特許第6053414号(P6053414)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱日立パワーシステムズ株式会社の特許一覧
特許6053414軸受監視システム、回転機械、及び軸受の監視方法
<>
  • 特許6053414-軸受監視システム、回転機械、及び軸受の監視方法 図000002
  • 特許6053414-軸受監視システム、回転機械、及び軸受の監視方法 図000003
  • 特許6053414-軸受監視システム、回転機械、及び軸受の監視方法 図000004
  • 特許6053414-軸受監視システム、回転機械、及び軸受の監視方法 図000005
  • 特許6053414-軸受監視システム、回転機械、及び軸受の監視方法 図000006
  • 特許6053414-軸受監視システム、回転機械、及び軸受の監視方法 図000007
  • 特許6053414-軸受監視システム、回転機械、及び軸受の監視方法 図000008
  • 特許6053414-軸受監視システム、回転機械、及び軸受の監視方法 図000009
  • 特許6053414-軸受監視システム、回転機械、及び軸受の監視方法 図000010
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6053414
(24)【登録日】2016年12月9日
(45)【発行日】2016年12月27日
(54)【発明の名称】軸受監視システム、回転機械、及び軸受の監視方法
(51)【国際特許分類】
   G01M 13/04 20060101AFI20161219BHJP
【FI】
   G01M13/04
【請求項の数】7
【全頁数】14
(21)【出願番号】特願2012-204691(P2012-204691)
(22)【出願日】2012年9月18日
(65)【公開番号】特開2014-59235(P2014-59235A)
(43)【公開日】2014年4月3日
【審査請求日】2015年7月23日
(73)【特許権者】
【識別番号】514030104
【氏名又は名称】三菱日立パワーシステムズ株式会社
(74)【代理人】
【識別番号】100134544
【弁理士】
【氏名又は名称】森 隆一郎
(74)【代理人】
【識別番号】100064908
【弁理士】
【氏名又は名称】志賀 正武
(72)【発明者】
【氏名】岡本 直也
(72)【発明者】
【氏名】川下 倫平
(72)【発明者】
【氏名】貝漕 高明
(72)【発明者】
【氏名】大山 宏治
【審査官】 後藤 大思
(56)【参考文献】
【文献】 実開平07−008506(JP,U)
【文献】 特開2012−087655(JP,A)
【文献】 特開2002−098584(JP,A)
【文献】 特開平01−265106(JP,A)
【文献】 特開平07−174138(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01M 13/04
(57)【特許請求の範囲】
【請求項1】
回転軸と、
該回転軸の外周面を支持する軸受部と、
前記回転軸の外周面における周方向に離間した少なくとも三点の位置を検出する位置検出部と、
前記位置検出部で検出された前記少なくとも三点の位置に基づいて前記回転軸の半径を演算し、運転時と停止時との前記半径の値の差分により前記回転軸の熱膨張量を演算し、前記位置検出部で検出された前記回転軸の外周面の前記運転時における位置と前記停止時における位置との変化量と前記熱膨張量との差分から前記回転軸の上下方向の移動量を演算する制御装置と、
を備えることを特徴とする軸受監視システム。
【請求項2】
前記位置検出部は、前記外周面における少なくとも三点のうちの二点の位置として、前記回転軸の軸線回りに180°離間した位置を検出することを特徴とする請求項1に記載の軸受監視システム。
【請求項3】
前記位置検出部は、前記外周面の少なくとも三点の位置として前記軸受部における上半部の前記外周面の位置を検出することを特徴とする請求項1に記載の軸受監視システム。
【請求項4】
前記位置検出部は、前記外周面の少なくとも三点の位置を各々検出する少なくとも三つの変位計を有し、
前記少なくとも三つの変位計同士が相対移動不能となるように、該複数の変位計を支持する変位計支持治具をさらに備えることを特徴とする請求項1から3のいずれか一項に記載の軸受監視システム。
【請求項5】
