【実施例1】
【0018】
図2は、実施例1にかかる照明部の基本構成を示す図である。照明部1は、光源11、反射ミラー12、出射レンズ13を備えている。光源11の発光素子にはLEDを用いているが、その他に白熱電球、ハロゲンランプ、蛍光ランプ、放電管なども適用可能である。反射ミラー12は光源11を囲むように配置し、光源から出射された光を照射方向に反射する。反射面は、銀、アルミなどの金属表面、金属薄膜や誘電体薄膜を形成した反射面、ダイクロイックミラーなど特定の波長のみ反射する反射面などを用いる。出射レンズ13は、入射光を収束して出射するよう所定の凸面形状に加工され、ガラス、プラスチックなどの透明材料を用いる。出射レンズ13は反射ミラー12の開口部に配置し、その径はほぼ開口部の大きさに等しくしている。
【0019】
光源11からは様々な方向に光が出射されるが、反射ミラー12で反射する光線21(破線で示す、反射光)と、反射ミラー12で反射せず直接出射レンズ13に向かう光線20(実線で示す、直射光)のいずれかに分類される。そして、反射光21は反射ミラー12で反射した後、出射レンズ13を通過する。つまり、反射ミラー12で反射せず、且つ出射レンズ13を通過しない光線は存在しない。
【0020】
本実施例の特徴は、反射ミラー12の反射面を双曲面形状(又はその近似曲面形状)とし、その焦点位置Fに光源11を配置したことである。双曲面ミラー12では、一方の焦点位置Fから出射した光が反射することで他方の焦点位置F’に虚像を形成し、あたかもその位置F’に光源11’が存在するような鏡像を形成する性質がある。従って、双曲面ミラー12を用いて光学系を構成すると、実際の光源11と虚像光源11’の2つの光源が存在するのと等価になる。以下、実際の光源11を実光源とも呼ぶことにする。なお、反射ミラー12の形状が双曲面以外の形状、例えば放物面形状や楕円面形状の場合には、虚像光源11’が所望位置に形成されないので、本実施例の動作を実現できない。
【0021】
さらに出射レンズ13では、この2つの光源11,11’からの出射光20,21が通過するが、いずれも同一出射角度内に収束させるようにレンズ形状を設定した。後述するように、出射レンズ13の焦点距離fは、レンズ13から実光源11までの距離s2よりも大きく、且つレンズ13から虚像光源11’までの距離s1よりも小さく設定する。これにより、実光源11からの直射光20を光軸方向に近付け、また虚像光源11’からの反射光21を光軸中心方向に進行させることができる。
【0022】
このように、虚像光源11’の得られる双曲面形状の反射ミラー12と所定の収束機能を持つ出射レンズ13を組み合わせることで、直射光20、反射光21ともに所望の出射角度(ビーム角度)で出射する照明装置を実現できる。
【0023】
図3は、
図2の光学系の解析を説明する図である。反射ミラー12の双曲面の方程式は、図面横軸をx、縦軸をyとすると、
(x/a)
2−(y/b)
2=1 (1)
で表わされ、a,bは双曲面形状の定数である。双曲面の焦点F,F’間の距離2cは、
2c=2(a
2+b
2)
(1/2) (2)
で与えられる。
【0024】
出射レンズ13の焦点距離をfとし、焦点位置をEで表わす。出射レンズ13から実光源11までの距離をs2、虚像光源11’までの距離をs1とする。出射レンズ13による虚像光源11’の実像位置をGとし、出射レンズ13による実光源11の虚像位置をG’とする。実像位置Gと虚像位置G’は、出射レンズ13を挟んで互いに反対側に生じる。
【0025】
反射ミラー12の開口部の高さ(すなわち出射レンズ13の半径)をhとし、出射レンズ13からの直射光20及び反射光21の出射角度(ビーム角度)を、上下方向に同一角度±θとする。よって、出射レンズ13から反射光21の実像位置Gまでの距離Lと、出射レンズ13から直射光20の虚像位置G’までの距離Lは等しく、
L=h/tanθ (3)
で表わされる。
【0026】
出射レンズ13(焦点距離f)を挟んで、距離Lの位置Gに反射光21の実像ができ、距離s1にその虚像光源11’が形成されることから、
(1/L)+(1/s1)=1/f (4)
の関係を満足する。また、出射レンズ13(焦点距離f)の入射側において、距離Lの位置G’に直射光20の虚像ができ、距離s2に実光源11が配置されることから、
−(1/L)+(1/s2)=1/f (5)
の関係を満足する。
【0027】
実光源11と虚像光源11’の位置(距離s2,s1)は、反射ミラー12の2つの焦点F,F’(焦点間距離2c)に一致させる条件より、
s1−s2=2c (6)
となるような双曲面形状2cを選べば良い。
【0028】
つまり、出射角度θと開口部半径hの条件を与えたとき、(3)式で決まるLを用いて、(4),(5),(6)式を満足するように寸法パラメータs1,s2,c,fを決定することで、所望の配光特性(ビーム角度)を有する照明装置を実現することができる。
【0029】
ここで、上記解析に基づく具体的な数値例を示す。スポットライト装置の条件として、ビーム角度(全角)2θ=20deg、レンズ通過高さh=6mmと与える。出射レンズ12の焦点距離f=10mmとしたときの各パラメータは、
L=34.03mm、
s1=14.16mm、
s2=7.73mm、
c=3.22mm、
a=2.80mm、
b=1.59mm、
