特許第6054384号(P6054384)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パナソニックIPマネジメント株式会社の特許一覧
<>
  • 特許6054384-接合補助剤およびその製造方法 図000002
  • 特許6054384-接合補助剤およびその製造方法 図000003
  • 特許6054384-接合補助剤およびその製造方法 図000004
  • 特許6054384-接合補助剤およびその製造方法 図000005
  • 特許6054384-接合補助剤およびその製造方法 図000006
  • 特許6054384-接合補助剤およびその製造方法 図000007
  • 特許6054384-接合補助剤およびその製造方法 図000008
  • 特許6054384-接合補助剤およびその製造方法 図000009
  • 特許6054384-接合補助剤およびその製造方法 図000010
  • 特許6054384-接合補助剤およびその製造方法 図000011
  • 特許6054384-接合補助剤およびその製造方法 図000012
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6054384
(24)【登録日】2016年12月9日
(45)【発行日】2016年12月27日
(54)【発明の名称】接合補助剤およびその製造方法
(51)【国際特許分類】
   H01L 21/60 20060101AFI20161219BHJP
【FI】
   H01L21/60 311S
【請求項の数】11
【全頁数】22
(21)【出願番号】特願2014-516639(P2014-516639)
(86)(22)【出願日】2013年3月15日
(86)【国際出願番号】JP2013001788
(87)【国際公開番号】WO2013175692
(87)【国際公開日】20131128
【審査請求日】2015年3月12日
(31)【優先権主張番号】特願2012-117328(P2012-117328)
(32)【優先日】2012年5月23日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】314012076
【氏名又は名称】パナソニックIPマネジメント株式会社
(74)【代理人】
【識別番号】100117972
【弁理士】
【氏名又は名称】河崎 眞一
(72)【発明者】
【氏名】小塩 哲平
(72)【発明者】
【氏名】本村 耕治
(72)【発明者】
【氏名】圓尾 弘樹
【審査官】 鈴木 和樹
(56)【参考文献】
【文献】 特表2009−514683(JP,A)
【文献】 特開2000−309739(JP,A)
【文献】 特開平06−032988(JP,A)
【文献】 特開平11−224981(JP,A)
【文献】 特開平08−293665(JP,A)
【文献】 特開昭60−149194(JP,A)
【文献】 特開2011−216475(JP,A)
【文献】 特表2010−534139(JP,A)
【文献】 特表2010−515576(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/60
B23K 20/10
B23K 35/363
(57)【特許請求の範囲】
【請求項1】
金属同士の接合を補助する接合補助剤であって、
金属の表面酸化膜を除去する作用を有する還元性の溶媒と、前記溶媒に溶解する着色剤と、を含み、
前記溶媒は、分子量50〜200の多官能アルコールを含み、
前記着色剤は、前記溶媒とともに揮発する性質を有する、接合補助剤。
【請求項2】
前記溶媒の沸点Tbと、前記着色剤の融点Tmとが、Tb>Tmを満たす、請求項1記載の接合補助剤。
【請求項3】
目視により認識できる色相、彩度および明度を有する、請求項1または記載の接合補助剤。
【請求項4】
25℃における粘度が0.1〜10Pa・sである、請求項1〜3のいずれか1項記載の接合補助剤。
【請求項5】
前記着色剤が、有機色素である、請求項1〜4のいずれか1項記載の接合補助剤。
【請求項6】
前記有機色素が、アゾ化合物、シアニン化合物およびスチリル化合物よりなる群から選択される少なくとも1種である、請求項記載の接合補助剤。
【請求項7】
前記着色剤の含有量が、0.01〜50質量%である、請求項1〜6のいずれか1項記載の接合補助剤。
