特許第6052426号(P6052426)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東レ株式会社の特許一覧
特許6052426エポキシ樹脂組成物、樹脂硬化物、プリプレグおよび繊維強化複合材料
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6052426
(24)【登録日】2016年12月9日
(45)【発行日】2016年12月27日
(54)【発明の名称】エポキシ樹脂組成物、樹脂硬化物、プリプレグおよび繊維強化複合材料
(51)【国際特許分類】
   C08G 59/50 20060101AFI20161219BHJP
   C08J 5/24 20060101ALI20161219BHJP
【FI】
   C08G59/50
   C08J5/24CFC
【請求項の数】10
【全頁数】23
(21)【出願番号】特願2015-543978(P2015-543978)
(86)(22)【出願日】2015年8月27日
(86)【国際出願番号】JP2015074190
(87)【国際公開番号】WO2016067736
(87)【国際公開日】20160506
【審査請求日】2016年7月20日
(31)【優先権主張番号】特願2014-219935(P2014-219935)
(32)【優先日】2014年10月29日
(33)【優先権主張国】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000003159
【氏名又は名称】東レ株式会社
(72)【発明者】
【氏名】布施 綾子
(72)【発明者】
【氏名】富岡 伸之
(72)【発明者】
【氏名】上野 静恵
(72)【発明者】
【氏名】荒井 信之
(72)【発明者】
【氏名】本田 史郎
【審査官】 藤代 亮
(56)【参考文献】
【文献】 特開2007−314753(JP,A)
【文献】 国際公開第2005/083002(WO,A1)
【文献】 国際公開第2013/099862(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
・IPC
C08G 59/50
C08J 5/24
(57)【特許請求の範囲】
【請求項1】
次の構成要素[A]、[B]、[C]、[D]を有してなるエポキシ樹脂組成物であって、[A]がエポキシ樹脂の総量100質量部中に50〜100質量部含まれ、[B]がエポキシ樹脂組成物全体から熱可塑性樹脂粒子[D]を除いた質量100質量%に対し、8〜40質量%含まれ、かつ、[B]のガラス転移温度は150℃以上であり、[C]に含まれる活性水素のモル数がエポキシ樹脂組成物全体に含まれるエポキシ基のモル数の1.05〜2.0倍であり、エポキシ樹脂組成物を硬化してなるDSC(示差走査熱量分析)により得られるエポキシ樹脂組成物の総発熱量QTと、硬化物の残存発熱量QRから下記式(2)で算出される硬化度が90%以上の硬化物において[A]、[B]、[C]が単一相構造、または500nm未満の相分離構造を形成し、かつその硬化物のDMA(動的機械分析)により得られるガラス転移温度X(℃)と、ガラス転移温度を50℃上回る温度における貯蔵弾性率であるゴム状態弾性率Y(MPa)が下記式(1)を満たすエポキシ樹脂組成物。
[A]アミン型エポキシ樹脂
[B]エポキシ樹脂に溶解する可塑性樹脂
[C]芳香族アミン
[D]ポリアミド、ポリイミド、ポリアミドイミド、ポリカーボナート、ポリフェニレンスルフィドからなる群から選ばれる少なくとも一種のエポキシ樹脂に不溶な熱可塑性粒子
0.19X/℃−31.5≦Y/MPa≦0.19X/℃−27 ・・・(1)
硬化度(%)=(QT−QR)/QT×100 ・・・(2)
【請求項2】
熱可塑性樹脂[B]の重量平均分子量が4000〜40000g/molの範囲にある、請求項1に記載のエポキシ樹脂組成物。
【請求項3】
アミン型エポキシ樹脂[A]がテトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、またはこれらのハロゲン置換体、アルキル置換体、水添体を含むものから選ばれる少なくとも1つである、請求項1または2に記載のエポキシ樹脂組成物。
【請求項4】
アミン型エポキシ樹脂[A]が2官能アミン型エポキシ樹脂と3官能以上のアミン型エポキシ樹脂を含む、請求項1〜3のいずれかに記載のエポキシ樹脂組成物。
【請求項5】
熱可塑性樹脂[B]がポリエーテルスルホンである、請求項1〜4のいずれかに記載のエポキシ樹脂組成物。
【請求項6】
芳香族アミン[C]が、ジアミノジフェニルスルホンもしくはその誘導体または異性体である、請求項1〜5のいずれかに記載のエポキシ樹脂組成物。
【請求項7】
請求項1〜6いずれかに記載のエポキシ樹脂組成物を硬化させてなる樹脂硬化物。
【請求項8】
請求項1〜6のいずれかに記載のエポキシ樹脂組成物を強化繊維に含浸させてなるプリプレグ。
【請求項9】
請求項7に記載の樹脂硬化物と強化繊維を含んでなる繊維強化複合材料。
【請求項10】
請求項8に記載のプリプレグを硬化させてなる繊維強化複合材料。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、航空宇宙用途に適した繊維強化複合材料、これを得るための樹脂硬化物、プリプレグ、さらにはそのマトリックス樹脂として好適に用いられるエポキシ樹脂組成物に関するものである。
【背景技術】
【0002】
近年、炭素繊維やアラミド繊維などの強化繊維を用いた繊維強化複合材料は、その高い比強度・比弾性率を利用して、航空機や自動車の構造材料や、テニスラケット、ゴルフシャフト、釣り竿などのスポーツ用途・一般産業用途などに利用されてきた。繊推強化複合材料の製造方法としては、強化繊維に未硬化のマトリックス樹脂が含浸されたシート状中間材料であるプリプレグを用い、それを複数枚積層した後、加熱硬化させる方法や、モールド中に配置した強化繊維に液状の樹脂を流し込こんだ後、樹脂を加熱硬化させるレジン・トランスファー・モールディング法などが用いられている。
【0003】
これらの製造方法のうち、プリプレグを用いる方法は、強化繊維の配向を厳密に制御でき、また積層構成の設計自由度が高いことから、高性能な繊維強化複合材料を得やすい利点がある。このプリプレグに用いられるマトリックス樹脂としては、耐熱性や生産性の観点から、主に熱硬化性樹脂が用いられ、中でも樹脂と強化繊維との接着性や寸法安定性、および得られる複合材料の強度や剛性といった力学特性の観点からエポキシ樹脂が好適に用いられる。
【0004】
その中で、強度特性および耐久安定性の求められる航空宇宙用途向け繊維強化複合材料には、その強化繊維のマトリックス樹脂として、エポキシ当量が小さく架橋密度の高い硬化物が得られるアミン型エポキシ樹脂が好適に用いられてきた。これにより、高弾性率であり、かつ耐熱性の高い樹脂設計が可能となる一方、変形能力が小さく靭性の低い樹脂硬化物となる傾向があった。
【0005】
アミン型エポキシ樹脂の靭性の低さを改善するために、靱性に優れる熱可塑性樹脂を配合し、エポキシ樹脂と相分離構造を形成させる方法などが試されてきた。しかし、これらの方法では、弾性率あるいは耐熱性の低下や、増粘によるプロセス性の悪化、ボイド発生等の品位低下を招きやすいという問題があった。
【0006】
そこで、樹脂組成物の増粘を抑えるために、数平均分子量の低いポリスルホンを配合することで靭性を付与した樹脂設計が開発されてきた(特許文献1)。具体的には、数平均分子量が3000〜5100のポリスルホンをエポキシ樹脂組成物中に20〜50質量%と大量に配合することで、優れた靭性向上効果があることが開示されている。
【0007】
また、4員環以上の環構造を2つ以上有し、かつ、環構造に直結したアミン型グリシジル基を少なくとも1つ有するエポキシ樹脂を用いることで、耐熱性と弾性率が向上することが開示されている(特許文献2)。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開昭61−228016号公報