前記制御装置は、前記位置検出部からの入力値より、前記回転軸の軸心移動成分と前記回転軸の振動成分とを分離抽出する抽出部と、
前記軸心移動成分から前記回転軸の前記上下方向の移動量を演算する第一演算部と、
該第一演算部で演算された前記移動量が、所定の第一閾値と比較して該第一閾値より大きくなる場合に異常状態であると判断する第一判断部と、
前記振動成分から前記回転軸の振動値を演算する第二演算部と、
前記第二演算部で演算された前記振動値が、所定の第二閾値と比較して該第二閾値より大きくなる場合に異常状態であると判断する第二判断部とを有することを特徴とする請求項1から4のいずれか一項に記載の軸受監視システム。
【請求項6】
請求項1から5のいずれか一項に記載の軸受監視システムを備えることを特徴とする回転機械。
【請求項7】
回転軸の外周面の少なくとも三点の位置を検出する位置検出工程と、
前記位置検出工程で検出された前記少なくとも三点の位置から前記回転軸の半径を演算し、運転時と停止時との前記半径の値の差分により前記回転軸の熱膨張量を演算し、前記位置検出工程で検出された前記回転軸の外周面の前記運転時における位置と前記停止時における位置との変化量と前記熱膨張量との差分から前記回転軸の上下方向の移動量を演算する移動量演算工程と、
を備えることを特徴とする軸受の監視方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、回転機械の軸受の状態を監視する軸受監視システム、これを備えた回転機械、及び軸受の監視方法に関するものである。
【背景技術】
【0002】
回転機械として例えば蒸気タービンやガスタービン等のタービンにおいては、ジャーナル軸受によって回転軸が回転可能に支持されている。また、このジャーナル軸受にはティルティングパッド軸受やスリーブ軸受が用いられている。
【0003】
ここで、各種タービン運転時においては、回転軸が偏心して振れ回ることとなり、タービンにおける静止部分と回転部分との接触を招くおそれがあるため、回転軸の偏心量は常時監視されている。特許文献1にはこのような回転軸の偏心量を監視する偏心計が開示されており、この偏心計は、既設の伸び差計の信号を兼用して回転軸の偏心量を計測するものとなっている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】実開平7−8506号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1に開示された偏心計によると、偏心量の計測・演算に際して回転軸の熱変形分は考慮されておらず、偏心量、即ち回転軸の軸心位置の変化量に回転軸の熱変形分による変化量も算入されてしまう。特に大型のタービンでは、計測・演算した軸心位置の変化量に占める回転軸の熱変形量の度合いが大きくなり、正確な軸心位置の値を得ることは難しい。
【0006】
本発明はこのような事情を考慮してなされたものであり、回転軸の軸心位置をより正確に把握可能な軸受監視システム、回転機械、及び軸受の監視方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
上記課題を解決するため、本発明は以下の手段を採用している。
即ち、本発明に係る軸受監視システムは、回転軸と、該回転軸の外周面を支持する軸受部と、前記回転軸の外周面における周方向に離間した少なくとも三点の位置を検出する位置検出部と、前記位置検出部で検出された前記少なくとも三点の位置に基づいて前記回転軸の半径を演算し、運転時と停止時との前記半径の値の差分により前記回転軸の熱膨張量を演算し、前記位置検出部で検出された前記回転軸の外周面の前記運転時における位置と前記停止時における位置との変化量と前記熱膨張量との差分から前記回転軸の上下方向の移動量を演算する制御装置と、を備えることを特徴とする。
【0008】
このような軸受監視システムによると、位置検出部では回転軸の外周面の三点の位置を検出するので、制御装置によってこれら三点の位置から回転軸の曲率を演算し、この曲率から回転軸の半径が演算できる。そして、回転軸が動作している運転時と、回転軸が動作せずに熱膨張が発生していない停止時との半径をそれぞれ演算することで、これらの差分から熱膨張量の演算が可能となる。またこの熱膨張量を、位置検出部で検出した入力値から減じることで、熱膨張量を考慮した回転軸の上下方向の移動量を制御装置で演算することができる。即ち、軸受部に支持された状態で回転軸が上下に移動するとともにこの回転軸に熱膨張が生じる場合に、回転軸の上下方向の移動量をより正確に把握することができる。また、回転軸の曲率を用いて熱膨張量を演算するため、回転軸が水平方向に移動する場合であっても正確に熱膨張量を演算できる。そして、この熱膨張量を用いて回転軸の平均温度を演算し、この平均温度から回転軸に対する入熱量を演算することで、設計の最適化を図ることも可能となる。