【請求項8】
前記多官能アルコールが、グリセリン、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、カルビトールおよびセロソルブアルコールよりなる群から選択される少なくとも1種である、請求項1〜7のいずれか1項記載の接合補助剤。
【請求項9】
金属同士の接合を補助する接合補助剤の製造方法であって、
金属の表面酸化膜を除去する作用を有する還元性の溶媒と、前記溶媒に対する溶解性を有する着色剤と、を混合する工程、を有し、
前記溶媒は、分子量50〜200の多官能アルコールを含み、
前記着色剤は、前記溶媒とともに揮発する性質を有する、接合補助剤の製造方法。
【請求項10】
前記溶媒の沸点Tbと前記着色剤の融点Tmとが、Tb>Tmの関係を有し、
前記溶媒の沸点Tbより低く、かつ前記着色剤の融点Tmより高い温度で、前記混合された溶媒と着色剤とを同時に加熱する工程、を有する、請求項記載の接合補助剤の製造方法。
【請求項11】
前記溶媒と着色剤との混合物に、前記溶媒と前記着色剤に対する両親媒性物質を含ませる、請求項または10記載の接合補助剤の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、金属同士の接合を補助する還元性を有する接合補助剤およびその製造方法に関する。
【背景技術】
【0002】
半導体素子の電極を基板の電極に接合する実装方法として、半導体素子に形成されたAuバンプを、基板の配線に形成されたAu電極に押し付けた状態で、接触界面に対して超音波振動を付与し、AuバンプとAu電極とを金属接合する方法が知られている(特許文献1、2参照)。
【0003】
また、半導体素子が実装された基板に対するコスト削減の要求から、高価なAu電極を安価なCu電極に置き換えることも提案されている。このとき、Au−Cu間およびCu−Cu間の金属接合に対して、Au−Au間の金属接合と同等の接合信頼性を確保することができれば、電極間の接合の品質を維持したままで、大幅なコスト削減が可能となる。
【0004】
ところが、Cuは酸化しやすく、その表面は、通常の状態では酸化膜により覆われている。Au−Cu間およびCu−Cu間の金属接合の接合信頼性を向上させるためには、接合の際にCu電極表面の酸化膜を予め除去するとともに、接合界面への金属酸化物の混入を排除することが望ましい。Cu電極表面の酸化膜は、事前のプラズマ処理等で、予め除去することが可能である。ただ、事前に除去しておいても、接合時に熱が加わることにより接合部の電極表面は酸化してしまう。それを防止するには、例えば、基板の第1電極が覆われるように接合補助剤を供給し、半導体素子の第2電極を、接合補助剤を介して第1電極に押し付けて、第1電極と第2電極とを接合することが有効である。ここで、第1電極と第2電極との接合信頼性を安定させるためには、接合補助剤の基板への供給量のばらつきを防止し、供給量を安定させる必要がある。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2000−68327号公報
【特許文献2】特開2001−237270号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、接合補助剤として利用可能な材料は、無色透明であることから、基板に供給された接合補助剤の状態を確認することができず、接合補助剤の供給量を把握することは困難である。
【0007】
また、実装装置は、常に正常に作動するわけではなく、半導体素子や基板の認識エラー、半導体素子や基板の供給エラーなどにより、停止と起動とが繰り返されるのが一般的である。基板に接合補助剤が供給された状態で実装装置が停止し、復旧するまでに長時間が経過した場合、基板に接合補助剤が供給されてから半導体素子が実装されるまでの時間は通常よりも長くなる。そのような場合、接合補助剤が基板上から徐々に揮散し、半導体素子を実装する際には接合補助剤が必要量未満となってしまう場合がある。しかし、接合補助剤が無色透明であることから、接合補助剤の残存量を正確に把握することができず、接合補助剤の再供給が必要かどうかを判断することが困難である。
【0008】
