【実施例】
【0030】
実施例1
窒素気流中、還流冷却管と磁気撹拌子とを備えた100ml三口フラスコに、28.37g(100.88mmol)の1−アリル−3,5−ジグリシジルイソシアヌレート(MADGIC、四国化成工業(株))と、6.63g(20.17mmol)のテトラキス(ハイドロジェンジメチルシロキシ)シラン(SIT7273.0、Gelest Inc.)]とを投入し、混合物を80℃で均一に融解するまで撹拌した。続いて、この融解混合物に2%Karstedt触媒溶液(キシレン溶液)30.2μLを添加し、撹拌しながら120℃になるまで加熱し、溶融混合物の温度が120℃に到達してから、その温度を9時間保持して、1−アリル−3,5−ジグリシジルイソシアヌレートとテトラキス(ハイドロジェンジメチルシロキシ)シランとを反応させた。
【0031】
反応終了後、反応混合物を冷却し、未反応モノマーを減圧下(150℃/0.1kPa)で留去し、式(1a)のエポキシ基含有シロキサン化合物を得た。
【0032】
【化5】
【0033】
<ヒドロシリル化反応の進行程度評価>
ヒドロシリル化反応の進行具合を確認するために、以下に説明するようにFT−IR測定と
1H−NMR測定とを行った。
【0034】
(FT−IR測定)
ヒドロシリル化反応物の減圧蒸留残渣、並びに原料の1−アリル−3,5−ジグリシジルイソシアヌレート(MADGIC)とテトラキス(ハイドロジェンジメチルシロキシ)シラン(SIT7278.0)について、それぞれFT−IR測定(測定装置:フーリエ変換赤外分光光度計 FT−IR−460PLUS、日本分光(株))を行い、得られた結果を
図1に示した。原料のテトラキス(ハイドロジェンジメチルシロキシ)シラン(SIT7278.0)については、Si−H基特有のスペクトルとして、2140cm
−1付近の伸縮ピーク、900cm
−1付近の変角振動ピークが検出された。また、1690cm
−1及び1460cm
−1付近には、イソシアヌレート由来のシャープなカルボニル基伸縮ピークが検出された。反応物の減圧蒸留残渣については、Si−H基に特有な2140cm
−1付近と900cm
−1付近のピークは検出されず、一方、イソシアヌレートに由来する1690cm
−1及び1460cm
−1付近のピークが検出された。
【0035】
これらのことから、式(1a)のエポキシ基含有シロキサン化合物が生成していることが確認できた。即ち、ハイドロシリレーション(ハイドロシリル化反応)が完結していることが確認できた。
【0036】
(
1H−NMR測定)
ヒドロシリル化反応物の減圧蒸留残渣について、
1H−NMR測定(測定装置:MERCURY300、VARIAN製)を行い、得られた結果を
図2に示した。ケミカルシフトが0ppm付近には、シリコーン由来のSi−Me基に対応するシグナルが観測された。また、ケミカルシフトが4.12〜2.66ppmには、グリシジルイソシアヌレート由来のシグナルが多数確認された。他方、アリル基のα,β位炭素隣接プロトンにみられる特有のシグナルとSi−H基のシグナル(両者とも、ケミカルシフト6.00〜5.00ppm)とは、共に確認されなかった。
【0037】
これらのことからも、式(1a)のエポキシ基含有シロキサン化合物が生成していることが確認できた。即ち、ハイドロシリレーション(ハイドロシリル化反応)が完結していることが確認できた。なお、MADGICの投入量をコントロールすることにより、部分的にSi−H基が残存する化合物を意図的に製造できることが期待される。
【0038】
得られたエポキシ基含有シロキサン化合物を用い、表1に示す配合組成の成分を均一に混合することにより絶縁性接着剤を調製した。
【0039】
【表1】
【0040】
