特許第6053746号(P6053746)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本発條株式会社の特許一覧
<>
  • 特許6053746-スタビライザ 図000003
  • 特許6053746-スタビライザ 図000004
  • 特許6053746-スタビライザ 図000005
  • 特許6053746-スタビライザ 図000006
  • 特許6053746-スタビライザ 図000007
  • 特許6053746-スタビライザ 図000008
  • 特許6053746-スタビライザ 図000009
  • 特許6053746-スタビライザ 図000010
  • 特許6053746-スタビライザ 図000011
  • 特許6053746-スタビライザ 図000012
  • 特許6053746-スタビライザ 図000013
  • 特許6053746-スタビライザ 図000014
  • 特許6053746-スタビライザ 図000015
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6053746
(24)【登録日】2016年12月9日
(45)【発行日】2016年12月27日
(54)【発明の名称】スタビライザ
(51)【国際特許分類】
   B60G 21/055 20060101AFI20161219BHJP
   F16F 1/14 20060101ALI20161219BHJP
   C21D 1/60 20060101ALI20161219BHJP
   C21D 7/06 20060101ALI20161219BHJP
   C21D 1/18 20060101ALI20161219BHJP
   C21D 9/00 20060101ALI20161219BHJP
   C22C 38/00 20060101ALI20161219BHJP
   C22C 38/04 20060101ALI20161219BHJP
   C22C 38/60 20060101ALI20161219BHJP
   B24C 1/10 20060101ALI20161219BHJP
   C21D 8/06 20060101ALN20161219BHJP
【FI】
   B60G21/055
   F16F1/14
   C21D1/60
   C21D7/06 A
   C21D1/18 P
   C21D1/18 E
   C21D1/18 X
   C21D9/00 H
   C22C38/00 301Y
   C22C38/04
   C22C38/60
   B24C1/10 F
   !C21D8/06 A
【請求項の数】12
【全頁数】25
(21)【出願番号】特願2014-248328(P2014-248328)
(22)【出願日】2014年12月8日
(65)【公開番号】特開2016-107886(P2016-107886A)
(43)【公開日】2016年6月20日
【審査請求日】2014年12月8日
(73)【特許権者】
【識別番号】000004640
【氏名又は名称】日本発條株式会社
(74)【代理人】
【識別番号】110001807
【氏名又は名称】特許業務法人磯野国際特許商標事務所
(72)【発明者】
【氏名】鍬塚 真一郎
(72)【発明者】
【氏名】奥平 由利香
(72)【発明者】
【氏名】丹下 彰
(72)【発明者】
【氏名】岡田 秀樹
(72)【発明者】
【氏名】高橋 研
【審査官】 高島 壮基
(56)【参考文献】
【文献】 再公表特許第2011/111623(JP,A1)
【文献】 特開2012−237040(JP,A)
【文献】 特開2006−089785(JP,A)
【文献】 特開2010−185109(JP,A)
【文献】 特開2000−017390(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B24C 1/10
B60G 1/00−99/00
C21D 7/00− 8/10
9/00− 9/44
9/50
C22C 38/00
38/04
38/60
F16F 1/14
(57)【特許請求の範囲】
【請求項1】
中実構造の金属棒を用いて形成され、左右の車輪の変位を抑えるためのスタビライザであって、
車幅方向に延びて設けられ、ねじり変形するトーション部の直径が10〜32mmであり、
C:0.15質量%以上0.39質量%以下、Mn、B、およびFeを少なくとも含む化学組成を有すると共に、その金属組織の90%以上に焼入れしたままマルテンサイト組織を有する
ことを特徴とするスタビライザ。
【請求項2】
中実構造の金属棒を用いて形成され、左右の車輪の変位を抑えるためのスタビライザであって、
車幅方向に延びて設けられ、ねじり変形するトーション部の直径が10〜32mmであり、
C:0.15質量%以上0.39質量%以下、Mn、B、およびFeを少なくとも含む化学組成を有すると共に、主相が焼入れしたままマルテンサイトである金属組織を有する
ことを特徴とするスタビライザ。
【請求項3】
圧縮残留応力が表面から少なくとも0.8mmの深さにわたって存在する
ことを特徴とする請求項1または請求項2に記載のスタビライザ。
【請求項4】
中実構造の金属棒を用いて形成され、左右の車輪の変位を抑えるためのスタビライザであって、
車幅方向に延びて設けられ、ねじり変形するトーション部の直径が10〜32mmであり、
C:0.15質量%以上0.39質量%以下、Mn、B、およびFeを少なくとも含む化学組成を有すると共に、主相が焼入れしたままマルテンサイトである金属組織を有し、
前記スタビライザの表面近くに圧縮残留応力が付与されており、
前記圧縮残留応力が引張残留応力に変わるクロッシングポイントが、前記表面から0.8mmよりも深いところにある
ことを特徴とするスタビライザ。
【請求項5】
無負荷時において、前記表面から0.8mmの深さまでの圧縮残留応力が、150MPa以上ある
ことを特徴とする請求項3または請求項4に記載のスタビライザ。
【請求項6】
ロックウェル硬さ(HRC)が44.5以上、かつ、室温におけるシャルピー衝撃値が30J/cmである
ことを特徴とする請求項1から請求項5のうちのいずれか一項に記載のスタビライザ。
【請求項7】
前記スタビライザは、金属組織の90%以上に焼入れしたままマルテンサイト組織を有する
ことを特徴とする請求項2から請求項6のうちのいずれか一項に記載のスタビライザ。
【請求項8】
質量%で、C:0.15%以上0.39%以下、Mn:0.50%以上1.70%以下、B:0.0005%以上0.003%以下、およびFeを少なくとも含む化学組成を有する
ことを特徴とする請求項1から請求項7のうちのいずれか一項に記載のスタビライザ。
【請求項9】
質量%で、C:0.15%以上0.39%以下、Si:0.05%以上0.40%以下、Mn:0.50%以上1.70%以下、B:0.0005%以上0.003%以下を必須元素として含有し、P:0.040%以下、S:0.040%以下であり、任意添加元素として、Ni、Cr、Cu、Mo、V、Ti、Nb、Al、N、Ca及びPbからなる群より選択される少なくとも一種以上の元素をそれぞれ1.20%以下の範囲で含有し得ると共に、残部に、Feと不可避的不純物を含む
ことを特徴とする請求項1から請求項8のうちのいずれか一項に記載のスタビライザ。
【請求項10】
前記スタビライザは、Standard American Engineering 規格の15B23相当鋼または15B26相当鋼を用いて形成される
ことを特徴とする請求項1から請求項9のうちのいずれか一項に記載のスタビライザ。
【請求項11】
C:0.15質量%以上0.24質量%未満である
ことを特徴とする請求項1から請求項10のうちのいずれか一項に記載のスタビライザ
【請求項12】
前記スタビライザは、マンガンボロン鋼を用いて形成される
ことを特徴とする請求項1から請求項11のうちのいずれか一項に記載のスタビライザ
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、中実構造のスタビライザに関する。
【背景技術】
【0002】
自動車等の車両には、車輪の上下の偏移による車体のロールを抑制する車両用スタビライザ(スタビライザーバー又はアンチロールバー)が備えられている。車両用スタビライザは、一般に、車幅方向に延びるトーション部と、車両の前後方向に向けて曲げ成形された左右一対のアーム部とを備えており略コ字状の棒体からなる。車両において、車両用スタビライザは、各アーム部の先端が車輪の懸架装置にそれぞれ連結され、トーション部が車体側に固定されたブッシュに挿通されることによって、左右の懸架装置の間に懸架された状態で支持される。
【0003】