【特許文献2】国際公開第2010/109929号
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかし、特許文献1の方法では、航空宇宙用途向け繊維強化複合材料に求められる特性に対して、耐熱性と樹脂伸度が不十分であった。
【0010】
また、特許文献2の方法では、樹脂硬化物の伸度、および繊維強化複合材料とした時の層間靭性が不十分となる場合があった。
【0011】
このように、伸度、耐熱性、靭性、弾性率を満足させるエポキシ樹脂組成物は開発困難であった。
【0012】
そこで、本発明の目的は、樹脂伸度と耐熱性を向上させたエポキシ樹脂組成物を提供することにある。さらには、かかるエポキシ樹脂組成物を用いることで、層間靭性と高温環境下の圧縮強度に優れた繊維強化複合材料を提供することにある。
【課題を解決するための手段】
【0013】
本発明者らは、前記課題を解決すべく検討した結果、下記構成から成るエポキシ樹脂組成物を見いだし、本発明を完成させるに至った。すなわち本発明は、以下の構成からなる。
【0014】
次の構成要素[A]、[B]、[C]を有してなるエポキシ樹脂組成物であって、[B]がエポキシ樹脂組成物中に8〜40質量%含まれ、[C]に含まれる活性水素のモル数がエポキシ樹脂組成物全体に含まれるエポキシ基のモル数の1.05〜2.0倍であり、エポキシ樹脂組成物を硬化してなるDSC(示差走査熱量分析)により得られる硬化度が90%以上の硬化物において[A]、[B]、[C]が単一相構造、または500nm未満の相分離構造を形成し、かつその硬化物のDMA(動的機械分析)により得られるガラス転移温度X(℃)とゴム状態弾性率Y(MPa)が下記式(1)を満たすエポキシ樹脂組成物。
[A]アミン型エポキシ樹脂
[B]熱可塑性樹脂
[C]芳香族アミン
0.19X/℃−31.5≦Y/MPa≦0.19X/℃−27 ・・・(1)
さらに、本発明においては、前記エポキシ樹脂組成物を硬化させてなる樹脂硬化物とすること、前記エポキシ樹脂組成物を強化繊維に含浸させてプリプレグとすること、前記樹脂硬化物と強化繊維を含む繊維強化複合材料とすること、さらには、かかるプリプレグを硬化させて繊維強化複合材料とすることができる。
【発明の効果】
【0015】
本発明によれば、樹脂伸度と耐熱性を向上させたエポキシ樹脂組成物が得られる。さらには、かかるエポキシ樹脂組成物を用いることで、層間靭性と高温環境下の圧縮強度に優れた繊維強化複合材料が得られる。
【発明を実施するための形態】
【0016】
以下、本発明のエポキシ樹脂組成物、樹脂硬化物、プリプレグおよび繊維強化複合材料について詳細に説明する。
【0017】
本発明のエポキシ樹脂組成物は、アミン型エポキシ樹脂[A]、熱可塑性樹脂[B]、芳香族アミン[C]を含み、[B]がエポキシ樹脂組成物中に8〜40質量%含まれ、[C]に含まれる活性水素のモル数がエポキシ樹脂組成物全体に含まれるエポキシ基のモル数の1.05〜2.0倍であり、エポキシ樹脂組成物を硬化してなるDSC(示差走査熱量分析)により得られる硬化度が90%以上の硬化物において[A]、[B]、[C]が単一相構造、または500nm未満の相分離構造を形成し、かつその硬化物のDMA(動的機械分析)により得られるガラス転移温度X(℃)とゴム状態弾性率Y(MPa)が下記式(1)を満たすものである。
【0018】
0.19X/℃−31.5≦Y/MPa≦0.19X/℃−27 ・・・(1)。
【0019】
本発明において、エポキシ樹脂組成物を硬化してなるDSC硬化度が90%以上の硬化物とは、DSC(示差走査熱量分析)により得られる、かかるエポキシ樹脂組成物の総発熱量QTと、かかる硬化物の残存発熱量QRから下記の式で算出される硬化度が90%以上である硬化物を指す。
【0020】
硬化度(%)=(QT−QR)/QT×100
本発明において、式(1)におけるXやYは、本発明のエポキシ樹脂組成物を、DSCにより得られる硬化度が90%以上となる温度条件で加熱硬化し得られた硬化物について、DMA(動的機械分析)の昇温測定を実施し得られる貯蔵弾性率と温度の散布図より算出されるものである。ガラス転移温度は、上記散布図において、ガラス領域に引いた接線と、ガラス転移領域に引いた接線との交点における温度である。また、ゴム状態弾性率はかかるガラス転移温度を50℃上回る温度における貯蔵弾性率である。
【0021】
本発明のエポキシ樹脂組成物を用いた繊維強化複合材料は、エポキシ樹脂硬化物のガラス転移温度とゴム状態弾性率が0.19X/℃−31.5≦Y/MPa≦0.19X/℃−27の関係を満たし、好ましくは0.19X/℃−31.5≦Y/MPa≦0.19X/℃−28である。ガラス転移温度とゴム状態弾性率がこの範囲を満たすことで、耐熱性と伸度を両立することができる。
【0022】
エポキシ樹脂組成物のゴム状態弾性率が0.19X/℃−27より高いと、ゴム状態弾性率が高くなるために塑性変形能力が低下し、繊維強化複合材料の層間靭性が低くなる。また、0.19X/℃−31.5より低いと、ゴム状態弾性率が低くなるためにエポキシ樹脂硬化物の弾性率が得られず、繊維強化複合材料とした場合に高温下の圧縮強度が不足する場合がある。
【0023】
本発明で用いられるアミン型エポキシ樹脂[A]としては、例えば、テトラグリシジルジアミノジフェニルメタン、テトラグリシジルジアミノジフェニルスルホン、テトラグリシジルキシリレンジアミン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、ジグリシジルアニリン、ジグリシジルトルイジン、またはこれらのハロゲン置換体、アルキル置換体、水添体などが挙げられる。中でも、弾性率と耐熱性を付与できることから、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、またはこれらのハロゲン置換体、アルキル置換体、水添体が好ましい。
【0024】
テトラグリシジルジアミノジフェニルメタンの市販品としては、“スミエポキシ(登録商標)”ELM434(住友化学工業(株)製)、YH434L(新日鐵住金化学(株)製)、“jER(登録商標)”604(三菱化学(株)製)、“アラルダイド(登録商標)”MY720、“アラルダイド(登録商標)”MY721、“アラルダイド(登録商標)”MY9512、“アラルダイド(登録商標)”MY9663(以上、ハンツマン・アドバンスト・マテリアルズ社製)などが挙げられる。
【0025】
テトラグリシジルジアミノジフェニルスルホンの市販品としては、TG3DAS(三井化学ファイン(株)製)などが挙げられる。
【0026】
テトラグリシジルキシリレンジアミンおよびその水素添加品の市販品としては、“TETRAD(登録商標)”−X、“TETRAD(登録商標)”−C(以上、三菱ガス化学(株)製)などが挙げられる。
【0027】
トリグリシジルアミノフェノール又はトリグリシジルアミノクレゾールの市販品としては、“スミエポキシ(登録商標)”ELM100、“スミエポキシ(登録商標)”ELM120(以上、住友化学工業(株)製)、“アラルダイド(登録商標)”MY0500、“アラルダイド(登録商標)”MY0510、“アラルダイド(登録商標)”MY0600(以上、ハンツマン・アドバンスド・マテリアルズ社製)、“jER(登録商標)”630(三菱化学(株)製)などが挙げられる。
【0028】
ジグリシジルアニリンの市販品としては、GAN(日本化薬(株)製)、PxGAN(東レ・ファインケミカル(株)製)などが挙げられる。
【0029】
ジグリシジルトルイジンの市販品としては、GOT(日本化薬(株)製)などが挙げられる。
【0030】
本発明において、エポキシ樹脂の総量100質量部中にアミン型エポキシ樹脂[A]が50〜100質量部含まれることが好ましく、より好ましくは70〜100質量部の範囲である。アミン型エポキシ樹脂が、配合したエポキシ樹脂総量100質量部に対して50質量部未満であると、耐熱性と弾性率が不足したエポキシ樹脂組成物となる場合がある。さらに、繊維強化複合材料としたときに圧縮強度が低下することがある。
