【実施例】
【0027】
以下実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
【0028】
実施例1-1〜1-13
図2〜14の表(A) に示すように、高屈折率層22、24、26及び28の成膜材料としてd線に対して屈折率2.46を示すTiO
2、中間屈折率層21、23、25及び27の成膜材料としてd線に対して屈折率1.48を示すSiO
2、低屈折率層29の成膜材料としてd線に対して屈折率1.39を示すMgF
2を使用し、所定の屈折率を有する各基材10に対する最適な各層21〜29の光学膜厚の設計値をシミュレーションにより求めた。λ
0は設計波長(550 nm)である。各実施例1-1〜1-13の反射防止膜20に垂直に光を入射させたときの分光反射率をシミュレーションにより求めた。得られた計算結果をそれぞれ
図2〜14のグラフ(B) に示す。このとき、基材10及び各層21〜29の屈折率分散を考慮し、基材10の反射防止膜20が形成されていない面での反射はないものとした。
【0029】
実施例2-1〜2-13
図15〜27の表(A) に示すように、高屈折率層22、24、26及び28の成膜材料としてd線に対して屈折率2.31を示すNb
2O
5、中間屈折率層21、23、25及び27の成膜材料としてd線に対して屈折率1.48を示すSiO
2、低屈折率層29の成膜材料としてd線に対して屈折率1.39を示すMgF
2を使用し、所定の屈折率を有する各基材10に対する最適な各層21〜29の光学膜厚の設計値をシミュレーションにより求めた。λ
0は設計波長(550 nm)である。各実施例2-1〜2-13の反射防止膜20に垂直に光を入射させたときの分光反射率をシミュレーションにより求めた。得られた計算結果をそれぞれ
図15〜27のグラフ(B) に示す。このとき、基材10及び各層21〜29の屈折率分散を考慮し、基材10の反射防止膜20が形成されていない面での反射はないものとした。
【0030】
実施例3-1〜3-13
図28〜40の表(A) に示すように、高屈折率層22、24、26及び28の成膜材料としてd線に対して屈折率2.21を示すNb
2O
5+HfO
2、中間屈折率層21、23、25及び27の成膜材料としてd線に対して屈折率1.47を示すSiO
2、低屈折率層29の成膜材料としてd線に対して屈折率1.39を示すMgF
2を使用し、所定の屈折率を有する各基材10に対する最適な各層21〜29の光学膜厚の設計値をシミュレーションにより求めた。λ
0は設計波長(550 nm)である。各実施例3-1〜3-13の反射防止膜20に垂直に光を入射させたときの分光反射率をシミュレーションにより求めた。得られた計算結果をそれぞれ
図28〜40のグラフ(B) に示す。このとき、基材10及び各層21〜29の屈折率分散を考慮し、基材10の反射防止膜20が形成されていない面での反射はないものとした。
【0031】
実施例4-1〜4-13
図41〜53の表(A) に示すように、高屈折率層22、24、26及び28の成膜材料としてd線に対して屈折率2.30を示すTiO
2、中間屈折率層21、23、25及び27の成膜材料としてd線に対して屈折率1.54を示すAl
2O
3+SiO
2、低屈折率層29の成膜材料としてd線に対して屈折率1.39を示すMgF
2を使用し、所定の屈折率を有する各基材10に対する最適な各層21〜29の光学膜厚の設計値をシミュレーションにより求めた。λ
0は設計波長(550 nm)である。各実施例4-1〜4-13の反射防止膜20に垂直に光を入射させたときの分光反射率をシミュレーションにより求めた。得られた計算結果をそれぞれ
図41〜53のグラフ(B) に示す。このとき、基材10及び各層21〜29の屈折率分散を考慮し、基材10の反射防止膜20が形成されていない面での反射はないものとした。
【0032】
図2〜
図53のグラフ(B) から分かるように、波長390〜720 nmの範囲(波長帯域幅は約330 nm)において、最大反射率が0.2%以下に抑えられた反射防止膜を得られた。このことから本発明の反射防止膜は、少ない積層数でありながら、より広い波長帯に亘って反射率を十分に低減することができ、もってフレアやゴーストといった光学特性を著しく劣化させる弊害の発生を抑制するとともに、より優れたカラーバランスを効果的に得ることができることが分かった。
【0033】
比較例1
図54の表(A) に示すように、高屈折率層22、24、26及び28の成膜材料として波長550 nmの光に対して屈折率2.11を示すTiO
2、中間屈折率層21、23、25及び27の成膜材料として波長550 nmの光に対して屈折率1.62を示すAl
2O
3、低屈折率層29の成膜材料として波長550 nmの光に対して屈折率1.38を示すMgF
2を使用し、所定の屈折率を有する各基材10に対する最適な各層21〜29の光学膜厚の設計値をシミュレーションにより求めた。比較例1の反射防止膜20に垂直に光を入射させたときの分光反射率をシミュレーションにより求めた。得られた計算結果を
図54のグラフ(B) に示す。このとき、基材10及び各層21〜29の屈折率分散を考慮し、基材10の反射防止膜20が形成されていない面での反射はないものとした。
【0034】
図54のグラフ(B) から分かるように、最大反射率が0.2%以下の波長帯域はおおよそ波長390〜670 nmの範囲(波長帯域幅は約280 nm)と狭かった。