運転時に車両がコーナリングしたり路面の起伏を乗り越えたりする際には、左右の車輪の上下により左右の懸架装置にストローク差が生じる。このとき、車両用スタビライザの各アーム部には、各懸架装置間のストローク差に起因する荷重(変位)がそれぞれ入力され、各アーム部からの荷重(変位差)によってトーション部がねじれ、ねじれ変形を復元しようとする弾性力が生じる。車両用スタビライザは、このねじれ変形を復元しようとする弾性力によって左右の車輪の上下変位差を抑え車体のロール剛性を高め、車体のロールを抑制する。
【0004】
車両用スタビライザの形態としては、中空構造を有する中空スタビライザと、中実構造を有する中実スタビライザとがある。中空スタビライザは、車両の軽量化に適している一方で、電縫鋼管や引抜鋼管等を原材として使用するため、製造コストが比較的高い特徴を有している。これに対して、中実スタビライザは、機械的強度に優れ、製造コストも低廉に抑えられるという利点を有している。
【0005】
従来、車両用スタビライザの材料としては、S48C(JIS規格)等の炭素鋼、引張強さ等の機械的強度や耐疲労性が良好なSUP9(JIS規格)、SUP9A(JIS規格)等のばね鋼が一般に採用されている。中実スタビライザは、このような材料の熱間圧延棒鋼或いは冷間引抜棒鋼に熱間曲げ加工又は冷間曲げ加工を施して製品形状に賦形し、曲げ加工が施された被加工材に熱処理を施すことによって製造することが多い。熱処理としては、焼入れ処理と焼戻し処理とが行われており、焼入れの方法は、油焼入れが主流である。そして、熱処理された車両用スタビライザの半製品は、通常、ショットピーニングによる表面加工処理や、塗装処理等の仕上処理を経て製品化されている。
【0006】
ショットピーニングは、塑性変形加工の一種であり、主として、車両用スタビライザの表層に圧縮残留応力を付与するために行われている。車両用スタビライザの表層に圧縮残留応力を付与することで、疲労強度が向上し、耐割れ性や割れ伝播性等が改善されるため、良好な疲労耐久性を有する車両用スタビライザを得ることができる。また、ショットピーニングを施すことによって、車両用スタビライザの半製品の表面を平滑化させることができるため、割れの起点を低減させたり、塗料の密着に適した状態にさせることもできる。
【0007】
このように車両用スタビライザの表層にショットピーニングを施す技術として、例えば、特許文献1には、重量比にしてC:0.45〜0.70%、Si:1.20〜2.50%、Mn:0.10〜0.80%、Cr:0.10〜0.80%を含有し、更に、V:0.05〜0.25%、Ni:0.10〜0.80%、B:0.001〜0.003%且つTi:0.01〜0.05%のいずれか一以上を含有した鋼を素材とし、所定の形状に成形した後、通電加熱により25℃/秒以上の速度で900℃〜1000℃の範囲内に加熱した後急冷して焼入れを行い、硬さHRC45以上となるように焼戻しを行う高強度スタビライザの製造方法において、焼戻し後、1段又は2段以上のショットピーニングを行う技術が開示されている(請求項3等参照)。
【0008】
例えば、1段目のショットピーニングにおいて径0.8mm以上のショット粒を使用し、2段目以降のショットピーニングにおいて1段目のショットピーニングで使用したショット粒の径以下の径のショット粒を使用するものである(段落0011等参照)。
近年、戦略的に生産拠点を新設・移設する車両メーカの近くでスタビライザの製造を行うことの要求が高い。そこで、最近はコンパクトなスタビライザの製造ラインが強く求められている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2005−002365号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
車両用スタビライザの耐割れ進展性を向上させる観点からは、より深い分布を持った圧縮残留応力が付与されていることが望まれる。しかしながら、深い圧縮残留応力を付与するために大径の投射材を用いたショットピーニングを行う場合には、特許文献1に記載されているように小径の投射材を併用した2段以上のショットピーニングを行い、車両用スタビライザの表面を平滑化させる必要がある。そのため、ショットピーニング処理に関わる工数や処理時間の制約から、十分に深い分布の圧縮残留応力を付与するのは難しいのが現状である。
【0011】
また、深い分布の圧縮残留応力は、車両用スタビライザの表面にできるだけ均一に付与されることが望まれる。付与する圧縮残留応力に偏りがあると、そのような領域を起点とした割れが生じる可能性を完全に排除することができないためである。しかしながら、近年、車両の懸架装置周りの構造は複雑化しており、これに伴って車両用スタビライザの曲げ部付近の形状は多様化が進んでいる。また、トーション部のブッシュ装着部位が凹加工され、投射材が到達し難い狭隘な領域を生じていることもある。そのため、車両用スタビライザの表層の広い領域に、ショットピーニングによって、深い分布の圧縮残留応力を均一に付与することは難しくなりつつある。
加えて、従来の長大な焼戻し炉を設置せねばならないことは、新たな製造ラインを作る上で、コスト的にも場所的にも大きな負担となっている。
。また、油焼入れ後の廃油の環境負荷も少なくないため、高い廃棄経費を要しており、スタビライザの生産効率を損なう一因ともなっている。
【0012】
そこで、本発明は、表層に深く分布する圧縮残留応力が付与されて疲労耐久性が向上する低コストのスタビライザを提供することを目的とする。
【課題を解決するための手段】
【0013】
前記課題を解決するために、本発明の請求項1に係るスタビライザは、中実構造の金属棒を用いて形成され、左右の車輪の変位を抑えるためのスタビライザであって、車幅方向に延びて設けられ、ねじり変形するトーション部の直径が10〜32mmであり、C:0.15質量%以上0.39質量%以下、Mn、B、およびFeを少なくとも含む化学組成を有すると共に、その金属組織の90%以上に焼入れしたままマルテンサイト組織を有することを特徴としている。
【0014】
本発明の請求項2に係るスタビライザは、中実構造の金属棒を用いて形成され、左右の車輪の変位を抑えるためのスタビライザであって、車幅方向に延びて設けられ、ねじり変形するトーション部の直径が10〜32mmであり、C:0.15質量%以上0.39質量%以下、Mn、B、およびFeを少なくとも含む化学組成を有すると共に、主相が焼入れしたままマルテンサイトである金属組織を有することを特徴としている。
【0015】
本発明の請求項4に係るスタビライザは、中実構造の金属棒を用いて形成され、左右の車輪の変位を抑えるためのスタビライザであって、車幅方向に延びて設けられ、ねじり変形するトーション部の直径が10〜32mmであり、C:0.15質量%以上0.39質量%以下、Mn、B、およびFeを少なくとも含む化学組成を有すると共に、主相が焼入れしたままマルテンサイトである金属組織を有し、前記スタビライザの表面近くに圧縮残留応力が付与されており、前記圧縮残留応力が引っ張り残留応力に変わるクロッシングポイントが、前記表面から0.8mmよりも深いところにあることを特徴としている。
【発明の効果】
【0016】
本発明によれば、表層に深く分布する圧縮残留応力が付与されて疲労耐久性が向上する低コストのスタビライザを提供することができる。
【図面の簡単な説明】
【0017】
図1】本発明の実施形態に係る車両用スタビライザの一例を示す斜視図である。
図2】熱応力による残留応力の生成の機序を示す概念図である。(a)は、冷却に伴う変形の過程を示す図であり、(b)は、塑性変形後の残留応力を示す図である。
図3】変態応力による残留応力の生成の機序を示す概念図である。(a)は、マルテンサイト変態に伴う変形の過程を示す図であり、(b)は、塑性変形後の残留応力を示す図である。
図4】本発明の実施形態に係る車両用スタビライザの断面図である。(a)は、車両用スタビライザのトーション部又はアーム部の横断面図であり、(b)は、車両用スタビライザの曲げ部近傍の縦断面図であり、(c)は、残留応力のクロッシングポイントを示す図である。
図5】マンガンボロン鋼鋼材のロックウェル硬さと衝撃値との相関を示す図である。
図6】本発明の実施形態に係る車両用スタビライザの製造方法を示す流れ図である。
図7】マンガンボロン鋼鋼材の炭素量と衝撃値との相関を示す図である。
図8】実施例に係る車両用スタビライザのS−N線図である。
図9】ショットピーニングを施すこと無く製造した車両用スタビライザにおける表面残留応力の測定結果を示す図である。(a)は、実施例に係る車両用スタビライザの結果を示す図であり、(b)は、比較例に係る車両用スタビライザの結果を示す図である。
図10】ショットピーニングを施して製造した車両用スタビライザにおける表面残留応力の測定結果を示す図である。(a)は、実施例に係る車両用スタビライザの結果を示す図であり、(b)は、比較例に係る車両用スタビライザの結果を示す図である。