【0031】
本発明のエポキシ樹脂組成物は、アミン型エポキシ樹脂[A]は2官能アミン型エポキシ樹脂と3官能以上のアミン型エポキシ樹脂を含むものが好ましい。2官能アミン型エポキシ樹脂を含むことで架橋点間距離が延長され、伸度が向上する。さらに、3官能以上のアミン型エポキシ樹脂を配合することで、耐熱性と弾性率が向上し、バランスのとれた樹脂組成となる。
【0032】
また、本発明の効果を損なわない範囲において、エポキシ樹脂として、アミン型エポキシ樹脂[A]以外に他のエポキシ樹脂成分を含んでいても構わない。これらは1種類だけでなく、複数種組み合わせて添加しても良い。具体的には、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ウレタンおよびイソシアネート変性エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、フルオレン骨格を有するエポキシ樹脂、及び、ビスフェノール型エポキシ樹脂として、ビスフェノールA型、ビスフェノールF型、ビスフェノールS型、ビスフェノールAD型、もしくはこれらビスフェノールのハロゲン、アルキル置換体、水添体等が用いられる。かかるエポキシ樹脂の具体例として以下のものが挙げられる。
【0033】
フェノールノボラック型エポキシ樹脂の市販品としては、“jER(登録商標)”152、“jER(登録商標)”154(以上、三菱化学(株)製)、“エピクロン(登録商標)”N−740、“エピクロン(登録商標)”N−770、“エピクロン(登録商標)”N−775(以上、DIC(株)製)などが挙げられる。
【0034】
クレゾールノボラック型エポキシ樹脂の市販品としては、“エピクロン(登録商標)”N−660、“エピクロン(登録商標)”N−665、“エピクロン(登録商標)”N−670、“エピクロン(登録商標)”N−673、“エピクロン(登録商標)”N−695(以上、DIC(株)製)、EOCN−1020、EOCN−102S、EOCN−104S(以上、日本化薬(株)製)などが挙げられる。
【0035】
レゾルシノール型エポキシ樹脂の具体例としては、“デナコール(登録商標)”EX−201(ナガセケムテックス(株)製)などが挙げられる。
【0036】
ジシクロペンタジエン型エポキシ樹脂の市販品としては、“エピクロン(登録商標)”HP7200、“エピクロン(登録商標)”HP7200L、“エピクロン(登録商標)”HP7200H(以上、DIC(株)製)、Tactix558(ハンツマン・アドバンスト・マテリアル社製)、XD−1000−1L、XD−1000−2L(以上、日本化薬(株)製)などが挙げられる。
【0037】
ウレタンおよびイソシアネート変性エポキシ樹脂の市販品としては、オキサゾリドン環を有するAER4152(旭化成イーマテリアルズ(株)製)やACR1348(旭電化(株)製)などが挙げられる。
【0038】
ビフェニル骨格を有するエポキシ樹脂の市販品としては、“jER(登録商標)”YX4000H、“jER(登録商標)”YX4000、“jER(登録商標)”YL6616(以上、三菱化学(株)製)、NC−3000(日本化薬(株)製)などが挙げられる。
【0039】
フルオレン骨格を有するエポキシ樹脂の市販品としては、ESF300(新日鐵住金化学(株)製)、“オンコート(登録商標)”EX−1010、“オンコート(登録商標)”EX−1011、“オンコート(登録商標)”EX−1012、“オンコート(登録商標)”EX−1020、“オンコート(登録商標)”EX−1030、“オンコート(登録商標)”EX−1040、“オンコート(登録商標)”EX−1050、“オンコート(登録商標)”EX−1051(以上、ナガセケムテックス(株)製)などが挙げられる。
【0040】
ビスフェノールA型エポキシ樹脂の市販品としては、“エポトート(登録商標)”YD128(新日鐵住金化学(株)製)、“jER(登録商標)”825、“jER(登録商標)”828、“jER(登録商標)”834、“jER(登録商標)”1001、“jER(登録商標)”1004、“jER(登録商標)”1007、“jER(登録商標)”1009、“jER(登録商標)”1010(以上、三菱化学(株)製)などが挙げられる。
【0041】
ビスフェノールF型エポキシ樹脂の市販品としては、“エピクロン(登録商標)”830、“エピクロン(登録商標)”835(以上、DIC(株)製)、“jER(登録商標)”806、“jER(登録商標)”807、“jER(登録商標)”4004P、“jER(登録商標)”4007P、“jER(登録商標)”4009P、“jER(登録商標)”4010P(以上、三菱化学(株)製)、“エポトート(登録商標)”YDF170、“エポトート(登録商標)”YDF2001(以上、新日鐵住金化学(株)製)などが挙げられる。
【0042】
ビスフェノールS型エポキシ樹脂としては、“エピクロン(登録商標)”EXA−1514(DIC(株)製)などが挙げられる。
【0043】
ビスフェノールAD型エポキシ樹脂としては、“EPOMIK(登録商標)”R710、“EPOMIK(登録商標)”R1710(以上、(株)プリンテック製)などが挙げられる。
【0044】
本発明のエポキシ樹脂組成物には、熱可塑性樹脂[B]を解させて用いられる。
【0045】
本発明において、上記のアミン型エポキシ樹脂[A]に、熱可塑性樹脂[B]を組み合わせることで、耐熱性の低下を回避しつつ高い靭性が得られ、繊維強化複合材料としたときに層間靱性が大幅に向上する。
【0046】
本発明における熱可塑性樹脂[B]は、常温で結晶状態もしくはガラス状態にあり、熱可塑性を有するポリマー材料である。
【0047】
かかる熱可塑性樹脂[B]としては、一般に、主鎖に、炭素−炭素結合、アミド結合、イミド結合、エステル結合、エーテル結合、カーボネート結合、ウレタン結合、チオエーテル結合、スルホン結合およびカルボニル結合からなる群から選ばれた結合を有する熱可塑性樹脂であることが好ましい。また、この熱可塑性樹脂[B]は、部分的に架橋構造を有していても差し支えなく、結晶性を有していても非晶性であってもよい。特に、ポリアミド、ポリカーボナート、ポリアセタール、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリアリレート、ポリエステル、ポリアミドイミド、ポリイミド、ポリエーテルイミド、フェニルトリメチルインダン構造を有するポリイミド、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアラミド、ポリエーテルニトリルおよびポリベンズイミダゾールからなる群から選ばれた少なくとも1種の樹脂が、上記のエポキシ樹脂組成物に含まれるいずれかのエポキシ樹脂に溶解していることが好適である。
【0048】
本発明において、熱可塑性樹脂[B]はエポキシ樹脂組成物中に8〜40質量%含まれ、好ましくは8〜35質量%、より好ましくは12〜35質量%、さらに好ましくは16〜35質量%、最も好ましくは20〜30質量%含まれる。
【0049】
かかる熱可塑性樹脂[B]の含有量は、エポキシ樹脂組成物100質量%に対する割合であるが、後述する熱可塑性樹脂粒子[D]を配合する場合においては、エポキシ樹脂組成物の全体質量に熱可塑性樹脂粒子[D]の質量を含めないで算出するものとする。
【0050】
熱可塑性樹脂[B]の配合量が8質量%未満となると、樹脂硬化物の靭性が低下し、得られる繊維強化複合材料の層間靭性が不足する。また、40質量%より多くなると、熱硬化性樹脂組成物の粘度が上昇し、熱硬化性樹脂組成物およびプリプレグの製造プロセス性や取り扱い性が不十分となる。
【0051】