【0009】
また、前記位置検出部は、前記外周面における少なくとも三点のうちの二点の位置として、前記回転軸の軸線回りに180°離間した位置を検出してもよい。
【0010】
このような二点の位置を検出することで、半径の差分から熱膨張量を演算できるだけでなく、例えば、停止時から運転時へ回転軸が水平方向に移動する場合において、これら二点における検出値の和をとって、運転時での検出値の和と停止時での検出値の和との差分をとることによっても膨張量の演算が可能である。そしてこのように膨張量を演算した場合には、演算時に水平方向の移動量は打ち消し合うため、仮に水平方向にも回転軸が移動した場合であっても熱膨張量を正確に演算することができる。よって、前記回転軸の上下方向の移動量を正確に演算でき、回転軸の軸心位置を精度よく把握可能である。
【0011】
また、前記位置検出部は、前記外周面の少なくとも三点の位置として前記軸受部における上半部の前記外周面の位置を検出してもよい。
【0012】
このように上半部の位置を検出するため、位置検出部の設置が容易化できる。
【0013】
さらに、前記位置検出部は、前記外周面の少なくとも三点の位置を各々検出する少なくとも三つの変位計を有し、前記少なくとも三つの変位計同士が相対移動不能となるように、該複数の変位計を支持する変位計支持治具をさらに備えていてもよい。
【0014】
このような変位計支持治具を用いることによって、軸受部に変位計を新たに設置するための加工を行うことなく、変位計支持治具のみに加工を行うことで、これら変位計の追加設置を容易に行うことができる。さらに、これら変位計同士の間の相対位置関係について位置合わせが容易となるため、所望の位置から確実に外周面の検出を行うことができ、回転軸の軸心位置をさらに正確に把握できる。
【0015】
また、前記制御装置は、前記位置検出部からの入力値より、前記回転軸の軸心移動成分と前記回転軸の振動成分とを分離抽出する抽出部と、前記軸心移動成分から前記回転軸の前記上下方向の移動量を演算する第一演算部と、該第一演算部で演算された前記移動量が、所定の第一閾値と比較して該第一閾値より大きくなる場合に異常状態であると判断する第一判断部と、前記振動成分から前記回転軸の振動値を演算する第二演算部と、前記第二演算部で演算された前記振動値が、所定の第二閾値と比較して該第二閾値より大きくなる場合に異常状態であると判断する第二判断部とを有していてもよい。
【0016】
このような制御装置によると、まず、回転軸の振れ回りの二成分である軸心移動成分(直流成分)と振動成分(交流成分)とを抽出部によって分離できる。従って、軸心移動成分を抽出して第一演算部で演算することで、より正確に回転軸の上下方向の移動量を把握でき、また、振動成分から第二演算部によって回転軸の振動値も演算できる。さらに、軸心移動成分から演算した回転軸の上下方向の移動量を第一演算部で第一閾値と比較し、振動成分から演算した振動値を第二演算部で第二閾値と比較して、第一判断部で回転軸の上下方向の移動量について、第二判断部で振動値について、異常状態であるか否かの判断を行うことができる。従って、異常状態である場合には回転軸の回転を停止させ、また異常状態でない場合(正常状態である場合)には回転軸の回転を維持することができ、安全性、健全性の確保が可能となる。
【0017】
さらに、本発明に係る回転機械は、上記の軸受監視システムを備えることを特徴とする。
【0018】
このような回転機械によると、軸受監視システムを備えることで、運転時と停止時との間の回転軸の半径差からを熱膨張量を演算し、この熱膨張量を位置検出部で検出した入力から減じることで、熱膨張量を考慮した回転軸の上下方向の移動量を制御装置で演算することができ、回転軸の上下方向の移動量をより正確に把握することができる。
【0019】
また、本発明に係る軸受の監視方法は、回転軸の外周面の少なくとも三点の位置を検出する位置検出工程と、前記位置検出工程で検出された前記少なくとも三点の位置から前記回転軸の半径を演算し、運転時と停止時との前記半径の値の差分により前記回転軸の熱膨張量を演算し、前記位置検出工程で検出された前記回転軸の外周面の前記運転時における位置と前記停止時における位置との変化量と前記熱膨張量との差分から前記回転軸の上下方向の移動量を演算する移動量演算工程と、を備えることを特徴とする。