図11】実施例に係る車両用スタビライザにおける表面残留応力を解析した結果を示す図である。(a)は、表面残留応力と鋼材の炭素量との関係を示す図であり、(b)は、表面残留応力と鋼材の径との関係を示す図である。
図12】耐食性試験の結果を示す図である。
図13】疲労き裂の進展性を解析した結果を示す図である。
【発明を実施するための形態】
【0018】
以下、本発明の実施形態に係る車両用スタビライザについて図を用いて説明する。なお、各図において共通する構成要素については同一の符号を付して示し、重複する説明を省略する。
【0019】
図1は、本発明の実施形態に係る車両用スタビライザの一例を示す斜視図である。
【0020】
実施形態に係る車両用スタビライザ1は、車幅方向に延びるトーション部1aと、車両の前後方向に延びる左右一対のアーム部1b,1bとを備えている。
車両用スタビライザ1の基体は、車幅方向に延びるトーション部1aの両端に対称的に位置する曲げ部1c,1cでそれぞれ屈曲され、左右一対のアーム部1b,1bに連なる略コ字状の形状を有している。
なお、基体とは、所定加工を施された棒鋼で構成される車両用スタビライザ1の本体部分を意味する。
車両用スタビライザ1は、トーション部1aの直径が約10mm〜約32mmであり、中実構造の棒状の棒鋼材(金属棒)を用いて形成されるものである。
【0021】
各アーム部1b,1bの先端には、取り付け部となる平板状の連結部(目玉部)1d、1dを有している。連結部(目玉部)1d、1dは、鍛造やプレス等によって取り付け孔を有する平板状に形成されている。
アーム部1b,1bの先端の各連結部1d、1dは、スタビライザリンク2,2を介して、不図示の車体に固定される左右一対の懸架装置3,3にそれぞれ連結されている。各懸架装置3の車軸部3aには、不図示の車輪が取り付けられる。懸架装置3は、圧縮ばね、オイルダンパを有し、車輪からの衝撃、振動等を減衰して車体に和らげて伝える働きをする。
【0022】
トーション部1aは、車体の不図示のクロスメンバ等に固定されるゴム製のブッシュ4に挿通されて、左右の懸架装置3,3の間に懸架される。
この構成により、左右の車輪の上下移動により左右の懸架装置3,3にストローク差が生じると、各懸架装置3,3から各アーム部1b,1bに変位による荷重が伝達され、トーション部1aがねじり変形する。そして、トーション部1aには、該ねじり変形を復元しようとする弾性力が生じる。車両用スタビライザ1は、このねじり変形に抗する弾性力によって、車体の左右の傾きを抑えてロール剛性を高め、車両の走行を安定化させる。
【0023】
トーション部1aとアーム部1b,1bとを有する車両用スタビライザ1の基体は、鋼棒である中実構造を有している。
車両用スタビライザ1の基体は、炭素(C):0.15質量%以上0.39質量%以下、マンガン(Mn)、ホウ素(ボロン;B)、および鉄(Fe)を少なくとも含む化学組成を有しており、主相がマルテンサイトである金属組織で形成されている。
【0024】
ところで、引張応力が残留しているとき裂発生・進展を促し、早期破壊し易くなる。これに対して、圧縮残留応力がある場合は、き裂抑制効果により長寿命化できる。残留応力は金属材料の寿命と密接な関係があり、特に繰返し負荷によってき裂が徐々に進展する金属疲労においては、影響が顕著である。
【0025】
そこで、車両用スタビライザ1の基体の表層には、好適な圧縮残留応力が付与されている。つまり、車両用スタビライザ1では、圧縮応力から引張応力に変わるクロッシングポイントが、基体の表面から0.8mmよりも深いところにある。この圧縮残留応力は、ショットピーニングのような塑性変形加工ではなく、焼き戻しすることなく、熱処理の焼き入れによって付与されるものであるという特徴がある。
【0026】
車両用スタビライザ1において、基体の全域にわたると共に表面から深い位置まで分布する圧縮残留応力は、所定条件の焼入れを施すことによって付与できる。具体的には、車両用スタビライザ1の製造工程中において、熱応力が変態応力よりも優位になる所定条件の焼入れを基体の原材である棒鋼材に施すことによって付与することができる。鋼材の焼入れ時には、以下に説明するように、熱応力による圧縮残留応力と変態応力による引張残留応力とが発生し、これらの兼ね合いから、表面残留応力が所定の分布を示すことになる。
【0027】
図2は、熱応力による残留応力の生成の機序を示す概念図である。(a)は、冷却に伴う変形の過程を示す概念図であり、(b)は、塑性変形後の残留応力を示す概念図である。図2においては、鋼材の表面近傍の組織体積変化が模式的に示されている。符号110は、鋼材の表面側に存在する表面組織、符号120は、内部側に存在する内部組織である。
【0028】
焼入れにおいて生成する熱応力は、冷却された鋼材の熱収縮が、鋼材の深さ方向の冷却速度差により深さ方向に時間経過に伴って変化する分布を示す。通常、焼入れでは、鋼材の内部側までが変態温度以上に加熱され、図2(a)の上段に示すように、表面組織110及び内部組織120において応力や歪が実質的には認められない状態となっている。この状態から鋼材が冷却され焼入れされると、鋼材の冷却は時間経過とともに表面組織110側から内部組織120へ進行し、表面側と内部側との間に冷却速度差が生じる。そのため、図2(a)の中段に示すように、表面組織110側は、熱伝導が遅れる内部組織120側よりも大きく熱収縮し、熱伝導が遅れる内部組織120側は、表面組織110側の収縮変形に引きずられて塑性変形して収縮する。
【0029】
さらに時間が経過して冷却が進行すると、図2(a)の下段に示すように、表面組織110側においては、金属組織の凝固が治まり寸法変化が無くなるのに対して、熱伝導が遅れる内部組織120側においては、依然として冷却され熱収縮が進行する。そして、熱収縮を続ける内部組織120は、表面組織110を収縮方向に拘束しつつ塑性変形の収縮を終える。その結果、図2(b)に示すように、残留応力は、表面組織110側が内部組織120よる収縮力を受けて圧縮残留応力が優位になる深さ方向の分布を示す。一方、内部組織120は、表面組織110から伸長力を受けることから、引張残留応力が優位になる深さ方向の分布を示す。
【0030】
図3は、変態応力による残留応力の生成の機序を示す概念図である。(a)は、マルテンサイト変態に伴う変形の過程を示す概念図であり、(b)は、塑性変形後の残留応力を示す概念図である。図3においては、図2と同様、鋼材の表面近傍の組織体積変化が模式的に示されている。符号110は、鋼材の表面側に存在する表面組織、符号120は、内部側に存在する内部組織である。
【0031】
これに対し、焼入れにおいて生成する金属組織の変態応力は、冷却された鋼材のマルテンサイト変態による膨張が、鋼材の深さ方向の冷却速度差によって拘束され膨張し、熱応力とは逆向きの分布を示す。
【0032】
図3(a)の上段に示す表面組織110及び内部組織120において応力や歪が実質的には認められない状態から鋼材が焼入れされると、鋼材の冷却は表面組織110側から進行し、表面側と内部側との間に冷却速度差が生じる。そのため、図3(a)の中段に示すように、表面組織110側は、熱伝導が遅れる内部組織120側よりも先にマルテンサイト変態開始温度(Ms)を下回り、マルテンサイト変態に伴って大きく膨張する。これに対し、熱伝導が遅れる内部組織120側は、表面組織110側に引きずられて引張られ塑性変形する。
【0033】
さらに時間が経過して冷却が進行すると、図3(a)の下段に示すように、表面組織110側は、熱伝導が遅れる内部組織120側よりも先にマルテンサイト変態終了温度(Mf)を下回り、金属組織の体積変化が治まる。これに対して、熱伝導が遅れる内部組織120側は、マルテンサイト変態開始温度(Ms)以上マルテンサイト変態終了温度(Mf)以下の温度域で依然としてマルテンサイト変態に伴う膨張を生じる。そして、膨張を続ける内部組織120は、表面組織110を引張方向に拘束しながら塑性変形を終える。その結果、図3(b)に示すように、生成する残留応力は、表面組織110が内部組織120の膨張に引張られて、表面組織110側ほど引張残留応力が優位になる。一方、内部組織120は表面組織110から圧縮する力を受けて内部組織120側ほど圧縮残留応力が優位になる。以上より、変態応力は、熱応力とは逆向きの分布を示す。
【0034】
車両用スタビライザ1において、深部まで均一な機械的特性を実現させるためには、焼入れ深さを十分に深くし、横断面の中心部分まで金属組織の主相をマルテンサイト化させることが望まれる。そのため、変態応力を低減する余地は少ない。したがって、熱応力を変態応力よりも優位にするためには、熱応力の生成に適する冷却速度が速い焼入れ条件を選定することが好ましい。