また、かかる熱可塑性樹脂[B]の重量平均分子量は、4000〜40000g/molの範囲にあることが好ましく、より好ましくは10000〜40000g/mol、さらに好ましくは15000〜30000g/molである。かかる重量平均分子量が4000g/molより低いと、エポキシ樹脂硬化物の伸度と靭性が不足する場合がある。また、40000g/molより高いと、エポキシ樹脂組成物に熱可塑性樹脂を溶解した際、エポキシ樹脂の粘度が高くなり混練が難しく、プリプレグ化が困難となる場合がある。
【0052】
さらに、本発明における熱可塑性樹脂[B]のガラス転移温度は150℃以上であることが好ましく、200℃以上であることがより好ましく、さらに好ましくは220℃以上である。かかる熱可塑性樹脂[B]のガラス転移温度が150℃未満であると、成形体が熱変形を起こしやすくなる場合がある。
【0053】
かかる熱可塑性樹脂[B]としては、ポリカーボネート(ガラス転移温度(Tgともいう):150℃)、ポリスルホン(Tg:190℃)、ポリエーテルイミド(Tg:215℃)、ポリエーテルスルホン(Tg:225℃)などが挙げられる。
【0054】
かかる熱可塑性樹脂[B]のガラス転移温度は、DSC(示差走査熱量分析)を用いて、30℃から、予測されるガラス転移温度よりも30℃高い温度以上まで、昇温速度20℃/分の昇温条件で昇温し、1分間保持した後、20℃/分の降温条件で0℃まで一旦冷却し、1分間保持した後、再度20℃/分の昇温条件で測定した際に観察されるガラス転移温度のことである。
【0055】
ポリカーボネートの市販品としては、“パンライト(登録商標)”K1300Y(帝人(株)製)などが挙げられる。
【0056】
ポリスルホンの市販品としては、“Udel(登録商標)”P−1700、“Udel(登録商標)”P−3500LCD、“Virantage(登録商標)”DAMS VW−30500RP(以上、Solvay Speciality Polymers社製)などが挙げられる。
【0057】
ポリエーテルイミドの市販品としては、“ウルテム(登録商標)”1000、“ウルテム(登録商標)”1010(以上、SABIC社製)などが挙げられる。
【0058】
ポリエーテルスルホンの市販品としては、“スミカエクセル(登録商標)”PES3600P、“スミカエクセル(登録商標)”PES5003P、“スミカエクセル(登録商標)”PES5200P、“スミカエクセル(登録商標)”PES7600P(以上、住友化学工業(株)製)、“Ultrason(登録商標)”E2020P SR、(BASF社製)、“GAFONE(登録商標)”3600R、“GAFONE(登録商標)”3000R、“Virantage(登録商標)”VW−10700RP(以上、Solvay Speciality Polymers社製)などが挙げられる。
【0059】
さらに、この熱可塑性樹脂[B]の末端官能基としては、水酸基、カルボキシル基、アミノ基、チオール基、酸無水物などが、好ましく用いられる。水酸基を有する熱可塑性樹脂としては、ポリビニルホルマールやポリビニルブチラールなどのポリビニルアセタール樹脂、ポリビニルアルコール、フェノキシ樹脂を挙げることができる。また、スルホニル基を有する熱可塑性樹脂としては、ポリエーテルスルホンを挙げることができる。
【0060】
具体的には、フェノキシ樹脂の市販品として、“フェノトート(登録商標)”YP−50、“フェノトート(登録商標)”YP−50S(以上、新日鉄住金化学(株)製)などが挙げられる。
【0061】
また、本発明において、エポキシ樹脂に不溶な熱可塑性樹脂粒子[D]を配合することも好ましい。かかる熱可塑性樹脂粒子[D]を配合することにより、繊維強化複合材料とした時の層間靭性が向上する。
【0062】
かかる熱可塑性樹脂粒子[D]の素材としては、エポキシ樹脂に溶融しない熱可塑性樹脂を用いることができる。例えば、ポリアミド、ポリイミド、ポリアミドイミド、ポリカーボナート、ポリフェニレンスルフィドが挙げられる。中でも、ポリアミドが最も好ましく、ポリアミドの中でも、ナイロン12、ナイロン6、ナイロン11、ナイロン6/12共重合体や“グリルアミド(登録商標)”TR−55、“グリルアミド(登録商標)”TR−90、“グリルアミド(登録商標)”TR−70LX(以上、エムザベルケ社製)等の透明耐熱ポリアミドが好ましい。この熱可塑性樹脂粒子[D]の形状としては、球状粒子でも非球状粒子でも、また多孔質粒子でもよいが、球状の方が樹脂の流動特性を低下させないため粘弾性に優れ、また応力集中の起点がなく、高い耐衝撃性を与えるという点で好ましい態様である。
【0063】
ポリアミド粒子の市販品としては、SP−500、SP−10(以上、東レ(株)製)、 “オルガソール(登録商標)”1002D、“オルガソール(登録商標)”2002、“オルガソール(登録商標)”3202(以上、ATOCHEM(株)製)、“トロガミド(登録商標)”T5000(ダイセル・エボニック社製)などが挙げられる。
【0064】
本発明において、芳香族アミン[C]は、本発明のエポキシ樹脂組成物に含まれるエポキシ樹脂の硬化剤であり、エポキシ基と反応し得る活性水素を有する化合物である。
【0065】
具体的には、ジアミノジフェニルスルホン、ジアミノジフェニルメタン、ジアミノジフェニルエーテル、ビスアニリン、ジアミノベンズアニリドが挙げられる。
【0066】
中でも、ジアミノジフェニルスルホンもしくはその異性体が好ましく用いられる。ジアミノジフェニルスルホンもしくはその異性体は、耐熱性の良好なエポキシ樹脂硬化物を得られることから好ましく使用される。
【0067】
ジアミノジフェニルスルホンの異性体としては、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホンが挙げられる。
【0068】
また、かかる芳香族アミン[C]の総量は、[C]に含まれる活性水素のモル数がエポキシ樹脂組成物全体に含まれるエポキシ基のモル数の1.05〜2.0倍になるよう配合される必要があり、好ましくは1.1〜1.8倍、より好ましくは1.2〜1.5倍になるよう配合されることが望ましい。かかる活性水素のモル数がエポキシ樹脂組成物全体に含まれるエポキシ基のモル数の1.05倍に満たない場合は、架橋密度が高くなるために樹脂伸度が低下することに加え、相分離構造が粗大化し、繊維強化複合材料の層間靭性と圧縮強度が不十分となる場合がある。一方、2.0倍を超える場合は、耐熱性が顕著に低下し、また、エポキシ樹脂組成物の粘度が上昇するため、プリプレグの作製が困難となる。
【0069】
芳香族アミン[C]の市販品としては、セイカキュアS(和歌山精化工業(株)製)、MDA−220(三井化学(株)製)、“jERキュア(登録商標)”W(三菱化学(株)製)、および3,3’−DAS(三井化学ファイン(株)製)、“Lonzacure(登録商標)”M−DEA、“Lonzacure(登録商標)”M−DIPA、“Lonzacure(登録商標)”M−MIPAおよび“Lonzacure(登録商標)”DETDA 80(以上、Lonza社製)などが挙げられる。
【0070】
これらの芳香族アミン[C]は、単独で使用しても複数を併用してもよい。また、エポキシ樹脂と芳香族アミン[C]、あるいはそれらの一部を予備反応させたものを組成物中に配合することもできる。この方法は、粘度調節や保存安定性向上に有効な場合がある。
【0071】
本発明のエポキシ樹脂組成物においては、芳香族アミン[C]以外の構成要素(成分)を、まず160℃程度の温度で均一に加熱混練し、次いで80℃程度の温度まで冷却した後に、芳香族アミン[C]を加えて混練することが好ましいが、各成分の配合方法は特にこの方法に限定されるものではない。
【0072】
本発明のエポキシ樹脂硬化物は、本発明のエポキシ樹脂組成物をDSCにより得られる硬化度が90%以上となる温度条件で加熱硬化することにより得ることが出来る。かかる温度条件は、硬化剤や促進剤の種類や量に応じて適宜設定することができ、例えば、硬化剤にジアミノジフェニルスルホンを用いた場合、180℃で2時間の温度条件が好適に使用できる。
【0073】