さらに、電極間の接合処理以外の段階で予期せず揮散した接合補助剤は、実装装置内の金属部品の腐食を促進したり、稼動部に塗布されている潤滑油やグリースを劣化させたりするため、実装装置が不具合を起こす原因ともなる。従って、実装装置内の設備を定期的に掃除するメンテナンスが必要となる。しかし、接合補助剤が無色透明であることから、汚染の程度を把握することができず、清掃を行うタイミングを決定することが困難である。また、接合補助剤で汚染された箇所を目視で確認することが困難であり、拭き残された接合補助剤が残存し易く、残存した接合補助剤は実装装置の不具合を発生させる可能性がある。
【0009】
上記のような接合補助剤の揮散は、実装装置内に存在する様々な熱源によって促進される。例えば、実装ユニットが半導体素子を加熱する加熱ヘッドを具備する場合、ヘッドが基板に近接する際に、接合補助剤の揮散が促進される。また、半導体素子を実装する際に基板を保持する基板ステージが加熱される場合にも、接合補助剤の揮散が促進される。特に、基板ステージに載置された基板に既に接合補助剤が塗布されている状態で、エラーにより実装装置が停止した場合、復旧されるまでの期間、基板が加熱され続けるため、揮散する接合補助剤の量は非常に多くなる。
【0010】
本発明は、上記に鑑み、基板上における接合補助剤の残存量を容易に把握できるようにして、接合補助剤の供給量を安定させるとともに、接合補助剤が不足している状態で半導体素子の実装が行われるのを防止することを目的の一つとする。また、本発明は、実装装置内の接合補助剤が付着した箇所を容易に認識できるようにして、実装装置のメンテナンスを効率よく行えるようにすることを目的の一つとする。
【課題を解決するための手段】
【0011】
本発明は、第1電極を有する基板を、前記第1電極を上方に向けて保持する基板ステージと、前記基板ステージに保持された前記基板に、前記第1電極が覆われるように、金属の表面酸化膜を除去する作用を有する還元性かつ有色の接合補助剤を供給するディスペンサユニットと、第2電極を有する半導体素子を供給する半導体素子供給ユニットと、前記半導体素子供給ユニットより供給された前記半導体素子の前記第2電極を、前記基板ステージに保持され、前記接合補助剤が供給された前記基板の前記第1電極に押し付けて、前記第1電極と前記第2電極とを接合させることにより、前記基板に前記半導体素子を実装する実装ユニットと、を備える実装装置に適用可能である。
【0012】
本発明は、(i)第1電極を有する基板を、前記第1電極を上方に向けて基板ステージに保持する工程と、(ii)前記基板ステージに保持された前記基板に、前記第1電極が覆われるように、金属の表面酸化膜を除去する作用を有する還元性かつ有色の接合補助剤を供給する工程と、(iii)第2電極を有する半導体素子を供給する工程と、(iv)前記供給された半導体素子の前記第2電極を、前記基板ステージに保持され、前記接合補助剤が供給された前記基板の前記第1電極に押し付けて、前記第1電極と前記第2電極とを接合させることにより、前記基板に前記半導体素子を実装する工程と、を備える実装方法に適用可能である。
【0013】
上記実装方法の一態様では、前記工程(iv)が、前記基板に前記半導体素子を実装する前に、前記基板と前記半導体素子との位置合わせを行う基板認識の工程と、前記基板認識のタイミングで前記基板に供給された前記接合補助剤の残存量を検出する工程と、を含む。そして、接合補助剤の残存量が不足すると判断される場合には、接合補助剤の基板への再供給が行われる。
【0014】
上記実装方法の別の一態様では、前記工程(ii)が、少なくとも1つの前記基板に、複数の前記半導体素子に対応する複数の前記第1電極が覆われるように、前記接合補助剤を供給する工程を含み、前記工程(iv)が、前記少なくとも1つの基板に、複数の前記半導体素子を、それぞれ対応する前記第1電極が前記接合補助剤で覆われている間に実装する工程を含む。ただし、前記工程(iv)は、前記複数の半導体素子から選ばれる2つ以上の実装を完了する毎に、前記基板に供給された前記接合補助剤の残存量を検出する工程を含むことが好ましい。
【0015】
本発明の一局面は、金属同士の接合を補助する接合補助剤に関し、より詳しくは、金属の表面酸化膜を除去する作用を有する還元性かつ有色の接合補助剤であって、金属の表面酸化膜を除去する作用を有する還元性の溶媒と、前記溶媒に溶解する着色剤と、を含む接合補助剤に関する。
【0016】
本発明の他の一局面は、金属同士の接合を補助する接合補助剤の製造方法に関し、より詳しくは、金属の表面酸化膜を除去する作用を有する還元性かつ有色の接合補助剤の製造方法であって、金属の表面酸化膜を除去する作用を有する還元性の溶媒と、前記溶媒に対する溶解性を有する着色剤と、を混合する工程、を有する接合補助剤の製造方法に関する。