そこで、車両用スタビライザ1の製造に際しては、水と同等以上または水に近い熱伝達率を有する媒体による焼入れを施すものとする。加えて、車両用スタビライザ1の基体としては、従来用いられているばね鋼と比較して焼入れ性が良好なMn、Bを含むマンガンボロン鋼(Mn−B鋼)を採用する。鋼材の焼入れ性が悪い場合、冷却速度が速い焼入れを行うと、歪や焼割れが発生するおそれが高まるためである。
【0035】
車両用スタビライザ1の基体は、詳細には、強度と靭性が要求されることから炭素量が0.15質量%以上0.39質量%以下の低炭素量のものと決定される。
以上のことから、車両用スタビライザ1の原材は、マンガンボロン鋼のうちでも炭素量が低い鋼種で構成され、炭素(C):0.15質量%以上0.39質量%以下、マンガン(Mn)、ホウ素(ボロン;B)、および鉄(Fe)を少なくとも含む化学組成を有するものとする。炭素量を0.15質量%以上0.39質量%以下の低含有量の範囲とすることによって、焼き入れしたままで良好な靭性が備わり、焼入れ後の置割れが阻止され、耐食性にも優れる車両用スタビライザ1が得られる。後記するように、Mnは、好ましくは0.50%以上1.70%以下、B(ホウ素、ボロン)は、好ましくは0.0005%以上0.003%以下である。
【0036】
車両用スタビライザ1の基体は、より好ましくは、質量%で、C:0.15%以上0.39%以下、Si:0.05%以上0.40%以下、Mn:0.50%以上1.70%以下、B:0.0005%以上0.003%以下を必須元素として含有し、P:0.040%以下、S:0.040%以下であり、任意添加元素として、Ni、Cr、Cu、Mo、V、Ti、Nb、Al、N、Ca及びPbからなる群より選択される少なくとも一種以上の元素をそれぞれ1.20%以下の範囲で含有し得ると共に、残部が、Feと不可避的不純物からなる。具体的には、Standard American Engineering 規格の15B23相当鋼又は15B26相当鋼が入手し易く、好ましい。
【0037】
車両用スタビライザ1の原材となる棒鋼材を任意添加元素を含有しない化学組成とすると、良好な焼入れ性を有する棒鋼材を低廉な材料費で得ることができるため、車両用スタビライザ1を安価にできる。一方、任意添加元素を含有する化学組成とすると、元素種類に応じて棒鋼材の諸特性を改質することが可能になる。任意添加元素を含有する化学組成では、必須元素と、任意添加元素と、不可避的不純物として位置づけられるP及びSとに対する残部が、Feとその他の不可避的不純物とで占められる。
【0038】
<車両用スタビライザ1が含有する成分元素>
以下、車両用スタビライザ1の原材となる棒鋼材の各成分元素について説明する。
炭素(C)は、機械的強度や硬さの向上等に寄与する成分である。Cを0.15質量%以上とすることで、良好な機械的強度や硬さ(硬度)を確保することができ、従来のばね鋼よりも優れた焼入れ硬さとすることが可能になる。なお、車両用スタビライザ1の疲労強度は、硬度にほぼ比例する。
【0039】
一方で、Cを0.39質量%以下とすることによって、焼入れ後に機械的強度と共に所定の靭性を確保することが可能になる。また、変態応力等に起因する焼割れや残留オーステイナイトに起因する置割れが阻止され、炭化物の析出による耐食性の低下を抑制することができる。Cの含有量は、より好ましくは0.18質量%以上0.35質量%以下、さらに好ましくは0.20質量%以上0.26質量%以下である。これにより、上述した車両用スタビライザ1の機械的特性をより高めることが可能となる。
【0040】
ケイ素(Si)は、機械的強度や硬さの向上等に寄与する成分である。また、鋼材の製鋼時に脱酸の目的で添加される成分でもある。Siを0.05質量%以上とすることで、良好な機械的強度や硬さや耐食性や耐へたり性を確保することができる。一方で、Siを0.40質量%以下とすることで、靭性や加工性の低下を抑えることができる。Siの含有量は、好ましくは0.15質量%以上0.30質量%以下である。
【0041】
マンガン(Mn)は、焼入れ性や機械的強度の向上等に寄与する成分である。また、鋼材の製鋼時に脱酸の目的で添加される成分でもある。Mnを0.50質量%以上とすることで、良好な機械的強度と共に焼入れ性を確保することができる。一方で、Mnを1.70質量%以下とすることで、ミクロ偏析による靭性や耐食性の低下や、加工性の低下を抑制することができる。Mnの含有量は、より好ましくは0.60質量%以上1.50質量%以下、さらに好ましくは0.80質量%以上1.50質量%以下である。
【0042】
ホウ素(B;Boron:ボロン)は、焼入れ性や機械的強度の向上等に寄与する成分である。Bを0.0005質量%以上0.003質量%以下とすることで、良好な焼入れ性を確保することができる。また、粒界強化によって靭性や耐食性を向上させることができる。その一方で、Bを0.003質量%を超える含有量としても、焼入れ性の向上の効果は飽和し、機械的性質は悪化してしまうため、含有量の上限を制限する。
【0043】
リン(P)は、鋼材の製鋼時から残留する不可避的不純物である。Pを0.040質量%以下とすることで、偏析による靭性や耐食性の低下を抑えることができる。Pの含有量は、より好ましくは0.030質量%以下である。
【0044】
硫黄(S)は、鋼材の製鋼時から残留する不可避的不純物である。Sを0.040質量%以下とすることで、偏析やMnS系介在物の析出による靭性や耐食性の低下を抑えることができる。Sの含有量は、より好ましくは0.030質量%以下である。
【0045】
ニッケル(Ni)は、耐食性や焼入れ性の向上等に寄与する成分である。Niを添加することで、良好な耐食性や焼入れ性を確保することができ、腐食劣化や焼割れの低減を図ることが可能である。その一方で、Niを過剰に含有させても、焼入れ性の向上の効果は飽和し、材料コストも増大してしまうため、0.30質量%以下とすることが好ましく、或いは、意図的に添加しない組成とすることもできる。
【0046】
クロム(Cr)は、強度や耐食性や焼入れ性の向上等に寄与する成分である。Crを添加することで、強度や耐食性や焼入れ性を向上させることができる。その一方で、Crを過剰に含有させると、炭化物の偏析による靭性や耐食性の低下が生じたり、加工性が低下したり、材料コストも増大してしまうため、1.20質量%以下とすることが好ましく、0.60質量%以下としてもよく、或いは、意図的に添加しない組成とすることもできるい。
【0047】
銅(Cu)は、焼入れ性や耐食性の向上等に寄与する成分である。Cuを添加することで、焼入れ性や耐食性を向上させることができる。但し、Cuを過剰に含有させると、熱間での表面脆化が生じる場合があるため、0.30質量%以下とすることが好ましく、或いは、意図的に添加しない組成とすることもできる。
【0048】
モリブデン(Mo)は、焼入れ性や靭性や耐食性の向上等に寄与する成分である。Moを添加することで、焼入れ性や靭性や耐食性を向上させることができる。但し、Moを過剰に含有させると、材料コストが増大するため、0.08質量%以下とすることが好ましく、0.02質量%以下とすることがより好ましく、或いは、意図的に添加しない組成とすることもできる。
【0049】
バナジウム(V)は、靭性や硬さの向上等に寄与するすると共に、窒素(N)と結合してNによるホウ素(B)の固定を防止する成分である。Vを添加することで、靭性や硬さやを向上させたり、ホウ素(B)による効果を有効に発現させたりすることができる。その一方で、Vを過剰に含有させると、炭窒化物の析出による靭性や耐食性の低下が生じ、材料コストも増大してしまうため、0.30質量%以下とすることが好ましく、或いは、意図的に添加しない組成とすることもできる。
【0050】
チタン(Ti)は、強度や耐食性の向上等に寄与すると共に、窒素(N)と結合してNによるホウ素(B)の固定を防止する成分である。Tiを添加することで、強度や耐食性を向上させたり、ホウ素(B)による効果を有効に発現させたりすることができる。その一方で、Tiを過剰に含有させると、炭窒化物の析出による靭性や耐食性の低下が生じる場合があるため、0.05質量%以下とすることが好ましく、或いは、意図的に添加しない組成とすることもできる。
【0051】
ニオブ(Nb)は、強度や靭性の向上等に寄与すると共に、窒素(N)と結合してNによるホウ素(B)の固定を防止する成分である。Nb添加することで、結晶粒の微小化により強度や靭性を向上させたり、ホウ素(B)による効果を有効に発現させたりすることができる。その一方で、Nbを過剰に含有させると、炭窒化物の析出による靭性や耐食性の低下が生じる場合があるため、0.06質量%以下とすることが好ましく、或いは、意図的に添加しない組成とすることもできる。
【0052】