本発明のエポキシ樹脂硬化物は、その中で、アミン型エポキシ樹脂[A]、熱可塑性樹脂[B]、芳香族アミン[C]が単一相構造、もしくは500nm未満の微細な相分離構造を形成する必要がある。
【0074】
本発明において相分離構造とは、複数の相が、10nm以上の相分離構造を形成している構造を言う。これに対し、分子レベルで均一に混合している状態を単一相構造といい、本発明においては、複数の相が10nm未満の相分離構造である場合は、透過型電子顕微鏡による各相の同定が困難となるため単一相構造とみなす。
【0075】
かかる本発明のエポキシ樹脂硬化物は、アミン型エポキシ樹脂[A]と芳香族アミン[C]が硬化反応で架橋し共存する相の中に、熱可塑性樹脂[B]が分子レベルで相溶、または500nm未満の相分離構造を形成する必要がある。
【0076】
かかる熱可塑性樹脂[B]は、アミン型エポキシ樹脂[A]や芳香族アミン[C]との反応性を有し、硬化反応においてアミン型エポキシ樹脂[A]や芳香族アミン[C]からなる架橋構造に組み込まれることで、安定な単一相構造、または500nm未満の相分離構造を形成する上で好ましい。なお、熱可塑性樹脂[B]を含まない場合は、より単一相構造を形成するが、硬化物の靭性が大幅に低下する。靭性の確保、耐熱性の維持などの樹脂特性のバランスを保つため、熱可塑性樹脂[B]を含んだ上で、単一相構造、もしくは500nm未満の微細な相分離構造を形成することが必要である。
【0077】
かかるエポキシ樹脂硬化物の相分離構造の確認、即ち、エポキシ樹脂組成物を硬化してなるDSCにより得られる硬化度が90%以上の硬化物においてアミン型エポキシ樹脂[A]、熱可塑性樹脂[B]、芳香族アミン[C]が単一相構造、もしくは500nm未満の微細な相分離構造を形成しているか否かを確認するには、透過型電子顕微鏡を中心とする各種顕微鏡を用いた直接観察の手法が好適に使用できる。すなわち、各種顕微鏡で得られた画像より、単一相構造もしくは相分離構造サイズが500nm未満であるか否かを判断すれば良い。
【0078】
かかる相分離構造サイズは、次のように定義するものとなる。なお、相分離構造には、両相連続構造と海島構造があるので、それぞれについて定義する。まず、各種顕微鏡により相構造を示す画像を取得する。両相連続構造の場合は、その画像に任意に5本の直線を引き、その直線と相界面の交点を抽出し、隣り合う交点間の距離を各直線につき20点測定し、合計100点の数平均値を相分離構造サイズとする。海島構造の場合は、その画像の領域内に存在する島相を任意に100個抽出し、その島相の直径の数平均値を相分離構造サイズとする。なお、島相が楕円形、不定形になっている場合は、外接円の直径を用いる。
【0079】
なお、透過型電子顕微鏡もしくは走査型電子顕微鏡を使用する場合、必要に応じて、オスミウムなどで染色しても良い。
【0080】
かかる相分離構造は、単一相もしくは500nm未満のサイズであり、好ましくは単一相もしくは300nm未満のサイズであり、さらに好ましくは単一相である。相分離構造が500nm以上のサイズの場合、繊維強化複合材料とした際に、成形バッチ毎、あるいは成形部位により特性にばらつきが生じる傾向があり、また十分な層間靭性が発揮できない。
【0081】
本発明で用いられる強化繊維としては、ガラス繊維、炭素繊維、黒鉛繊維、アラミド繊維、ボロン繊維、アルミナ繊維および炭化ケイ素繊維等が挙げられる。これらの強化繊維を2種以上混合して用いても構わないが、より軽量で、より耐久性の高い成形品を得るために、炭素繊維や黒鉛繊維を用いることが好ましい。特に、材料の軽量化や高強度化の要求が高い用途においては、その優れた比弾性率と比強度のため、炭素繊維が好適に用いられる。
【0082】
本発明で好ましく用いられる炭素繊維は、用途に応じてあらゆる種類の炭素繊維を用いることが可能であるが、耐衝撃性の点から高くとも400GPaの引張弾性率を有する炭素繊維であることが好ましい。また、強度の観点からは、高い剛性および機械強度を有する複合材料が得られることから、引張強度が好ましくは4.4〜6.5GPaの炭素繊維が用いられる。また、引張伸度も重要な要素であり、1.7〜2.3%の高強度高伸度炭素繊維であることが好ましい。従って、引張弾性率が少なくとも230GPaであり、引張強度が少なくとも4.4GPaであり、引張伸度が少なくとも1.7%であるという特性を兼ね備えた炭素繊維が最も適している。
【0083】
炭素繊維の市販品としては、“トレカ(登録商標)”T800G−24K、“トレカ(登録商標)”T800S−24K、“トレカ(登録商標)”T700G−24K、“トレカ(登録商標)”T300−3K、および“トレカ(登録商標)”T700S−12K(以上東レ(株)製)などが挙げられる。
【0084】
炭素繊維の形態や配列については、一方向に引き揃えた長繊維や織物等から適宜選択できるが、軽量で耐久性がより高い水準にある炭素繊維強化複合材料を得るためには、炭素繊維が、一方向に引き揃えた長繊維(繊維束)や織物等連続繊維の形態であることが好ましい。
【0085】
本発明で用いられる炭素繊維束は、単繊維繊度が0.2〜2.0dtexであることが好ましく、より好ましくは0.4〜1.8dtexである。単繊維繊度が0.2dtex未満では、撚糸時においてガイドローラーとの接触による炭素繊維束の損傷が起こり易くなることがあり、また樹脂組成物の含浸処理工程においても同様の損傷が起こることがある。単繊維繊度が2.0dtexを超えると炭素繊維束に樹脂組成物が充分に含浸されないことがあり、結果として耐疲労性が低下することがある。
【0086】
本発明で用いられる炭素繊維束は、一つの繊維束中のフィラメント数が2500〜50000本の範囲であることが好ましい。フィラメント数が2500本を下回ると繊維配列が蛇行しやすく強度低下の原因となりやすい。また、フィラメント数が50000本を上回るとプリプレグ作製時あるいは成形時に樹脂含浸が難しいことがある。フィラメント数は、より好ましくは2800〜40000本の範囲である。
【0087】
本発明のプリプレグは、上述のエポキシ樹脂組成物を上記強化繊維に含浸したものである。そのプリプレグの繊維質量分率は好ましくは40〜90質量%であり、より好ましくは50〜80質量%である。繊維質量分率が低すぎると、得られる複合材料の質量が過大となり、比強度および比弾性率に優れる繊維強化複合材料の利点が損なわれることがあり、また、繊維質量分率が高すぎると、樹脂組成物の含浸不良が生じ、得られる複合材料がボイドの多いものとなり易く、その力学特性が大きく低下することがある。
【0088】
強化繊維の形態は特に限定されるものではなく、例えば、一方向に引き揃えた長繊維、トウ、織物、マット、ニット、組み紐などが用いられる。また、特に、比強度と比弾性率が高いことを要求される用途には、強化繊維が単一方向に引き揃えられた配列が最も適しているが、取り扱いの容易なクロス(織物)状の配列も本発明には適している。
【0089】
本発明のプリプレグは、マトリックス樹脂として用いられる前記エポキシ樹脂組成物を、メチルエチルケトンやメタノール等の溶媒に溶解して低粘度化し、強化繊維に含浸させる方法(ウェット法)と、マトリックス樹脂を加熱により低粘度化し、強化繊維に含浸させるホットメルト法(ドライ法)等により作製することができる。
【0090】
ウェット法は、強化繊維をマトリックス樹脂であるエポキシ樹脂組成物の溶液に浸漬した後、引き上げ、オーブン等を用いて溶媒を蒸発させる方法であり、ホットメルト法(ドライ法)は、加熱により低粘度化したエポキシ樹脂組成物を直接強化繊維に含浸させる方法、または一旦エポキシ樹脂組成物を離型紙等の上にコーティングしたフィルムを作製しておき、次いで強化繊維の両側または片側から前記フィルムを重ね、加熱加圧することにより強化繊維に樹脂を含浸させる方法である。ホットメルト法によれば、プリプレグ中に残留する溶媒が実質上皆無となるため、本発明においては好ましい態様である。
【0091】
得られたプリプレグを積層後、積層物に圧力を付与しながらマトリックス樹脂を加熱硬化させる方法等により、本発明の繊維強化複合材料が作製される。