【0020】
このような軸受の監視方法によると、位置検出工程で得た検出値から演算した運転時と停止時の半径差を熱膨張量とすることで、位置検出工程での検出値からこの熱膨張量を減じて、移動量演算工程で回転軸の上下方向の移動量を演算することが可能となり、よって回転軸の上下方向の移動量を正確に把握することができる。
【発明の効果】
【0021】
本発明の軸受監視システム、回転機械、及び軸受の監視方法によると、熱膨張量を考慮した回転軸の上下方向の移動量を演算することで、軸心位置の計測精度を向上することが可能である。
【図面の簡単な説明】
【0022】
図1】本発明の第一実施形態に係る回転機械を模式的に示す全体図である。
図2】本発明の第一実施形態に係る回転機械における軸受部を軸方向から見た図である。
図3】本発明の第一実施形態に係る回転機械における軸受監視システムを軸方向から見た全体図であり、実線は回転機械が停止している状態を示し、破線は回転機械が運転している状態を示し、二点鎖線は回転機械が運転しておりかつ熱膨張している状態を示す図である。
図4】本発明の第一実施形態に係る回転機械における軸受監視システムに関し、回転軸が水平方向に移動して熱膨張した場合の回転軸の外周面の位置の変化を示す図であって、実線は回転機械が停止している状態を示し、破線は回転機械が運転している状態を示し、二点鎖線は回転機械が運転しており、かつ熱膨張している状態を示す図である。
図5】本発明の第一実施形態の変形例に係る回転機械における軸受部を軸方向から見た図である。
図6】本発明の第二実施形態に係る回転機械における軸受監視システムを軸方向から見た全体図である。
図7】本発明の第三実施形態に係る回転機械における軸受監視システムを軸方向から見た全体図である。
図8】本発明の第四実施形態に係る回転機械における軸受監視システムの制御装置を示す機能ブロック図である。
図9】本発明の第四実施形態に係る回転機械における軸受監視システムに関し、制御装置における処理フローを示す図である。
【発明を実施するための形態】
【0023】
〔第一実施形態〕
以下、本発明の第一実施形態に係る回転機械1について説明する。
回転機械1は、蒸気やガス等の流体を羽根車に接触させて流体エネルギーを回転エネルギーに変換することで動力を得る原動機である。ここで、本実施形態における回転機械1は、蒸気タービンであるとして説明を行うが、例えばガスタービンや原子力タービン等であってもよい。
【0024】
図1に示すように、この回転機械1は、軸P1回りに回転する回転軸2と、回転軸2を径方向から回転可能に支持する軸受部3と、回転軸2の監視を行う監視部4と備えている。そして、これら回転軸2、軸受部3、監視部4によって軸受監視システムが構成されている。
【0025】
回転軸2は、軸P1方向に延在し、軸受部3によって回転可能に外周面2aで支持されている。また回転軸2の外周側には、回転軸2とともに回転し、複数の羽根車を有するタービン本体5が取り付けられている。タービン本体5は、詳細は図示しないが、流体が流入して羽根車に当たることで動力を発生させる動力発生部となっている。
またタービン本体5の概略構成としては、例えば回転軸2に突設された複数の動翼(羽根車)と、複数の動翼を収容するケーシングと、ケーシングの内周面に突設された静翼と、を備えている。上記複数の動翼は、回転軸2を中心にして放射状に配設されており、またこれら複数の動翼と上記複数の静翼とは軸方向に交互に配設されている。
【0026】
図2に示すように、軸受部3は、回転軸2を外周面2aで径方向から支持する軸P2を中心として設けられたラジアル軸受であり、本実施形態ではティルティングパッド軸受が用いられており、回転軸2の外周面2aに対向するように設けられた複数の軸受パッド7と、軸受パッド7を径方向外側から支持する軸受ケーシング8とを有している。
なお、軸受部3は、ティルティングパッド軸受に限定されず、スリーブ軸受であってもよい。
【0027】
複数の軸受パッド7は、周方向に互いに間隔をあけて配置されている。そして、本実施形態では、軸受部3の軸P2を通り水平方向に延びる水平ラインL1よりも下側の下半部(図2の紙面下側)に配された二つ、水平ラインL1よりも上側の上半部(図2の紙面上側)に配された二つの、合計四つが設けられて回転軸2を支持している。また各々の軸受パッド7は、径方向外側を向く面から一部が外側に突出して形成されたピボット7aを有し、このピボット7aが軸受ケーシング8の径方向内側を向く面に接触して、軸受ケーシング8によって軸受パッド7が支持されている。