アルミニウム(Al)は、靭性の向上等に寄与すると共に、窒素(N)と結合してNによるホウ素(B)の固定を防止する成分である。また、鋼材の製鋼時に脱酸の目的で添加される成分でもある。Alを添加することで、結晶粒の微小化により強度や靭性を向上させたり、ホウ素(B)による効果を有効に発現させたりすることができる。その一方で、Alを過剰に含有させると、窒化物や酸化物の析出による靭性や耐食性の低下が生じる場合があるため、0.30質量%以下とすることが好ましく、或いは、意図的に添加しない組成とすることもできる。このAlとは、Soluble Alを意味する。
【0053】
窒素(N)は、鋼材の製鋼時から残留する不可避的不純物であるが、強度の向上等に寄与する成分である。Nを所定含有量の範囲で含有させることで、窒化物の析出による靭性や耐食性の低下を避けつつ、強度を向上させることができる。Nの含有量は、0.02質量%以下とすることが好ましい。
【0054】
カルシウム(Ca)は、被削性の向上等に寄与する成分である。Caを添加することで、鋼材の被削性をより向上させることができる。Alの含有量は、0.40質量%以下とすることが好ましく、或いは、意図的に添加しない組成とすることもできる。
【0055】
鉛(Pb)は、被削性の向上等に寄与する成分である。Pbを添加することで、鋼材の被削性をより向上させることができる。Pbの含有量は、0.40質量%以下とすることが好ましく、或いは、意図的に添加しない組成とすることもできる。
【0056】
<車両用スタビライザ1の金属組織>
車両用スタビライザ1は、以上の化学組成を有する基体において、主相がマルテンサイトである金属組織を有している。より具体的には、車両用スタビライザ1の横断面の中心部分の90%以上がマルテンサイト組織を有しており、基体は金属組織の少なくとも90%以上にマルテンサイト組織を有する。
車両用スタビライザ1では、低炭素量のマンガンボロン鋼鋼材を基体としているため、焼入れしたままのマルテンサイト組織において、硬度に加えて良好な靭性が達成されている。
【0057】
車両用スタビライザ1は、単相のマルテンサイト組織からなる金属組織を有することが好ましい。マンガンボロン鋼は焼入れ性が良好であるため、焼入れに適切な冷却速度を選択することによって、車両用スタビライザ1をほぼマルテンサイト組織になるように焼入れとすることも可能である。つまり、車両用スタビライザ1の品質を、材料の選択、焼き入れ法等の製造条件によって制御できる。
【0058】
車両用スタビライザ1の金属組織を単相の低炭素のマルテンサイト組織とすると静的強度、耐久強度、疲労特性等を向上できる。また、単相であるので金属組織中に局部電池が形成され難くなり、耐食性の向上を図れる。
【0059】
図4(a)、(b)は、本発明の実施形態に係る車両用スタビライザの断面図である。(a)は、車両用スタビライザのトーション部又はアーム部の横断面図であり、(b)は、車両用スタビライザの曲げ部近傍の縦断面図である。図4(c)は、車両用スタビライザの残留応力のクロッシングポイントを示す図であり、横軸に車両用スタビライザの表面からの深さ(寸法)Dを示し、縦軸に車両用スタビライザの残留応力を示す。なお、図4(c)は、車両用スタビライザ1の残留応力のクロッシングポイントを模式的に示したものであり、実際の車両用スタビライザ1の実特性を表わしたものではない。
なお、図4(a)及び(b)においては、車両用スタビライザ1のトーション部1aやアーム部1bや曲げ部1cの基体(塗装塗膜を除く)の断面を模式的に示している。
【0060】
車両用スタビライザ1は、図4(a)、(b)に示すように、基体の表面からの深さ(D)が、所定距離までの領域に圧縮残留応力が付与される。そして、圧縮残留応力が引張残留応力に変わるクロッシングポイントは、基体の表面から0.8mmよりも深いところにある(実施例の焼き戻しおよびショットピーニングを行わない図9(a)、焼き戻しおよびショットピーニングを行った比較例の図10(b)参照)。
焼き戻しおよびショットピーニングを行った比較例の図10(b)の実験値によれば、クロッシングポイントは、基体の表面から約0.42mmのところにある。比較例の0.42mmというのは、腐食耐久性に関わる要因である腐食ピット深さが、大きいもので0.4mmになることと関係する。
腐食ピットが成長して深くなっていき、圧縮残留応力がなくなり、引っ張り残留応力の領域に到達すると、ピット底を起点として破断が生じる。
【0061】
このために、クロッシングポイントを深くし、かつ圧縮残留応力を大きくすることが腐食耐久性を延ばすことに直結する。
この腐食ピットの深さはとりあえず、0.4mmと想定されるが、部品間のバラツキ、様々な環境条件、運転条件などを鑑み、安全性を考えると、本実施形態のようにクロッシングポイントが0.8mmよりも深いところにあることが望ましい(実施例の焼き戻しおよびショットピーニングを行わない図9(a)参照)。
なお、クロッシングポイント(cp)とは、図4(c)に示されるように、付与されている圧縮残留応力が引張残留応力に変わる深さ、すなわち、付与されている圧縮残留応力が0MPaとなる深さを意味する。
【0062】
車両用スタビライザ1の基体の表面から0.8mmの深さまでの圧縮残留応力が、無負荷時において、150MPa以上有していることが好ましい。また、基体の表面から1.0mmの深さにおける圧縮残留応力は、無負荷時において、150MPa以上であることが、さらに好ましい。このような深さを有する圧縮残留応力は、焼入れにおける冷却速度を速くすることによって付与することが可能である。深い箇所に分布する大きな圧縮残留応力を付与することによって、表面の割れ(き裂)の進展が抑えられ、車両用スタビライザ1の疲労耐久性を大きく向上させることができる。
また、圧縮残留応力は、焼入れによって付与されるため、車両用スタビライザ1の基体の表層の全域に付与でき、圧縮残留応力の分布の均一性が高い。なお、表層の全域とは、基体の全表面上の各点から所定深さまでの領域(表層)の全体を意味する。
以上の如く、本実施形態(本願発明)は、一定の値以上の圧縮残留応力が腐食耐久性に関わる要因である腐食ピットの深さが及ばない一定の深さ以上に存在することがポイントである。
【0063】
車両用スタビライザ1は、旧オーステナイト結晶粒界の結晶粒度について粒度番号Gが8を超えるようにすることが好ましく、9以上にすることがより好ましい。旧オーステナイト結晶粒界の結晶粒度をこのように微細化しておくことで、靭性を損なわず機械的強度をより向上させることができる。結晶粒度の微細化は、例えば、焼入れ温度を低下させたり、Mnや、任意添加元素の含有量を高めたりすることによって実現することが可能である。なお、旧オーステナイト結晶粒界の結晶粒度は、JIS G 0551の規定に準じて測定することができる。粒度番号Gは、焼き入れしたままの金属組織の顕微鏡観察像に基いて判定することができ、望ましくは5〜10視野の粒度番号の平均値として求められる。
【0064】
車両用スタビライザ1は、図5に示すように、ロックウェル硬さ(HRC)が、44.5を超え55.5以下の範囲となるようにすることが好ましい。図5は、マンガンボロン鋼鋼材のロックウェル硬さと衝撃値との相関を示す図である。図5において、▲は従来のスタビライザのSUP9Nのデータであり、■は本実施形態の一例のスタビライザの15B23(Standard American Engineering 規格)のデータであり、□は本実施形態の一例のスタビライザの15B25(Standard American Engineering 規格)のデータである。
【0065】
ロックウェル硬さ(HRC)このような硬さは、炭素量が0.15%以上0.39質量%以下の範囲であれば、必要な靭性を有して実現させることが可能である。車両用スタビライザ1の一例の(図5の■、□のデータ参照)は、ロックウェル硬さ44.5を超え55.5以下の範囲の硬さにおいても、従来のばね鋼鋼材を材料とし同等の硬さに調質したスタビライザ(図5の▲のデータ参照)と比較して、良好な靭性(例えば、HRC44.5において室温のシャルピー衝撃値が30J/cm以上)を兼ね備えるものとすることができる。
【0066】
例えば、図5によれば、HRC44.5において、従来のばね鋼鋼材SUP9N(図5の▲のデータ参照)は、シャルピー衝撃値がほぼ35J/cmに対して、車両用スタビライザ1の一例の(図5の15B23■、15B25□のデータ参照)は、シャルピー衝撃値がほぼ90J/cm以上得られることが分る。
【0067】
<車両用スタビライザ1の製造方法の一例>
次に、本実施形態に係る車両用スタビライザの製造方法の一例について説明する。
【0068】
図6は、本発明の実施形態に係る車両用スタビライザの製造方法を示す流れ図である。
【0069】
図6に示すスタビライザの製造方法は、加工工程S10と、加熱工程S20と、成形工程S30と、焼入れ工程S40と、表面加工工程S50と、前処理工程S60と、予加熱工程S70と、塗装工程S80と、後加熱工程S90とを順次含むものとすることができる。なお、この製造方法において、表面加工工程S50及び予加熱工程S70は、必須の工程ではなく、後記するように実施を省略することも可能である。
