600d,600e,600f,600gの金属被膜層600aの膜厚がT2となっている。また、アイリス部(小径部)600h,600i,600jの金属被膜層600aの膜厚がT1となっている。膜厚T1よりも膜厚T2の方が、膜厚が厚くなっている。赤道部と隣接するアイリス部との間の金属被膜層600aの膜厚は、赤道部からアイリス部に向かうにしたがって徐々に膜厚が薄くなる形状となっている。
【0077】
空洞本体600の
出口部600bおよび
入口部600cは、円筒形状の開口部となっている。
図6に示すように、
出口部600bおよび
入口部600cの内周面の直径は、アイリス部600h,600i,600jの内周面の直径と一致しており、それぞれD1となっている。一方、赤道部600d,600e,600f,600gの内周面の直径はD2となっている。
そして、赤道部の内周面の中心軸Aに対する距離R3とアイリス部の内周面の中心軸Aに対する距離R4の比率と、赤道部における金属被膜層600aの膜厚T2とアイリス部における金属被膜層600aの膜厚T1の比率とが、以下の式(1)で示すように一致しているか、略一致したものとなっている。
R4/R3=T1/T2 (1)
【0078】
このように、赤道部における金属被膜層600aの膜厚を厚くし、アイリス部における金属被膜層600aの膜厚を薄くしているのは、電解研磨による空洞本体600の内周面の研磨量をアイリス部と赤道部とで略一致させるためである。
図2に示すように電解研磨を行う際に、陰極は空洞本体の内側に設置される。そのため、金属被膜層600aの膜厚が中心軸Aに沿って一定である場合、陰極に近いアイリス部では電解研磨の研磨量が多く、陰極に通り赤道部では電解研磨の研磨量が少なくなる。本実施形態では、このようなアイリス部と赤道部とでの研磨量の違いを少なくするために、赤道部における金属被膜層600aの膜厚を厚くし、アイリス部における金属被膜層600aの膜厚を薄くしている。
【0079】
赤道部における金属被膜層600aの膜厚を厚くすることにより、赤道部に電流が流れやすくなる。一方、アイリス部における金属被膜層600aの膜厚を薄くすることにより、アイリス部に相対的に電流が流れにくくなる。例えば、式(1)のように、赤道部における金属被膜層600aの膜厚とアイリス部における金属被膜層600aの膜厚を設定することにより、アイリス部と赤道部とでの研磨量の違いを少なくすることができる。赤道部における金属被膜層600aの膜厚とアイリス部における金属被膜層600aの膜厚とは、例えば式(1)のように設定すればよいが、アイリス部と赤道部とでの研磨量が一致するように、各種の条件に応じて適宜設定すればよい。
【0080】
以上説明したように、本実施形態の超伝導加速空洞は、空洞本体600が、赤道部(大径部)と、赤道部よりも中心軸Aに対する距離が短いアイリス部(小径部)とが中心軸A方向に沿って交互に形成された形状となっている。また、赤道部における金属被膜層600aの膜厚T2が、アイリス部における金属被膜層600aの膜厚T1よりも厚くなっている。
【0081】
このようにすることで、電解研磨が行われる際に陰極が配置される空洞本体600の中心軸に近いアイリス部よりも、中心軸から遠い赤道部で、より電流を流れやすくすることができる。これにより、空洞本体600の内面において電解研磨による研磨度が不均一になる不具合を抑制することができる。
【0082】
本実施形態の超伝導加速空洞においては、赤道部の中心軸Aに対する距離R3とアイリス部の中心軸Aに対する距離R
4の比率と、赤道部における金属被膜層600aの膜厚T2とアイリス部における金属被膜層600aの膜厚T1の比率とが一致しているか、略一致している。
このようにすることで、空洞本体600の赤道部における膜厚T2とアイリス部における膜厚T1とを、電解研磨が行われる際に陰極が配置される空洞本体600の中心軸からの距離に応じた適切な被膜厚とすることができる。
【0083】
〔他の実施形態〕
第1実施形態において、陽極部230が供給口20aに挿入され、陽極部240が排出口20bに挿入されるものであったが、他の態様であってもよい。例えば、供給口20aと排出口20bのいずれか一方のみに陽極部を挿入する態様であってもよい。空洞本体10の外周面には金属被膜層10aが一様に形成されているので、供給口20aと排出口20bのいずれか一方のみに陽極部を挿入しても、空洞本体10の外周面の全体を電源250の正極と同電位にすることができる。
【0084】
第1実施形態の
図1に示す空洞本体10は、中心軸Aに沿って4つの赤道部(大径部)と3つのアイリス部(小径部)が交互に形成されるものであったが、他の態様であってもよい。例えば、N個の
赤道部と、N−1個の
アイリス部が交互に形成されるものであってもよい(ここで、Nは2以上の整数である。)。