とすることで、所望の特性が得られる。以下、本実施例の効果を具体例で示す。
【0030】
図6は、本実施例における光線図を示す。直射光20は光源11から反射ミラー12に当たらずに出射レンズ13から出射するもの、反射光21は反射ミラー12で反射した後出射レンズ13から出射するものである。出射光のうち、出射レンズ13の外周部を通過する光線(マージナル光線)は、直射光20と反射光21が光軸方向に対し上下方向に同じ角度±θで出射していることが分かる。なお、反射光21は、この後
図3の実像位置Gで交差した後、角度±θで拡散し直射光20と同一の方向に進む。
【0031】
図7は、本実施例における配光分布を示す図である。出射角に対する出射光強度の分布を計算で求めたものである。光学系のパラメータは、反射ミラー12の定数a=2.8、b=1.59、出射レンズ13の焦点距離f=10とした。光源11のサイズは1.8φの円形で、光源11から出射する全光束を400ルーメン(lm)として計算した。その結果、出射光の最大強度は2404カンデラ(cd)、出射強度が半減する半値ビーム角度2θ(全角)は25.7degとなった。また、ビーム角度内の光束は313ルーメンで、全光束に対する割合(ビーム効率)は78%と非常に高い値が得られた。
【0032】
図8は、実施例1の変形例における配光分布を示す図である。光学系のパラメータのうち、反射ミラー12の双曲線定数bを1.59から1.5に変えた場合の配光分布である。虚像光源11’の位置を焦点位置F’からずらすことにより、直射光20と反射光21の分布が変わり、合成後の配光分布はビーム角度内でほぼフラットになっている。この場合の最大強度は2213カンデラ、半値ビーム角度は26.4degで、ビーム効率は83%まで向上した。このように、光学系のパラメータ設定にはマージンがあり、実光源と虚像光源の関係が概略満たされていれば、光源を厳密に焦点位置に配置しなくても、所望の配光分布を得ることができる。
【0033】
図10は、比較のために従来の光学系による配光分布を示す図である。光学系は、
図9に示すような放物面ミラー19のみとし、光源11は
図7、
図8と同じ条件で計算した。その結果、最大強度は1732カンデラ、半値ビーム角度22.7degで、ビーム角度が狭いにも関わらず、最大強度が低下している。これはビーム角度の外側の範囲への直射光の漏れが多く、配光分布を悪化させているからである。その結果、ビーム角度内の光束は154ルーメン、ビーム効率は38%で、実施例(
図7、
図8)の場合と比較して効率が半分程度に低下している。
【0034】
これに対し
図7、
図8の本実施例によれば、従来構造ではビーム角度の外側に漏れていた直射光20についてもビーム角度内側に出射させることができ、スポット照明時の光の利用効率が向上する。その結果、照明装置の省エネルギー化に寄与するものとなる。
【0035】
なお、上記説明では、解析式を用いて光学系の理想的な形状寸法を求めた。本実施例の光学系は寸法や形状のマージンが広く、理想値からのずれ量が約20%以内であれば、ほぼ同等の特性を有している。例えば、反射ミラーの形状は厳密な双曲面形状でなく、その近似曲面形状でも良い。また、実像位置Gと虚像位置G’は出射レンズ13に対して等距離Lの位置から上記許容値だけずれていても、スポットライトとして所望の配光特性を得ることができる。
【実施例2】
【0036】
前記実施例1では、反射ミラー12と出射レンズ13を独立した構成とした。この場合には、ハロゲンランプや放電管のように大型の光源を用いることができる。これに対し実施例2では、反射ミラー12と出射レンズ13を一体化して構成している。この構成は、特にLEDのような小型の光源を用いる場合に適している。
【0037】
図4は、実施例2にかかる照明部の基本構成を示す図である。一体化レンズ14は、前記
図3における反射ミラー12と出射レンズ13をプラスチックやガラスなどの透明誘電体材料で一体化して構成したものである。一体化レンズ14のレンズ背面14aは
図3の反射ミラー12に、レンズ前面14bは
図3の出射レンズ13に対応している。そして、レンズ背面14aの中心部には凹部を形成して、光源11を挿入している。
【0038】
レンズ背面14aでは、透明誘電体材料の屈折率と空気の屈折率の差によって生じる全反射を利用することで、金属などの反射膜を設けることなく反射ミラー12として機能する。また、レンズ前面14bを所定の曲面形状にすることで、出射レンズ13として機能する。
【0039】
この場合の光学系の解析式も、基本的には実施例1の(1)〜(5)式と同様である。ただし、一体化レンズ14を構成する誘電体の屈折率nを導入し、光源11,11’の距離s1,s2に関する(4),(5)式は、
(1/L)+(n/s1)=n/f’ (4’)
−(1/L)+(n/s2)=n/f’ (5’)
と修正して用いる。ここでf’は、レンズ前面14bの誘電体中での焦点距離である。なお、パラメータhは一体化レンズ14の外周部の高さとする。
【0040】
実施例2においても、一体化レンズ14の外周部を通過する直射光20と反射光21は、上下方向に同一角度±θで出射する。すなわち、光源11から発した光はいずれも所望のビーム角度内で出射されるので、スポット照明時の光の利用効率が向上する。さらに実施例2では、反射ミラーと出射レンズを一体化して構成したので、光学部品数が減少し組み立て作業が容易になる効果がある。