【0070】
車両用スタビライザ1の材料としては、前記の低炭素量のマンガンボロン鋼の棒鋼材が使用される。棒鋼材とは、中実構造の棒状の金属材である。
棒鋼材としては、具体的には、熱間圧延鋼材を適用することができる。棒鋼材の長さ及び径は、所望の製品形状に応じて適宜の寸法とすることが可能である。但し、トーション部1aの直径は約10mm〜約32mmの範囲としている。
この熱間圧延鋼材は、必要に応じて、熱間圧延後に冷間圧延や球状化焼鈍等の焼鈍処理が施されていてもよい。また、熱間圧延鋼材に代えて、冷間圧延鋼材を用いることも可能である。熱間圧延を行う場合には、スラブの加熱温度は、1150℃以上1350℃以下程度が好ましく、仕上温度は、800℃以上1000℃以下とすることが好ましい。
【0071】
仕上温度を800℃以上とすることによって、成分元素を適切に固溶させることができ、固溶ホウ素による焼入れ性の向上の効果を有効に得ることができるようになる。また、仕上温度を1000℃以下とすることによって、オーステナイト結晶粒の粗大化を防止することができ、残留オーステイナイトによる硬さの低下や置割れを阻止することができる。巻取温度は、例えば、400℃以上650℃以下等とすることができる。
【0072】
加工工程S10は、車両用スタビライザ1の材料である棒鋼材の両端部に加工を施して、スタビライザリンク2(図1参照)に連結される連結部1d、1dを形成する工程である。棒鋼材の長さ及び径は、所望の製品形状に応じて適宜の寸法とすることが可能である。また、連結部1d、1dの形態や形成方法は、特に制限されるものではなく、例えば、棒鋼材の末端を扁平状に鍛造してプレス加工等で孔開け加工を施すことによって連結部1d、1dを形成することが可能である。
【0073】
加熱工程S20は、熱間曲げ加工を施すために棒鋼材を加熱処理する工程である。加熱方法としては、加熱炉による加熱、通電加熱、高周波誘導加熱等の適宜の方法を用いることができるが、高周波誘導加熱によることが好ましい。高周波誘導加熱を利用した急速加熱によって脱炭や脱ホウ素を抑制しつつ棒鋼材を加熱処理することができる。本車両用スタビライザ1は、良好な焼入れ性を有するマンガンボロン鋼鋼材が材料として採用されているため、高周波誘導加熱を利用した急速加熱を適用することが可能である。
【0074】
成形工程S30は、加熱処理された棒鋼材に熱間(温間)曲げ加工を施して製品形状に成形する工程である。すなわち、棒鋼材に曲げ加工を施すことによって、棒鋼材にトーション部1a及びアーム部1bを形成し、棒鋼材の形状を所望の車両用スタビライザ1の形状に賦形する。なお、曲げ加工は、所望の製品形状に応じて、複数の曲げ部1cが形成されるように複数箇所に施すことが可能であり、多段曲げによってトーション部1a及びアーム部1bを形成することもできる。
【0075】
焼入れ工程S40は、曲げ加工が施された棒鋼材に水と同等以上又は水に近い熱伝達率を有する媒体による焼入れを施す工程である。つまり、曲げ加工が施された棒鋼材をオーステナイト化後、下部臨界冷却速度以上で焼入れを施す工程である。
媒体の熱伝達率は、棒鋼材に対する静止した水ないし流れを有する水の熱伝達率値に対して±10%以内の範囲であることが好ましい。焼入れ温度、加熱速度及び焼入れ保持時間は、適宜の範囲で行うことが可能である。例えば、焼入れ温度は、850℃以上1100℃以下等とすることができる。但し、焼入れ温度は、オーステナイト結晶粒が過度に粗大化したり、焼割れが発生したりするのを避ける観点から、オーステナイト化温度(AC3)+100℃以下とすることが好ましい。このような加熱を行った後、冷却剤を用いて棒鋼材の冷却を行い、棒鋼材の金属組織をマルテンサイト化させると共に、棒鋼材(基体)の表面の全域にわたって圧縮残留応力を付与する。
【0076】
焼入れ処理としては、具体的には、水焼入れ、水溶液焼入れ又は塩水焼入れを施すことが好ましい。水焼入れは、冷却剤として、水を用いる焼入れ処理である。水温は、0℃以上100℃以下程度、好ましくは5℃以上40℃以下の温度範囲とすることができる。水溶液焼入れ(ポリマー焼入れ)は、冷却剤として、高分子を添加した水溶液を用いる焼入れ処理である。
【0077】
高分子としては、例えば、ポリアルキレングリコール、ポリビニルピロリドン等の各種の高分子を用いることができる。高分子濃度は、前記の所定熱伝達率を示す限り特に制限されるものではなく、高分子の種類や処理に供する棒鋼材の焼入れ目標等に応じて調節することができる。
【0078】
塩水焼入れは、冷却剤として、塩化ナトリウム等の塩類を添加した水溶液を用いる焼入れ処理である。塩濃度は、前記の所定熱伝達率を示す限り特に制限されるものではなく、処理に供する棒鋼材の焼入れの程度に応じて調節することができる。これらの焼入れ処理において、冷却剤は、攪拌してよいし、攪拌しなくてもよい。また、これらの焼入れ処理を、拘束焼入れ、噴霧焼入れ、噴射焼入れ等の形態で行ってもよい。
【0079】
本実施形態に係る車両用スタビライザ1は、このようにして焼入れが施された棒鋼材(以下、車両用スタビライザ1の半製品とも称す)を、焼戻しを施すこと無く、表面加工工程S50又は前処理工程S60に供することができる。低炭素のマンガンボロン鋼が採用されていることによって、焼き入れしたままで良好な靭性、硬度等が実現されるためである。
【0080】
表面加工工程S50は、焼入れが施された棒鋼材にショットピーニングを施す工程である。ショットピーニングは、温間及び冷間のいずれで行ってもよく、粒子径や投射速度等の条件を変えて複数回繰り返し行ってもよい。ショットピーニングを施すことによって、棒鋼材の表面に圧縮残留応力が付加され、疲労強度や耐摩耗性の向上と共に、置割れや応力腐食割れ等の防止が図られる。なお、焼入れが施された棒鋼材は、ショットピーニングを施さないものとすることもできる。すなわち、図6に示すように、焼入れ工程S40の後に、表層に圧縮残留応力を付与するためのショットピーニング等の塑性変形加工を施すこと無く、前処理工程S60を実施することも可能である。
【0081】
前処理工程S60は、棒鋼材に塗装処理を行うために表面洗浄や表面処理を行う工程である。具体的には、棒鋼材の表面に、油脂分や異物等を除去する除去処理や下地処理等の各種の前処理を施す工程である。下地処理としては、例えば、リン酸亜鉛、リン酸鉄等の被膜を形成することができる。
除去処理や下地処理等の各処理後には、棒鋼材を水洗し、水洗後に後段の各種処理に順次供する。水洗された棒鋼材の水切りの方法としては、例えば、水切りローラー等を使用した吸水乾燥や、ブロー乾燥や、加熱乾燥や、これらの組み合わせ等による適宜の方法を利用することが可能である。このようにして前処理された棒鋼材は、図2に示すように、予加熱工程S70又は塗装工程S80に供することができる。
【0082】
予加熱工程S70は、棒鋼材に予加熱を施す工程である。塗装される棒鋼材にあらかじめ予加熱を施すことによって、後加熱による塗料の焼付時間を短縮させることができ、塗装処理効率を向上させることができる。また、塗料の温度上昇が表面側に偏らないようにすることが可能であるため、塗膜の密着性を向上させることができる。加熱方法としては、加熱炉による加熱、通電加熱、高周波誘導加熱等の適宜の方法を用いることができるが、加熱速度が速く設備が簡易な点で、通電加熱によることが好ましい。予加熱温度は、例えば、塗料の塗着が可能な180℃以上200℃以下の範囲とすることが好ましい。このような温度の予加熱であれば、硬さが損なわれることが無く、低温焼鈍による効果を得ることが可能であるし、また、低温焼鈍後に塗料の塗着温度に再冷却する処理も不要にすることができる。なお、前処理工程S60において加熱乾燥による水切りを実施する場合には、加熱乾燥後の余熱を塗料の塗着に利用することもできる。そのため、水切りにおける加熱乾燥温度が十分に高い場合には、前処理工程S60の後に、予加熱工程S70を行うこと無く、塗装工程S80を実施することも可能である。
【0083】
塗装工程S80は、棒鋼材に塗料で塗装する工程である。塗料としては、粉体塗料が好ましく用いられ、例えば、エポキシ樹脂製の粉体塗料を好適に用いることができる。塗装方法としては、例えば、棒鋼材の表面に厚さ50μm以上程度の塗膜が形成されるように塗料の噴射を行う方法や、塗料への浸漬を行う方法を用いることができる。
【0084】
後加熱工程S90は、塗装された塗料を加熱して焼き付ける工程である。加熱方法としては、加熱炉による加熱が好ましい。後加熱温度は、例えば、180℃以上200℃以下の範囲とすることが好ましい。具体的には、例えば、180℃で5分間の後加熱、ないしは200℃で5分間の後加熱を塗料が塗装された棒鋼材に施すことが許容される。このような加熱条件であれば、車両用スタビライザ1の半製品について加熱による強度や硬さの低下が生じるのを避けることができるためである。なお、これら予加熱工程S70、塗装工程S80及び後加熱工程S90に代えて、塗装処理として、電着塗装、溶剤塗装等を実施してもよい。