【0028】
軸受ケーシング8は、環状をなし、上記軸受パッド7を径方向外側から覆うとともに、軸受パッド7がピボット7aを中心に径方向に揺動可能となるように支持している。
【0029】
次に、監視部4について監視方法を交えて説明する。
監視部4は、軸受部3によって支持される回転軸2の挙動を監視して、回転軸2の外周面2aの位置の検出、回転軸2の軸心位置の演算を行う。
そして、この監視部4は、回転軸2の外周面2aの外側に設けられて、回転軸2の外周面2aの位置を検出する位置検出部6と、位置検出部6から入力された検出値より、軸心位置を演算する制御装置12とを有している。
【0030】
位置検出部6は、回転軸2の外周面2aの外側において、互いに周方向に間隔をあけて設けられた第一変位計9、第二変位計10、第三変位計11とから構成されている。ここで、位置検出部6は、回転機械1の停止時(回転軸2への入熱がない状態)での回転軸2の外周面2aの位置を検出するように検出位置を固定して設置されたものである。即ち、回転機械1が停止時から運転時(回転軸2への入熱がある状態)へ移行して回転軸2に挙動が生じた際に、回転軸2とともに検出位置が移動するものではない。
【0031】
第一変位計9は、回転軸2の外周面2aの外側であって、軸受部3の上半部で、軸受部3の軸P2を通り水平方向に延びる水平ラインL1から、周方向の一方側(図2の紙面に向かって右側)に向かって45°傾斜するとともに軸P2を通る第一傾斜ラインL2上に配置されている。そして、第一傾斜ラインL2と、回転軸2の外周面2aとの交点Aの近傍について、この外周面2aの位置を検出する(位置検出工程)。
【0032】
また、この第一変位計9には、渦電流式の変位センサが用いられる。
この渦電流式の変位センサは、センサヘッド内のコイルに高周波電流を流して高周波磁界を発生させ、さらにこの高周波磁界によって測定対象物(金属)の表面に電磁誘導による渦電流を発生させる。この渦電流によって生じる上記コイルのインピーダンス変化を検出して、測定対象物の表面までの距離を計測することでこの測定対象物の表面の位置情報を得ることができる。
なお、第一変位計9は、例えば超音波式、レーザー式等の非接触式変位センサや、差動トランス式等の接触式変位センサであってもよい。
【0033】
第二変位計10は、回転軸2の外周面2aの外側であって、軸受部3の上半部で、軸受部3の軸P2を通り水平方向に延びる水平ラインL1から、周方向の他方側(図2の紙面に向かって左側)に向かって45°傾斜するとともに軸P2を通る第二傾斜ラインL3上に配置されている。そして、第二傾斜ラインL3と、回転軸2の外周面2aとの交点Bの近傍について、この外周面2aの位置を検出する(位置検出工程)。
【0034】
またこの第二変位計10は、第一変位計9同様に、例えば渦電流式、超音波式、レーザー式等の非接触式変位センサや、差動トランス式等の接触式変位センサである。
【0035】
第三変位計11は、回転軸2の外周面2aの外側であって、軸受部3の下半部で、第一傾斜ラインL2上に配置されている。即ち、第一変位計9とは、軸P2(回転機械1の停止時の回転軸2の軸P1)回りに180°離間した位置に配置されており、第一傾斜ラインL2と、回転軸2の外周面2aとの交点Cの近傍について、この外周面2aの位置を検出する(位置検出工程)。
【0036】
またこの第三変位計11は、第一変位計9、第二変位計10同様に、例えば渦電流式、超音波式、レーザー式等の非接触式変位センサや、差動トランス式等の接触式変位センサである。
【0037】
制御装置12は、回転機械1の運転時(回転軸2への入熱がある状態)において、位置検出部6で検出して得た回転軸2の外周面2aの位置情報を入力し、予め取得しておいた回転機械1の停止時(回転軸2への入熱がない状態)での外周面2aの位置と比較することで、停止時から運転時までの外周面2aの位置の変化量ΔHを演算する(図3を参照)。
【0038】
また、この制御装置12は、回転機械1の運転時において、位置検出部6のおける第一変位計9、第二変位計10、第三変位計11の各々で検出して得た回転軸2の外周面2aの三点の位置情報から回転軸2の曲率を演算し、この曲率から回転軸2の半径を演算する。さらに、同様に演算して予め取得しておいた回転機械1の停止時での回転軸2の半径と、運転時の回転軸2の半径との差分から回転軸2の熱膨張量ΔHを演算する(図3を参照)。