なお、実施例1においては、エポキシ基/酸無水物の官能基数の比が1/1.1となるように、エポキシ化合物と酸無水物系硬化剤とを配合した。また、比較例1の絶縁性接着剤は、エポキシ化合物として、式(1a)のエポキシ基含有シロキサン化合物に代えて1,3,5−トリグリシジルイソシアネートを使用した例であり、比較例2の絶縁性接着剤は、2液硬化型ジメチルシリコーン樹脂(IVS4742、モメンティブマテリアル社)であり、比較例3の絶縁性接着剤は、2液硬化型フェニルシリコーン樹脂(SCR−1012、信越化学工業(株))である。
【0041】
得られた絶縁性接着剤について、ダイシェア強度試験、耐熱試験と耐熱光試験とを行った。得られた結果を表2に示す。
【0042】
<ダイシェア強度試験>
金バンプ(高10μm、径80μm、ピッチ190μm)が形成された10μm厚の銀ベタ電極を有するLED用ガラスエポキシ基板(特注品、関西電子工業(株)))に、径が4mmとなるように絶縁性接着剤を塗布し、そこへ0.3mm角のフリップチップ型LED素子(GM35R460G、昭和電工(株))を載せ、フリップチップ型LED素子が表側となるようにガラスエポキシ基板を80℃に保持されたホットプレートに置き、2分間加熱してLED素子をLED用ガラスエポキシ基板に仮固定した。このLED素子が仮固定されたLED用ガラスエポキシ基板を熱圧着装置に適用し、LED素子に80gf/chipの圧力を印加しながら230℃で15秒間熱圧着処理を行うことにより、LED用ガラスエポキシ基板にLED素子が実装されたLED装置を作成した。実施例1又は比較例1の絶縁性接着剤を使用して作成したLED装置の場合、熱圧着処理後に更に260℃、20秒のリフロー処理を行った。
【0043】
このようにして作成したLED装置について、ダイシェア強度(gf/chip)を測定した。実用上、ダイシェア強度は少なくとも200gf/chip、好ましくは250gf/chip以上であることが望まれる。
【0044】
<耐熱試験>
1mm高さのスペーサが四隅に配置された2枚のアルミニウム平板(長100mm×幅50.0mm×厚0.50mm)で絶縁性接着剤を挟み、実施例1及び比較例1の絶縁性接着剤については、まず120℃で30分加熱し、続いて140℃で1時間加熱することにより硬化樹脂シートサンプルを作成した。また、比較例2及び3の絶縁性接着剤については、まず80℃で1時間加熱し、続いて150℃で2時間加熱することにより硬化樹脂シートサンプルを作成した。
【0045】
得られた硬化樹脂シートサンプルを、150℃に設定されたオーブン内に1000時間放置し、放置前後の分光特性(L
*、a
*、b
*)を、分光測色計(CM−3600d、コニカミノルタオプティクス(株))を用いて測定し、得られた測定値から色差(ΔE)を算出した。実用上、ΔEは35以下であることが望まれる。
【0046】
<耐熱光試験>
耐熱試験に供した硬化樹脂シートサンプルと同様の硬化樹脂シートサンプルを作成し、それを、温度120℃で光強度16mW/cm
2に設定された熱光試験機(スーパーウインミニ、ダイプラウィンテス(株);メタルハライドランプ使用)内に1000時間放置し、 得られた硬化樹脂シートを、150℃に設定されたオーブン内に1000時間放置し、放置前後の分光特性(L
*、a
*、b
*)を、分光測色計(CM−3600d、コニカミノルタオプティクス(株))を用いて測定し、得られた測定値から色差(ΔE)を算出した。実用上、ΔEは20以下であることが望まれる。
【0047】
【表2】
【0048】
表2から解るように、実施例1のエポキシ基含有シロキサン化合物を硬化成分として用いた絶縁性接着剤は、ダイシェア強度、耐熱試験及び耐熱光試験の結果がいずれも実用上好ましいものであったが、比較例1の場合には、熱硬化性エポキシ樹脂組成物を使用しているため、ダイシェア強度については好ましい結果が得られたが、式(1a)のエポキシ含有シロキサン化合物を使用していないため、耐熱試験に関し、満足できる結果が得られなかった。
【0049】
なお、比較例2及び3については、式(1a)のエポキシ基含有シロキサン化合物のみならず、熱硬化性エポキシ樹脂組成物を使用していないため、ダイシェア強度が著しく低く、耐熱試験、耐熱光試験をするまでもないものであった。