【0085】
以上説明した工程を経て、車両用スタビライザ1を製造することができる。
このような製造方法では、焼入れの後に焼戻しを施すことが無いため、製造ライン上に長大な焼戻し炉を設置する必要が無く、コンパクトな生産ラインで車両用スタビライザ1を生産性高く製造できる。そのため、車両用スタビライザの製造に関わる設備規模を縮小させたり、焼戻し処理に関わる工数や焼戻し加熱に伴う加熱経費等の操業経費を低減させたりすることが可能になる。
【0086】
従って、車両用スタビライザ1の生産ラインのコストを大きく低減でき、車両用スタビライザ1の生産コストの削減を図ることができる。
また、車両用スタビライザ1の生産ラインの構築が容易化される。例えば車両メーカーの生産場所近くに車両用スタビライザ1の生産ラインを容易に構築できる。
【0087】
また、従来の一般的な車両用スタビライザの製造において実施されている油焼入れに代えて、水焼入れ、水溶液焼入れ又は塩水焼入れ等の、水と同等以上または水に近い熱伝達率を有する媒体による焼入れが採用されているため、鉱油等の油性冷却剤の管理保安や廃棄経費が不要となって車両用スタビライザ1の効率的な生産が可能になる。
【実施例】
【0088】
以下、本発明の実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれに限定されるものではない。
【0089】
はじめに、次の表1に示す化学成分組成を有する鋼材(供試材1〜供試材9)について、硬さ及び炭素量と衝撃値との相関を評価した。なお、供試材1〜供試材8は、マンガンボロン鋼鋼材であり、供試材9は、従来のばね鋼鋼材(SUP9A(「SUP9N」))である。
【0090】
【表1】
【0091】
衝撃試験では、各供試材から採取したJIS3号片(Uノッチ2mm深さ)を使用し、衝撃値uE20(J/cm)を求めた。なお、供試材は、表1に示す各組成の鋼を溶製して鋼塊とし、角ビレットに溶接して熱間圧延材を得た後、この熱間圧延材から採取した棒鋼材について、水焼入れを施したものを試験片の採取に用いた。
【0092】
図5に示すように、従来のばね鋼鋼材である供試材9では、車両用スタビライザにおける実用上の硬さ上限(HRC44.5)で、衝撃値が約30J/cmに留まっている(図中に破線で示す)。これに対して、マンガンボロン鋼鋼材である供試材1〜供試材8では、HRC44.5以上56以下の範囲において、供試材9の車両用スタビライザにおける実用上の硬さ上限(HRC44.5)〜HRC56で、衝撃値が約30J/cmを上回っており、機械的強度と靭性とを両立し得ることが分かる。
【0093】
図7は、マンガンボロン鋼鋼材の炭素量と衝撃値との相関を示す図である。
また、図7に示すように、マンガンボロン鋼鋼材における衝撃値は、各供試材の炭素量(質量%)に対して負の相関を示しており、靭性が主として炭素量に依存していることが分かる。そして、マンガンボロン鋼鋼材である供試材1〜供試材8の衝撃値は、供試材9において認められた衝撃値(30J/cm)の値を、炭素量が0.39質量%以下の範囲で上回っている(図中に破線で示す)。よって、車両用スタビライザの材料としては、炭素量が0.39質量%以下のマンガンボロン鋼が好適であると認められる。
【0094】
次に、実施例1−1〜実施例1−3に係る車両用スタビライザを製造し、耐久性について評価を行った。また、対照として、比較例1に係る車両用スタビライザを製造し、併せて評価を行った。
【0095】
[実施例1−1]
実施例1−1に係る車両用スタビライザは、表1に示す供試材1を材料とし、冷間曲げ加工を施す成形工程S30と、水焼入れを施す焼入れ工程S40とを経て、焼戻しを施すこと無く製造した。なお、車両用スタビライザの径は23mmとした。
【0096】
[実施例1−2]
実施例1−2に係る車両用スタビライザは、材料を表1に示す供試材4に代えた点を除いて、実施例1−1と同様にして製造した。
【0097】
[実施例1−3]
実施例1−3に係る車両用スタビライザは、成形工程S30を熱間曲げ加工に代えた点を除いて、実施例1−1と同様にして製造した。
【0098】
[比較例1]
比較例1に係る車両用スタビライザは、表1に示す供試材9を材料とし、油焼入れ後に焼戻しを施して製造した。なお、車両用スタビライザの径は23mmとした。
【0099】
そして、製造した各車両用スタビライザについて耐久試験を行った。耐久試験では、車両用スタビライザの両端を固定し、所定繰返し応力を負荷して、両振りの疲労限度(疲労強度)を求めた。
【0100】
図8は、実施例に係る車両用スタビライザのS−N線図である。
【0101】
図8に示すように、実施例1−1〜実施例1−3に係る車両用スタビライザでは、実線で示す比較例1に係る車両用スタビライザと比較して、いずれも耐久性が向上していることが分かる。また、実施例1−1に係る車両用スタビライザ(◆)と実施例1−3に係る車両用スタビライザ(◇)とでは、疲労限度が同等となっており、熱間曲げ成形及び冷間曲げ成形のいずれも採用し得ることが認められる。
【0102】
次に、実施例2−1〜実施例2−4に係る車両用スタビライザを製造し、表面残留応力について評価を行った。また、比較対照するため、比較例2−1〜比較例2−2に係る車両用スタビライザを製造し、併せて評価を行った。
【0103】
[実施例2−1]
実施例2−1に係る車両用スタビライザは、表1に示す供試材1を材料とし、成形工程S30と、水焼入れを施す焼入れ工程S40とを経て、ショットピーニング(表面加工工程S50)を施すこと無く製造した。
【0104】
[実施例2−2]
実施例2−2に係る車両用スタビライザは、材料を表1に示す供試材4に代えた点を除いて、実施例2−1と同様にして製造した。
【0105】
[実施例2−3]
実施例2−3に係る車両用スタビライザは、表1に示す供試材1を材料とし、成形工程S30と、水焼入れを施す焼入れ工程S40と、ショットピーニングを施す表面加工工程S50とを経て製造した。
【0106】
[実施例2−4]
実施例2−4に係る車両用スタビライザは、材料を表1に示す供試材4に代えた点を除いて、実施例2−3と同様にして製造した。
【0107】
[比較例2−1]
比較例2−1に係る車両用スタビライザは、表1に示す供試材9を材料とし、油焼入れ後に焼戻し及びショットピーニングを施すこと無く製造した。
【0108】
[比較例2−2]
比較例2−2に係る車両用スタビライザは、表1に示す供試材9を材料とし、油焼入れ後に焼戻しとショットピーニングとを施して製造した。
【0109】
<圧縮残留応力>
図9は、ショットピーニングを施すこと無く製造した車両用スタビライザにおける表面残留応力の測定結果を示す図である。(a)は、実施例に係る車両用スタビライザの結果を示す図であり、(b)は、比較例に係る車両用スタビライザの結果を示す図である。また、図10は、ショットピーニングを施して製造した車両用スタビライザにおける表面残留応力の測定結果を示す図である。(a)は、実施例に係る車両用スタビライザの結果を示す図であり、(b)は、比較例に係る車両用スタビライザの結果を示す図である。
【0110】
図9及び図10において、縦軸は、残留応力(MPa)を示す。(−)側が(圧縮)残留応力、(+)側が(引張)残留応力である。図9(a)に示すように、実施例2−1及び実施例2−2では、比較例の図9(b)に比べ、焼戻しとショットピーニングとを施していないにも関わらず、表面から深い分布で圧縮残留応力が生成していることが分かる。詳細には、圧縮残留応力が引張残留応力に変わるクロッシングポイントが、表面から少なくとも0.8mm以上の深さにある。そして、表面から0.8mmの深さまで150MPa以上の圧縮残留応力(無負荷時における圧縮残留応力)が認められる。
【0111】
一方、実施例2−1、2−2では、比較例の図9(b)の(圧縮)残留応力が0である表面から0.42mmの深さにおける圧縮残留応力(無負荷時における圧縮残留応力)が、200MPa以上、表面から1.0mmの深さにおける圧縮残留応力(無負荷時における圧縮残留応力)が、150MPa以上にそれぞれ及んでいる。
【0112】
また、残留応力が比較的大きくなっており、冷却速度が速い焼入れを施してさえいれば、図10(b)の比較例のショットピーニングを施した車両用スタビライザの表面残留応力を参照して、ショットピーニングの実施を省略したとしても有効な圧縮残留応力を付与し得ることが分かる。詳細には、実施例の図9(a)を参照すると、比較例の図10(b)の(圧縮)残留応力が0となる表面から0.42mmの深さにおける圧縮残留応力(無負荷時における圧縮残留応力)が200MPa以上ある。