【0039】
このようにして、制御装置12は、変化量ΔHと熱膨張量ΔHとから、以下の式(1)によって、回転軸2の軸心位置の上下方向の移動量Eを演算する(移動量演算工程)。
E=ΔH−ΔH・・・(1)
【0040】
ここで、回転軸はほぼ均一に熱膨張すると考えられるため、上記式(1)熱膨張の不均一性による誤差は無視してよい。
【0041】
また、制御装置12においては、以下の式(2)によって回転軸2の熱膨張量を演算してもよい。
【0042】
即ち、図4に示すように、回転機械1が停止時から運転時となる際に、水平方向に移動する場合には、第一変位計9から交点Aが離間し、第三変位計11に交点Cが近接する。またこの状態で回転軸2が熱膨張すると、第一変位計9に交点Aが再度近接し、第三変位計11へも交点Cがさらに近接する。
【0043】
ここで、回転機械1の停止時において、第一変位計9での交点Aの位置情報のデータをHとし、停止時から運転時への交点Aの水平方向への移動量をΔHA1とし、回転軸2の熱膨張による交点Aの水平方向への移動量をΔHA2とする。また、回転機械1の停止時において、第三変位計11での交点Cの位置情報のデータをHとし、停止時から運転時への交点Cの水平方向への移動量をΔHC1とし、回転軸2の熱膨張による交点Cの水平方向への移動量をΔHC2とする。
【0044】
そして、回転機械1の停止時から運転時で、第一変位計9と第三変位計11との検出値の和をとって、これら運転時での検出値の和と、停止時での検出値の和との差分をとると以下の式(2)のようになる。
{(H+ΔHA1−ΔHA2)+(H+ΔHC1+ΔHC2)}−(H+H)・・・(2)
【0045】
そして、ΔHA2=ΔHC2であるため、上記式(2)は、ΔHA1+ΔHC1となる。
また、ΔHA1=ΔHC1であるため、上記式(2)は最終的に、2×ΔHA1(又は2×ΔHA2)となり、このようにして回転軸2の熱膨張量を演算する。
【0046】
このような回転機械1においては、位置検出部6によって、回転軸2の外周面2aの三点の位置を検出するので、制御装置12によってこれら三点の位置から回転軸2の曲率を演算し、この曲率から回転軸の半径が演算できる。
【0047】
そして、回転機械1の運転時と、回転機械1の停止時との半径をそれぞれ演算することで、これらの差分から熱膨張量の演算が可能となる。またこの熱膨張量を、位置検出部6で検出した入力から減じることで、熱膨張量を考慮した回転軸2の上下方向の移動量を制御装置12で演算することができる。
【0048】
より詳細には、上記式(1)に示すように、停止時から運転時までの外周面2aの位置の変化量ΔHは、回転軸2の熱膨張量と回転軸2の上下方向の移動量の両方を含んだものとなっているため、変化量ΔHのみから回転軸2の上下方向の移動量を正確に把握することができない。しかし回転機械1の運転時と停止時との間の半径の差分より得た熱膨張量ΔHによって、この変化量ΔHから熱膨張量分を除くことができるため、正確な回転軸2の上下方向の移動量を演算することができる。
【0049】
また、制御装置12では回転軸2の曲率を用いて熱膨張量を演算するため、回転軸2が水平方向に移動する場合であっても正確に熱膨張量を演算できる。よって、例えば軸受部3がスリーブ軸受である場合には、運転時の水平方向への回転軸2の移動量が大きくなるが、この場合でも正確な熱膨張量の演算が可能となる。
【0050】
そして、上記式(2)によっても、回転軸2の熱膨張量の演算が可能となり、回転軸2の上下方向の移動量を正確に演算でき、回転軸の軸心位置を精度よく把握可能である。
【0051】
さらに、このようにして得た熱膨張量を用いることで、回転軸2の平均温度の演算が可能である。そしてこの平均温度からは、回転機械1の運転時の回転軸2への入熱量を演算することが可能であり、回転機械1の設計最適化を図ることも可能となる。
【0052】
また、回転軸2の外周面2aの位置を検出する際には、本実施形態の第一変位計9及び第二変位計10と同様に、45°の二箇所の外周面2aの位置を検出するように変位計が設けられていることが一般的となっている。従って、既設の変位計をそのまま第一変位計9及び第二変位計10として使用し、第三変位計11を追加するのみによって回転軸2の軸心の位置を正確に把握することができる。よってコストダウン等も可能である。
【0053】