【0092】
ここで、熱および圧力を付与する方法には、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法および内圧成形法等が採用される。
【0093】
本発明の繊維強化複合材料は、プリプレグを介さず、エポキシ樹脂組成物を直接強化繊維に含浸させた後、加熱硬化せしめる方法、例えば、ハンド・レイアップ法、フィラメント・ワインディング法、プルトルージョン法、レジン・インジェクション・モールディング法、およびレジン・トランスファー・モールディング法等の成形法によっても作製できる。これら方法では、エポキシ樹脂からなる主剤とエポキシ樹脂硬化剤との2液を使用直前に混合してエポキシ樹脂組成物を調製することが好ましい。
【0094】
本発明のエポキシ樹脂組成物をマトリックス樹脂として用いた繊維強化複合材料は、スポーツ用途、航空機用途および一般産業用途に好適に用いられる。より具体的には、航空宇宙用途では、主翼、尾翼およびフロアビーム等の航空機一次構造材用途、フラップ、エルロン、カウル、フェアリングおよび内装材等の二次構造材用途、ロケットモーターケースおよび人工衛星構造材用途等に好適に用いられる。このような航空宇宙用途の中でも、特に耐衝撃性が必要で、かつ、高度飛行中において低温にさらされるため、低温における引張強度が必要な航空機一次構造材用途、特に胴体スキンや主翼スキンにおいて、本発明の繊維強化複合材料が特に好適に用いられる。また、一般産業用途では、自動車、船舶および鉄道車両等の移動体の構造材、ドライブシャフト、板バネ、風車ブレード、各種タービン、圧力容器、フライホイール、製紙用ローラ、屋根材、ケーブル、補強筋、および補修補強材料等の土木・建築材料用途等に好適に用いられる。さらにスポーツ用途では、ゴルフシャフト、釣り竿、テニス、バトミントンおよびスカッシュ等のラケット用途、ホッケー等のスティック用途、およびスキーポール用途等に好適に用いられる。
【実施例】
【0095】
以下、実施例によって、本発明のエポキシ樹脂組成物と、それを用いたプリプレグと繊維強化複合材料について、より具体的に説明する。実施例で用いた樹脂原料、プリプレグおよび繊維強化複合材料の作製方法および評価法を次に示す。実施例のプリプレグの作製環境および評価は、特に断りの無い限り、温度25℃±2℃、相対湿度50%の雰囲気で行ったものである。
【0096】
[炭素繊維(強化繊維)]
・“トレカ(登録商標)”T800G−24K−31E(フィラメント数24000本、引張強度5.9GPa、引張弾性率294GPa、引張伸度2.0%の炭素繊維、東レ(株)製)。
【0097】
[樹脂原料]
<アミン型エポキシ樹脂[A]>
・“スミエポキシ(登録商標)”ELM434(テトラグリシジルジアミノジフェニルメタン、住友化学(株)製)
・TG3DAS(テトラグリシジル−3,3’−ジアミノジフェニルスルホン、三井化学ファイン(株)製)
・“アラルダイド(登録商標)”MY0510(トリグリシジル−p−アミノフェノール、ハンツマン・ジャパン(株)製)
・“アラルダイド(登録商標)”MY0600(トリグリシジル−m−アミノフェノール、ハンツマン・ジャパン(株)製)
・GAN(N,N−ジグリシジルアニリン、日本化薬(株)製)
・PxGAN(N,N−ジグリシジル−4−フェノキシアニリン、東レ・ファインケミカル(株)製)
・“デナコール(登録商標)”Ex−731(N−グリシジルフタルイミド、ナガセケムテックス(株)製)。
【0098】
<[A]以外のエポキシ樹脂>
・“EPON(登録商標)”825(ビスフェノールA型エポキシ樹脂、Momentive Specialty Chemicals(株)製)
・“EPICLON(登録商標)”830(ビスフェノールF型エポキシ樹脂、DIC(株)製)。
【0099】
<熱可塑性樹脂[B]>
・“スミカエクセル(登録商標)”PES5003P(ポリエーテルスルホン、住友化学工業(株)製、重量平均分子量:47000)
・“Virantage (登録商標)”VW−10700RP(ポリエーテルスルホン、Solvay Speciality Polymers(株)製、重量平均分子量:21000)
・“Virantage (登録商標)”VW−30500RP(ポリスルホン、Solvay Speciality Polymers(株)製、重量平均分子量:14000)。
・“フェノトート(登録商標)”YP−50(フェノキシ樹脂、新日鉄住金化学(株)製、重量平均分子量:60000〜80000)
<芳香族アミン[C]>
・3,3’−DDS(3,3’−ジアミノジフェニルスルホン、三井化学ファイン(株)製)
・4,4’−DDS(4,4’−ジアミノジフェニルスルホン、和歌山精化工業(株)製)。
【0100】
<[C]以外の硬化剤>
・DICY7(ジシアンジアミド、三菱化学(株))。
【0101】
<熱可塑性樹脂粒子[D]>
・“グリルアミド(登録商標)”TR−55粒子(“グリルアミド(登録商標)”−TR55を原料として作製した、平均粒子径13μmの粒子)
(“グリルアミド(登録商標)”TR−55粒子の製造方法)
透明ポリアミド(商品名“グリルアミド(登録商標)”−TR55、エムザベルケ社製)33gを、クロロホルム100gとメタノール35gの混合溶媒中に添加して均一溶液を得た。次に、得られた均一溶液を塗装用のスプレーガンを用いて霧状にして、良く撹拌して1000gのn−ヘキサンの液面に向かって吹き付けて溶質を析出させた。析出した固体を濾別し、n−ヘキサンで良く洗浄した後に、100℃の温度で24時間の真空乾燥を行い、白色固体を28g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、平均粒子径13μmの“グリルアミド(登録商標)”TR−55粒子であった。
・“オルガソール(登録商標)”1002D(ATOCHEM(株)、平均粒子径:21.0 μm)。
【0102】
<その他の成分>
・DCMU99(3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア、硬化促進剤、保土ヶ谷化学工業(株)製)。
【0103】
(1)エポキシ樹脂組成物の調製
ニーダー中にアミン型エポキシ樹脂[A]または[A]以外のエポキシ樹脂と、熱可塑性樹脂[B]を所定量加え、混練しつつ、160℃まで昇温し、160℃、1時間混練することで、透明な粘調液を得た。混練しつつ80℃まで降温させた後、芳香族アミン[C]または[C]以外の硬化剤と熱可塑性樹脂粒子[D]、およびその他の成分を所定量加え、さらに混練し、エポキシ樹脂組成物を得た。
【0104】
(2)樹脂硬化物のDSC硬化度測定
上記(1)で調製したエポキシ樹脂組成物を5mg採取し、DSCを用いて、10℃/分の昇温速度で30℃から350℃まで昇温測定し、発熱カーブを取得し、その発熱ピークを積分することにより、エポキシ樹脂組成物の総発熱量QTを算出した。
【0105】
上記(1)で調製したエポキシ樹脂組成物を真空中で脱泡し、180℃の温度で2時間硬化させ、樹脂硬化物を得た。得られた樹脂硬化物を5mg採取し、DSCを用いて、10℃/分の昇温速度で30℃から350℃まで昇温測定し、発熱カーブを取得した。残存発熱ピークが存在する場合は、その発熱ピークを積分することにより、残存発熱量QRを算出した。残存発熱ピークが存在しない場合は、QR=0とした。
【0106】
ここで、DSCにより得られる硬化度(%)は、
硬化度(%)=(QT−QR)/QT×100
で求められる。
【0107】
(3)樹脂硬化物の相構造観察
上記(1)で調製したエポキシ樹脂組成物を真空中で脱泡し、180℃の温度で2時間硬化させ、樹脂硬化物を得た。樹脂硬化物を薄切片化し、透過型電子顕微鏡(TEM)を用いて下記の条件で透過電子像を取得した。染色剤は使用しなかった。
・装置:H−7100透過型電子顕微鏡(日立製作所(株)製)
・加速電圧:100kV
・倍率:10,000倍。
【0108】