【0113】
また、表面から0.8mmの深さまでの圧縮残留応力が、150MPa以上ある。また、表面から1.0mmの深さにおける圧縮残留応力(無負荷時における圧縮残留応力)が150MPa以上にそれぞれ及んでいる。これに対して、比較例2−1(図9(b)参照)では、引張残留応力が分布しており、油焼入れでは、熱応力による表面残留応力の生成が優位になり難いと認められる。
【0114】
他方、図10に示すように、ショットピーニングを施した実施例2−3及び実施例2−4(図10(a)参照)では、実施例2−1及び実施例2−2(図9(a)参照)と比較して、表面側の圧縮残留応力が更に増強されていることが分かる。これに対して、比較例2−2(図10(b)参照)では、油焼戻し及びショットピーニングが施されることによって、表面側の圧縮残留応力が増強されていることは認められるものの、圧縮残留応力の分布は表面側(図10(b)に示す表面から0.42mm以下)に留まっている。そのため、比較例の車両用スタビライザでは、成長した腐食ピットの底部近傍を起点とした割れが伝播し易く、十分な疲労強度や耐食性が得られない可能性がある。
前記したように、腐食耐久性に関わる要因である腐食ピット深さが、大きいもので0.4mmになる場合があり、比較例2−2のショットピーニングを施した車両用スタビライザでも、疲労強度や耐食性が不充分となるおそれがある(図10(b)参照)。
【0115】
<表面残留応力とマンガンボロン鋼鋼材の炭素量及び径>
次に、表面残留応力とマンガンボロン鋼鋼材の炭素量及び径との相関の解析を行った。
【0116】
マンガンボロン鋼鋼材の表面残留応力は、炭素量が互いに異なる供試材1、2、6、7、8を材料としてそれぞれ使用し、成形工程S30と、水焼入れを施す焼入れ工程S40とを経て、焼戻しを施すこと無く製造した車両用スタビライザ半製品について計測した。なお、各半製品の径は、21mm〜25mmの範囲に揃えた。また、表面残留応力と径との相関は、各径(直径)において発生し得る表面残留応力を、水焼入れを施して製造した場合(水冷)と、油焼入れを施して製造した場合(油冷)とについてシミュレーションによって推定した。
【0117】
図11は、実施例に係る車両用スタビライザにおける表面残留応力を解析した結果を示す図である。(a)は、表面残留応力と鋼材の炭素量との関係を示す図であり、(b)は、表面残留応力と鋼材の径との関係を示す図である。
【0118】
図11(a)に示すように、水焼入れを施すことによって表面に付与される圧縮残留応力は、炭素量が低いほど大きく、炭素量が高いほど低下することが分かる。よって、炭素量が低いマンガンボロン鋼鋼材を使用して車両用スタビライザを製造する場合には、ショットピーニングの実施を省略しても、高い疲労強度や耐食性を有する車両用スタビライザを製造し得るといえる。また、図11(b)に示すように、油焼入れでは引張残留応力が生成されるのに対して、水焼入れでは圧縮残留応力が生成されており、その応力値は、径20mm〜30mmの範囲においては、十分な大きさ(300MPa程度以上)に達することが確認できる。
【0119】
<車両用スタビライザ1の耐食性>
次に、低炭素量のマンガンボロン鋼鋼材を材料とし、水焼入れを施して製造される車両用スタビライザの耐食性を評価した。
【0120】
耐食性試験の試料としては、供試材1を材料として使用し、成形工程S30と、水焼入れを施す焼入れ工程S40とを経て、焼戻しを施すこと無く製造した車両用スタビライザ半製品(試料1−1)を供した。また、対照として、従来のばね鋼鋼材である供試材9を材料とし、油焼入れを施した後、焼戻しを施した車両用スタビライザ半製品(試料1−2)を供した。なお、径は、いずれも14mmとした。
【0121】
耐食性試験は、サイクル試験(CCTI)とし、直径10mm×長さ50mmの範囲を被腐食面として残してマスキングした各試料を使用して、35℃で4時間の塩水噴霧(NaCl濃度5%)、60℃で2時間の乾燥処理、50℃且つ95%RHで2時間の湿潤処理からなるサイクルを繰り返して腐食減量の測定を行った。なお、腐食減量は、試験前重量と試験後重量との差分を被腐食面の面積で除算して求めた。
【0122】
図12は、耐食性試験の結果を示す図である。
【0123】
図12に示すように、低炭素量のマンガンボロン鋼鋼材を材料とし、水焼入れを施した試料1−2では、従来のばね鋼鋼材を材料とし、油焼入れを施した後、焼戻しを施した試料1−2と比較して、耐食性が向上していることが分かる。試料1−2では、焼戻しにより、トルースタイトないしソルバイトが生成しているために、低炭素量のマルテンサイト組織を有する試料1−1と比較して、腐食速度が増大しているものと認められる。
【0124】
<車両用スタビライザ1の疲労き裂>
次に、低炭素量のマンガンボロン鋼鋼材を材料とし、水焼入れを施して製造される車両用スタビライザの疲労き裂の進展性を評価した。
【0125】
破壊靭性試験の試料としては、従来のばね鋼鋼材である供試材9を材料とし、油焼入れを施した後、焼戻しを施した車両用スタビライザの半製品(試料2−1)と、供試材1を材料として使用し、成形工程S30と、水焼入れを施す焼入れ工程S40とを経て、焼戻しを施すこと無く製造した車両用スタビライザの半製品(試料2−2)とを供した。なお、試料2−1の硬さは42.7(HRC)、試料2−2の硬さは45.8(HRC)とした。
【0126】
図13は、疲労き裂の進展性を解析した結果を示す図である。
【0127】
図13において、縦軸は、疲労き裂伝播速度da/dN(mm/cycle)、横軸は、応力拡大係数範囲ΔK(kgf/mm3/2)を示す。×のプロットは試料2−1、▲のプロットは試料2−2、◆のプロットは参考例1(SUP7(HRC46.5)の既報値)、■のプロットは参考例2(SUP7(HRC61.0)の既報値)である。
【0128】
図13に示すように、試料2−2の疲労き裂伝播速度は、試料2−1の1/10〜1/100程度であり、従来のばね鋼鋼材である参考例1や参考例2等と比較しても、靭性が良好であることが分かる。また、破壊靭性値(Kc)を求めたところ、試料2−2のKcは、試料2−1の約1.6倍に達しており、疲労耐久性も良好であることが認められた。
【0129】
<<その他の実施形態>>
1.前記実施形態では、水と同等以上又は水に近い熱伝達率を有する水性の冷却剤を用いる場合を例示して説明したが、焼き入れ対象を急冷でき、説明した機械的強度、強靭性等の所定の性能が車両用スタビライザ1に得られれば、媒体の種類は特に制限されない。例えば、氷、有機溶剤、熱伝達率が大きい液体や固体などを含む水や油であってよい。なお、媒体とは液体、固体を含む液体などその相は特に限定されない。
【0130】
2.前記実施形態では、車両用スタビライザ1の原材として、質量%で、C:0.15%以上0.39%以下、Si:0.05%以上0.40%以下、Mn:0.50%以上1.70%以下、B:0.0005%以上0.003%以下を必須元素として含有し、P:0.040%以下、S:0.040%以下であり、任意添加元素として、Ni、Cr、Cu、Mo、V、Ti、Nb、Al、N、Ca及びPbからなる群より選択される少なくとも一種以上の元素をそれぞれ1.20%以下の範囲で含有し得ると共に、残部が、Feと不可避的不純物である棒鋼材を用いる場合を例示して説明したが、車両用スタビライザ1に説明した機械的強度、強靭性等の所定の性能が得られれば、車両用スタビライザ1の原材として、C:0.15質量%以上0.39質量%以下、Mn、B、およびFeを少なくとも含む棒鋼材でもよい。または、質量%で、C:0.15%以上0.39%以下、Mn:0.50%以上1.70%以下、B:0.0005%以上0.003%以下、およびFeを少なくとも含む棒鋼材を用いてもよい。
【0131】
3.前記実施形態で説明した曲げ加工が施された前記棒鋼材をオーステナイト化後、下部臨界冷却速度以上で焼入れを施す焼入れは、例えば冷たい空気等の気体を、曲げ加工が施された棒鋼材に噴きつけることにより冷却して行ってもよい。
【0132】
4.前記実施形態では、中実の車両用スタビライザ1を用いる場合を例示して説明したが、パイプ状の中空のスタビライザを製作する場合に本発明を適用してもよい。
【0133】
5.前記実施形態では、様々な構成を説明したが、各構成を選択したり、各構成を適宜選択して組み合わせて構成してもよい。
【0134】
6.前記実施形態は、本発明の一例を説明したものであり、本発明は、特許請求の範囲内または実施形態で説明した範囲において、様々な具体的な変形形態が可能である。
【符号の説明】
【0135】
1 スタビライザ(車両用スタビライザ)
1a トーション部
cp クロッシングポイント
S30 成形工程
S40 焼入れ工程
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13