本実施形態の回転機械1によると、位置検出部6で、回転軸2の外周面2aの三点の位置を検出することで、熱膨張量を考慮した回転軸2の上下方向の移動量を演算することが可能となるため、回転軸2の軸心位置を正確に把握することが可能である。
【0054】
なお、位置検出部6では、外周面2aを三点の位置で検出する場合に限定されず、三点以上の位置で検出を行ってもよい。即ち、少なくとも三点で検出すればよい。例えば図5に示すように、本実施形態において軸受部3の下半部で、第二傾斜ラインL3上で第二変位計10とは軸P2回りに180°離間した位置に第四変位計15を配置し、第二傾斜ラインL3と、回転軸2の外周面2aとの交点Dの近傍について、この外周面2aの位置を検出してもよい。この場合には、位置検出部6の冗長性を確保でき、検出データの信頼性を向上することができる。
【0055】
〔第二実施形態〕
次に、本発明の第二実施形態に係る回転機械21について説明する。
なお、第一実施形態と共通の構成要素には同一の符号を付して詳細説明を省略する。
本実施形態では、第三変位計25の配置位置が第一実施形態と異なっている。
【0056】
図6に示すように、第三変位計25は、軸受部3の上半部で、第一変位計9と第二変位計10との間、即ち、第一傾斜ラインL2と第二傾斜ラインL3とに挟まれる位置で軸P2を通る第三傾斜ラインL4上に配置されている。そして、第三傾斜ラインL4と、回転軸2の外周面2aとの交点Eの近傍について、この外周面2aの位置を検出する(位置検出工程)。
【0057】
またこの第三変位計25は、第一実施形態の第三変位計11同様に、例えば渦電流式、超音波式、レーザー式等の非接触式変位センサや、差動トランス式等の接触式変位センサである。
【0058】
このような回転機械21によると、第一変位計9、第二変位計10、第三変位計25の全てが軸受部3の上半部に設置されているため、設置作業の容易化を図ることができ、作業工数の削減等によってコストダウンが可能となる。
【0059】
〔第三実施形態〕
次に、本発明の第三実施形態に係る回転機械31について説明する。
なお、第一実施形態及び第二実施形態と共通の構成要素には同一の符号を付して詳細説明を省略する。
本実施形態では、回転機械31が、第一実施形態の回転機械1を基本構成として変位計支持治具33をさらに備えている点で第一実施形態と異なっている。
【0060】
図7に示すように、変位計支持治具33は、軸受部3の外周側で、第一変位計9と第二変位計10と第三変位計11との間を接続して、これらを相対移動不能に支持している。またこの変位計支持治具33は、例えば軸受ケーシング8等の回転機械1における静止部分に固定されている。
【0061】
このような回転機械31によると、変位計支持治具33を用いたことで、軸受部3に第一変位計9、第二変位計10、第三変位計11を新たに設置するための加工を行うことなく、変位計支持治具33のみに加工を行うことで、これら第一変位計9、第二変位計10、第三変位計11の追加設置を容易に行うことができる。即ち、例えば上記第四変位計15を容易に追加設置できる。
【0062】
さらに、変位計支持治具33によって、これら第一変位計9、第二変位計10、第三変位計11同士の間の相対位置関係について位置合わせが容易に可能となるため、所望の位置から確実に回転軸2の外周面2aの検出を行うことができ、軸心位置をより正確に把握できる。
【0063】
なお、本実施形態の変位計支持治具33は、第二実施形態の回転機械21にも使用可能である。
【0064】
〔第四実施形態〕
次に、本発明の第四実施形態に係る回転機械41について説明する。
なお、第一実施形態から第三実施形態と共通の構成要素には同一の符号を付して詳細説明を省略する。
本実施形態では、第一実施形態の回転機械1を基本構成として、制御装置43が第一実施形態とは異なっている。
【0065】
図8及び図9に示すように、制御装置43は、位置検出部6における第一変位計9、第二変位計10、第三変位計11からのデータを入力する抽出部45と、互いに並列に設けられて、抽出部45からのデータを入力する第一演算部46及び第二演算部47と、第一演算部46からのデータを入力する第一判断部48と、第二演算部47からのデータを入力する第二判断部49とを有している。
【0066】
抽出部45は、第一変位計9、第二変位計10、第三変位計11における検出値のデータを取得し(S1)、回転機械41の運転時における回転軸2の振れ回りの二つの成分、即ち、回転軸2の軸心を上下方向に移動させる軸心移動成分(直流成分)と、振動を生じさせる振動成分(交流成分)とをフーリエ級数展開等によって分離抽出する(S2)。