得られた透過電子像の中に、数十nmから数十μmのサイズ範囲の相分離構造が存在するか否かを確認した。なお、エポキシ樹脂に不溶な熱可塑性樹脂粒子[D]は上記相構造には含めず、熱可塑性樹脂粒子[D]を除いたエポキシ樹脂組成物に由来する相分離構造のみを確認するものとした。なお、確認された分散相が熱可塑性樹脂粒子[D]であるか否かの判断には、エポキシ樹脂組成物中の熱可塑性樹脂粒子[D]を走査型電子顕微鏡で観察し、サイズや形態を比較するといった手法を用いた。
【0109】
樹脂硬化物の相分離構造は両相連続構造や海島構造を形成するので、それぞれについて以下のように測定した。表1〜表2の各表において、樹脂硬化物の相分離構造サイズは相構造(nm)欄に示される通りである。なお、単一相構造を示す場合は単一相と記載した。
【0110】
まず、透過型電子顕微鏡により相構造を示す画像を取得した。両相連続構造の場合は、その画像に任意に5本の直線を引き、その直線と相界面の隣り合う交点を抽出し、隣り合う交点間の距離を各直線につき20点測定し、合計100点の数平均値を相分離構造サイズとした。海島構造の場合は、その画像の領域内に存在する島相を任意に100個抽出し、その島相の直径の数平均値を相分離構造サイズとした。なお、島相が楕円形、不定形になっている場合は、外接円の直径を用いた。
【0111】
(4)樹脂硬化物の曲げ撓み量測定
上記(1)で調製したエポキシ樹脂組成物を真空中で脱泡した後、厚み2mmになるように設定したモールド中に注入した。180℃の温度で2時間硬化させ、厚さ2mmの樹脂硬化物を得た。次に、得られた樹脂硬化物の板から、幅10mm、長さ60mmの試験片を切り出し、スパン間32mmの3点曲げを測定し、JIS K7171−1994に従って、樹脂伸度の指標となる曲げ撓み量を求めた。
【0112】
(5)樹脂硬化物のガラス転移温度とゴム状態弾性率測定
上記(4)で作製した樹脂硬化物の板から、幅10mm、長さ40mmの試験片を切り出し、動的粘弾性測定装置(ARES:TAインスツルメント社製)を用い、固体ねじり治具に試験片をセットし、昇温速度5℃/分、周波数1Hz、歪み量0.1%にて30〜300℃の温度範囲について測定を行った。この時、ガラス転移温度は、得られた貯蔵弾性率と温度のグラフにおいて、ガラス領域に引いた接線と、ガラス転移領域に引いた接線との交点における温度とした。ゴム状態弾性率は、得られた貯蔵弾性率と温度のグラフにおいて、ガラス転移温度を50℃上回る温度における貯蔵弾性率とした。なお、エポキシ樹脂に不溶な熱可塑性樹脂粒子[D]由来ではない、[A]、[B]、[C]に由来するガラス転移温度が複数生じた場合は、最も低い値をガラス転移温度として採用した。
【0113】
(6)プリプレグの作製
エポキシ樹脂組成物を、ナイフコーターを用いて離型紙上に塗布して樹脂フィルムを作製した。次に、シート状に一方向に配列させた東レ(株)製、炭素繊維“トレカ(登録商標)”T800G−24K−31Eに、樹脂フィルム2枚を炭素繊維の両面から重ね、加熱加圧により樹脂を炭素繊維に含浸させ、炭素繊維の目付が190g/m、マトリックス樹脂の質量分率が35.5%の一方向プリプレグを得た。その際、熱可塑性樹脂粒子[D]を配合したエポキシ樹脂組成物を使用する場合は以下の2段含浸法を適用し、熱可塑性樹脂粒子[D]が表層に高度に局在化したプリプレグを作製した。
【0114】
まず、熱可塑性樹脂粒子[D]を含まない1次プリプレグを作製した。表1および2に記載の原料成分の内、熱可塑性樹脂粒子[D]を含まないエポキシ樹脂組成物を上記(1)の手順で調製した。この1次プリプレグ用エポキシ樹脂組成物を、ナイフコーターを用いて離型紙上に塗布して、通常の60質量%の目付となる30g/mの1次プリプレグ用樹脂フィルムを作製した。次に、シート状に一方向に配列させた東レ(株)製、炭素繊維“トレカ”(登録商標)T800G−24K−31Eに、この1次プリプレグ用樹脂フィルム2枚を炭素繊維の両面から重ね合せてヒートロールを用い、温度100℃、気圧1気圧で加熱加圧しながら、樹脂を炭素繊維に含浸させ、1次プリプレグを得た。
【0115】
さらに、2段含浸用樹脂フィルムを作製するために、ニーダーを用いて、表1および2に記載の原料成分の内、エポキシ樹脂に不溶な熱可塑性樹脂粒子[D]を記載量の2.5倍としたエポキシ樹脂組成物を上記(1)の手順で調製した。この2段含浸用エポキシ樹脂組成物を、ナイフコーターを用いて離型紙上に塗布して、通常の40質量%の目付となる20g/mの2段含浸用樹脂フィルムを作製した。これを1次プリプレグの両面から重ね合せてヒートロールを用い、温度80℃、気圧1気圧で加熱加圧することで、熱可塑性樹脂粒子[D]が表層に高度に局在化したプリプレグを得た。
【0116】
(7)モードI層間靭性(GIC)試験用複合材料製平板の作製とGIC測定
JIS K7086(1993)に従い、次の(a)〜(e)の操作によりGIC試験用複合材料製平板を作製した。
(a)(6)で作製した一方向プリプレグを、繊維方向を揃えて20ply積層した。ただし、積層中央面(10ply目と11ply目の間)に、繊維配列方向と直角に、幅40mm、厚み12.5μmのフッ素樹脂製フィルムをはさんだ。
(b)積層したプリプレグをナイロンフィルムで隙間のないように覆い、オートクレーブにて、180℃の温度で2時間、0.59MPaの圧力下、昇温速度1.5℃/分で成形し、一方向繊維強化複合材料を成形した。
(c)(b)で得た一方向繊維強化複合材料を、幅20mm、長さ195mmにカットした。繊維方向は、サンプルの長さ側と平行になるようにカットした。
(d)JIS K7086(1993)に従い、ピン負荷用ブロック(長さ25mm、アルミ製)を試験片端(フィルムをはさんだ側)に接着した。
(e)亀裂進展を観察しやすくするため、試験片の両側面に白色塗料を塗った。
【0117】
作製した複合材料製平板を用いて、以下の手順により、GIC測定を行った。
【0118】
JIS K7086(1993)附属書1に従い、インストロン万能試験機(インストロン社製)を用いて試験を行った。クロスヘッドスピードは、亀裂進展が20mmに到達するまでは0.5mm/分、20mm到達後は1mm/分とした。JIS K7086(1993)にしたがって、荷重、変位、および、亀裂長さから、亀裂進展初期の限界荷重のモードI層間破壊靭性値(亀裂進展初期のGIC)および亀裂進展過程のモードI層間破壊靭性値を算出した。亀裂進展初期のGICと亀裂進展量10mmから60mmにおける5点以上の測定値、計6点以上の測定値の平均をGICとして比較した。
【0119】
(8)繊維強化複合材料の圧縮強度測定
(6)で作製した一方向プリプレグを、繊維方向を圧縮方向と平行に揃えて12ply積層し、積層したプリプレグをナイロンフィルムで隙間のないように覆い、オートクレーブにて、180℃の温度で2時間、0.59MPaの圧力下、昇温速度1.5℃/分で成形し、積層体を作製した。この積層体から厚み2mm、幅15mm、長さ78mmのタブ付き試験片を作製した。この試験片はインストロン万能試験機を用いて、JIS K7076(1991)に従い、0°圧縮強度を測定した。サンプル数はn=5とした。なお、高温環境下の圧縮強度測定は、恒温槽付きインストロン万能試験機を用いて140℃の温度で測定した。
【0120】
(実施例1)
混練装置で、20質量部のTG3DAS(アミン型エポキシ樹脂[A])、80質量部の“EPON(登録商標)”825([A]以外のエポキシ樹脂)を混練した後、21質量部の“スミカエクセル(登録商標)”PES5003P(熱可塑性樹脂[B])を160℃で溶解混練した後、エポキシ樹脂組成物を80℃に降温して69質量部の4,4’−DDS(芳香族アミン[C])と28質量部の“グリルアミド(登録商標)”TR−55粒子(熱可塑性樹脂粒子[D])を混練し、エポキシ樹脂組成物を作製した。表1に、組成と割合を示す(表1中、数字は質量部を表す)。得られたエポキシ樹脂組成物を用い、上記(2)樹脂硬化物のDSC硬化度測定、(3)樹脂硬化物の相構造観察、(4)樹脂硬化物の曲げ撓み量測定、(5)樹脂硬化物のガラス転移温度とゴム状態弾性率測定を実施した。また、得られたエポキシ樹脂組成物から、(6)の手順でプリプレグを作製した。得られたプリプレグを用い、(7)モードI層間靭性(GIC)試験用複合材料製平板の作製とGIC測定、(8)繊維強化複合材料の圧縮強度測定を実施した。結果を表1−1に示す。