【0067】
第一演算部46は、抽出部45での分離抽出された軸心移動成分から、回転軸2の上下方向の移動量を演算する(S31)。より詳細にはこの第一演算部46では、第一変位計9、第二変位計10、第三変位計11からの検出値のうち、軸心移動成分を用いて、第一実施形態の制御装置12で説明したように、回転機械41の停止時から運転時までの外周面2aの位置の変化量ΔH及び熱膨張量ΔHを演算し、回転軸2の上下方向の移動量を演算する。
【0068】
第一判断部48は、予め取得した回転軸2の上下方向の移動量の上限値となる第一閾値を記憶しているとともに、第一演算部46から入力された回転軸2の上下方向の移動量のデータを第一閾値と比較し(S32)、回転軸2の上下方向の移動量が第一閾値よりも大きくなる場合に、回転機械41が異常状態にあると判断する(S33)。一方で、回転軸2の上下方向の移動量が第一閾値以下となる場合には回転機械41が正常状態にあると判断する(S34)。
【0069】
第二演算部47は、抽出部45での分離抽出された振動成分から、回転軸2の振動値を演算する(S41)。
【0070】
第二判断部49は、予め取得した回転軸2の振動値の上限値となる第二閾値を記憶しているとともに、第二演算部47から入力された振動値のデータを第二閾値と比較し(S42)、振動値が第二閾値よりも大きくなる場合に、回転機械41が異常状態にあると判断する(S43)。一方で、振動値が第二閾値以下となる場合には回転機械41が正常状態にあると判断する(S44)。
【0071】
このような回転機械41によると、まず、回転軸2の振れ回りの成分である軸心移動成分と振動成分とを抽出部45によって分離できる。従って、軸心移動成分を抽出することで、より正確に回転軸2の上下方向の移動量を計測できることとなる。
【0072】
そして、これら軸心移動成分から第一演算部46で演算された回転軸2の上下方向の移動量を第一判断部48で第一閾値と比較し、またこれと並行して振動成分から第二演算部47で演算された回転軸2の振動値を第二判断部49で第二閾値と比較することで、回転軸2の軸心の上下方向の移動、回転軸2の振動の両者について、回転機械41が異常状態であるか否かの判断を行うことができる。
【0073】
またこのような第一判断部48及び第二判断部49で異常状態と判断された場合には、回転機械41の運転を停止させ、また正常状態である場合には回転機械41の運転を維持することができる。
【0074】
ここで例えば、第一閾値を回転軸2が軸受パッド7に接触する程度の移動量に設定しておけば、第一閾値を回転軸2の上下方向の移動量が上回った場合に、回転機械41の運転を停止させることができる。また同様に、第二閾値を回転軸2が軸受パッド7に接触する程度の振動値に設定しておけば、第二閾値を振動値が上回った場合に、回転機械41の運転を停止させることができる。従って、安全性、健全性の確保が可能となる。
【0075】
なお、このような図9に示す処理は、繰り返し連続的に実行してもよいし、間欠的に実行してもよい。
さらに、第二実施形態及び第三実施形態の回転機械21、31に本実施形態の制御装置43を適用してもよい。
【0076】
以上、本発明の実施形態について詳細を説明したが、本発明の技術的思想を逸脱しない範囲内において、多少の設計変更も可能である。
例えば、第一変位計9、第二変位計10、第三変位計11、25、第四変位計15は必ずしも上述の実施形態の位置に配置されていなくともよく、少なくとも外周面2aの三点を検出可能であればよい。
【0077】
さらに、位置検出部6における変位計の設置数量は、上述の実施形態の場合に限定されず、設置数量をさらに増やしてもよい。この場合、冗長性を確保でき、検出データの信頼性を向上することができる。
【符号の説明】
【0078】
1…回転機械 2…回転軸 2a…外周面 3…軸受部 4…監視部 5…タービン本体 6…位置検出部 7…軸受パッド 7a…ピボット 8…軸受ケーシング 9…第一変位計 10…第二変位計 11…第三変位計 12…制御装置 15…第四変位計 21…回転機械 25…第三変位計 31…回転機械 33…変位計支持治具 41…回転機械 43…制御装置 45…抽出部 46…第一演算部 47…第二演算部 48…第一判断部 49…第二判断部 L1…水平ライン L2…第一傾斜ライン L3…第二傾斜ライン L4…第三傾斜ライン P1…軸 P2…軸
図1
図2
図3
図4
図5
図6
図7
図8
図9