【0121】
(実施例2〜14、比較例1〜9)
アミン型エポキシ樹脂[A]または[A]以外のエポキシ樹脂、熱可塑性樹脂[B]、芳香族アミン[C]または[C]以外の硬化剤、熱可塑性樹脂粒子[D]およびその他の成分の配合量を、表1に示すように変更したこと以外は、実施例1と同様にしてエポキシ樹脂組成物とプリプレグを作製した。得られたエポキシ樹脂組成物を用い、上記(2)樹脂硬化物のDSC硬化度測定、(3)樹脂硬化物の相構造観察、(4)樹脂硬化物の曲げ撓み量測定、(5)樹脂硬化物のガラス転移温度とゴム状態弾性率測定を実施した。得られたプリプレグを用い、(7)モードI層間靭性(GIC)試験用複合材料製平板の作製とGIC測定、(8)繊維強化複合材料の圧縮強度測定を実施した。結果を、実施例2〜8については表1−1に、実施例9〜14については表1−2に、比較例1〜9については表2に示す。
【0122】
(実施例15、16、比較例10、11)
アミン型エポキシ樹脂[A]または[A]以外のエポキシ樹脂、熱可塑性樹脂[B]、芳香族アミン[C]の配合量を、表1、表2に示すように変更したこと以外は、実施例1と同様にしてエポキシ樹脂組成物とプリプレグを作製した。得られたエポキシ樹脂組成物を用い、上記(2)樹脂硬化物のDSC硬化度測定、(3)樹脂硬化物の相構造観察、(4)樹脂硬化物の曲げ撓み量測定、(5)樹脂硬化物のガラス転移温度とゴム状態弾性率測定を実施した。得られたプリプレグを用い、(7)モードI層間靭性(GIC)試験用複合材料製平板の作製とGIC測定、(8)繊維強化複合材料の圧縮強度測定を実施した。結果を、実施例15、16については表1−2に、比較例10、11については表2に示す。
【0123】
【表1-1】
【0124】
【表1-2】
【0125】
【表2】
【0126】
実施例1〜16と、比較例1〜11の比較から、本発明の樹脂硬化物は樹脂伸度、耐熱性を有し、かつ、繊維強化複合材料のGIC、高温下の0°圧縮強度に優れることが判る。
【0127】
実施例1〜16と、比較例1の比較から、所定量の熱可塑性樹脂[B]、芳香族アミン[C]が配合されており、かつ、[C]に含まれる活性水素のモル数がエポキシ樹脂組成物全体に含まれるエポキシ基のモル数の1.05〜2.0倍ではあっても、アミン型エポキシ樹脂[A]が配合されていない場合、ガラス転移温度とゴム状態弾性率の関係が0.19X/℃−31.5≦Y/MPa≦0.19X/℃−27(式中、Xはガラス転移温度(℃)、Yはゴム状態弾性率(MPa)を表す。)を満たさないため、特に繊維強化複合材料の高温下の0゜圧縮強度が低下することが判る。
【0128】
実施例1〜16と、比較例2の比較から、アミン型エポキシ樹脂[A]、芳香族アミン[C]が配合されており、かつ、[C]に含まれる活性水素のモル数がエポキシ樹脂組成物全体に含まれるエポキシ基のモル数の1.05〜2.0倍ではあるが、熱可塑性樹脂[B]が所定量配合されていない場合、ガラス転移温度とゴム状態弾性率の関係が0.19X/℃−31.5≦Y/MPa≦0.19X/℃−27(式中、Xはガラス転移温度(℃)、Yはゴム状態弾性率(MPa)を表す。)を満たさないため、特に繊維強化複合材料のGICが低下することが判る。
【0129】
実施例1〜16と、比較例3の比較から、アミン型エポキシ樹脂[A]、所定量の熱可塑性樹脂[B]が配合されているが、芳香族アミン[C]が配合されていない場合、ガラス転移温度とゴム状態弾性率の関係が0.19X/℃−31.5≦Y/MPa≦0.19X/℃−27(式中、Xはガラス転移温度(℃)、Yはゴム状態弾性率(MPa)を表す。)を満たさないため、特に繊維強化複合材料のGICが低下することが判る。
【0130】
実施例6と、比較例4〜6の比較から、アミン型エポキシ樹脂[A]、所定量の熱可塑性樹脂[B]、芳香族アミン[C]が配合されているが、[C]に含まれる活性水素のモル数がエポキシ樹脂組成物全体に含まれるエポキシ基のモル数の1.05倍以上を満たさず、相分離構造が単一相構造である場合、ガラス転移温度とゴム状態弾性率の関係が0.19X/℃−31.5≦Y/MPa≦0.19X/℃−27(式中、Xはガラス転移温度(℃)、Yはゴム状態弾性率(MPa)を表す。)を満たさないため、特に繊維強化複合材料のGICが低下することが判る。
【0131】
実施例13、14と、比較例7の比較から、アミン型エポキシ樹脂[A]、所定量の熱可塑性樹脂[B]、芳香族アミン[C]が配合されているが、[C]に含まれる活性水素のモル数がエポキシ樹脂組成物全体に含まれるエポキシ基のモル数の1.05倍以上を満たさず、相分離構造が500nm以上である場合、ガラス転移温度とゴム状態弾性率の関係が0.19X/℃−31.5≦Y/MPa≦0.19X/℃−27(式中、Xはガラス転移温度(℃)、Yはゴム状態弾性率(MPa)を表す。)を満たさないため、繊維強化複合材料のGICと常温での0°圧縮強度が低下することが判る。
【0132】
実施例1〜16と、比較例8の比較から、アミン型エポキシ樹脂[A]、所定量の熱可塑性樹脂[B]、芳香族アミン[C]が配合されているが、[C]に含まれる活性水素のモル数がエポキシ樹脂組成物全体に含まれるエポキシ基のモル数の2.0倍以下を満たしていない場合、エポキシ樹脂組成物の粘度が高くなりすぎ、エポキシ樹脂組成物を調製できなかった。
【0133】
実施例1〜16と、比較例9〜10の比較から、アミン型エポキシ樹脂[A]、熱可塑性樹脂[B]、芳香族アミン[C]が配合されており、かつ、[C]に含まれる活性水素のモル数がエポキシ樹脂組成物全体に含まれるエポキシ基のモル数の1.05〜2.0倍を満たしているが、[B]がエポキシ樹脂組成物中に8〜40質量%の範囲で含まれない場合、ガラス転移温度とゴム状態弾性率の関係が0.19X/℃−31.5≦Y/MPa≦0.19X/℃−27(式中、Xはガラス転移温度(℃)、Yはゴム状態弾性率(MPa)を表す。)を満たさないため、特に繊維強化複合材料のGICが低下することが判る。
【0134】
実施例16と、比較例11の比較から、アミン型エポキシ樹脂[A]、所定量の熱可塑性樹脂[B]、芳香族アミン[C]が配合されており、かつ、[C]に含まれる活性水素のモル数がエポキシ樹脂組成物全体に含まれるエポキシ基のモル数の1.05〜2.0倍を満たしているが、[A]、[B]、[C]が1μmの粗大な海島構造を形成している場合、ガラス転移温度とゴム状態弾性率の関係が0.19X/℃−31.5≦Y/MPa≦0.19X/℃−27(式中、Xはガラス転移温度(℃)、Yはゴム状態弾性率(MPa)を表す。)を満たさないため、繊維強化複合材料のGICが低下することが判る。
【産業上の利用可能性】
【0135】
本発明によれば、樹脂伸度と耐熱性を向上させたエポキシ樹脂組成物が得られる。さらには、かかるエポキシ樹脂組成物により得られる繊維強化複合材料は、圧縮強度と層間靱性などの機械強度に優れるため特に構造材料に好適に用いられる。例えば、航空宇宙用途では主翼、尾翼およびフロアビーム等の航空機一次構造材用途、フラップ、エルロン、カウル、フェアリングおよび内装材等の二次構造材用途、ロケットモーターケースおよび人工衛星構造材用途等に好適に用いられる。また、一般産業用途では、自動車、船舶および鉄道車両等の移動体の構造材、ドライブシャフト、板バネ、風車ブレード、各種タービン、圧力容器、フライホイール、製紙用ローラ、屋根材、ケーブル、補強筋、および補修補強材料等の土木・建築材料用途等に好適に用いられる。さらにスポーツ用途では、ゴルフシャフト、釣り竿、テニス、バトミントンおよびスカッシュ等のラケット用途、ホッケー等のスティック用途、およびスキーポール用途等に好適に用いられる。