【発明の効果】
【0017】
本発明によれば、接合補助剤が有色であるため、目視により、または実装装置が具備する認識装置(検査ユニット)により、基板上における接合補助剤の存在量を容易に把握できる。よって、基板への接合補助剤の供給量を安定化させることが容易となり、さらに、接合補助剤が不足している状態で半導体素子の実装が行われるのを防止することができる。また、予期せず揮散した接合補助剤が実装装置内のどこに付着しているかを容易に把握できるため、実装装置のメンテナンスが容易となる。
【0018】
本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
【図面の簡単な説明】
【0019】
図1】半導体素子を基板に実装する実装装置の概略構成を示す斜視図である。
図2図1のL1−L2線による、実装装置の矢視側面図である。
図3】実装装置の制御系統を示すブロック図である。
図4】基板の移送機構の詳細を示す、実装装置の一部正面図である。
図5】実装装置による半導体素子の実装手順を示すフローチャートである。
図6A図5のフローチャートの各工程の説明図であって、酸化膜除去処理の前の状態の基板の断面図である。
図6B図5のフローチャートの各工程の説明図であって、酸化膜除去処理および接合補助剤供給処理が終了した後の状態の基板の断面図である。
図6C図5のフローチャートの各工程の説明図であって、接合補助剤供給処理後に半導体素子の電極を基板電極に接触させた状態の基板および半導体素子の断面図である。
図6D図5のフローチャートの各工程の説明図であって、半導体素子の電極を基板の電極に接合した後、接合補助剤を除去した状態の基板および半導体素子の断面図である。
図6E図5のフローチャートの各工程の説明図であって、接合補助剤を除去した後、半導体素子を樹脂で封止した状態の実装基板の断面図である。
図7】実装装置による半導体素子の別の実装手順を示すフローチャートである。
【発明を実施するための形態】
【0020】
本発明が適用される実装装置は、第1電極を有する基板に、第2電極を有する半導体素子を実装する実装装置である。実装装置は、第1電極を有する基板を、第1電極を上方に向けて保持する基板ステージ(第1基板ステージ)と、基板ステージに保持された基板に、第1電極が覆われるように、金属の表面酸化膜を除去する作用を有する還元性かつ有色の接合補助剤を供給するディスペンサユニットとを備える。
【0021】
接合補助剤が有色であることから、目視により、または実装装置が具備する認識装置(検査ユニット)により、基板上における接合補助剤の存在量を容易に把握できる。従って、随時、接合補助剤の基板上における残存量を容易に把握することが可能であり、接合補助剤の供給量を安定化させることができる。例えば、基板に供給された接合補助剤の残存量を検出する検査ユニットを具備する実装装置においては、基板上の実装位置に接合補助剤を供給した後、半導体素子を実装する前に、接合補助剤の供給量を確認することができる。そして、ディスペンサユニットによる接合補助剤の供給を制御する制御装置を具備する実装装置においては、接合補助剤が不足する場合には、不足分の接合補助剤を供給するようにディスペンサユニットを制御する。これにより、接合補助剤の供給量が安定化する。
【0022】
また、実装装置が正常に作動せず、各種認識カメラによる半導体素子や基板の認識エラー、半導体素子や基板の供給エラーなどにより停止し、基板に接合補助剤を供給してから長時間が経過した場合でも、基板に残存する接合補助剤の量を容易に把握できる。そして、接合補助剤が不足していると判断した場合には、接合補助剤を再供給することができる。従って、接合補助剤が不足している状態で半導体素子の実装が行われるのを防止することができる。
【0023】
さらに、予期せぬ段階で接合補助剤が揮散して実装装置内に付着した場合には、接合補助剤の付着箇所が変色することから、清掃などの実装装置のメンテナンスが容易となる。例えば、一日分の作業が終了した時点で、実装装置の着色された箇所を清掃することにより、接合補助剤が徐々に堆積することによる実装装置の不具合を防止することができる。また、着色の程度に応じて清掃を行うタイミングを決定することも容易となる。
【0024】
本発明が適用される実装装置は、第2電極を有する半導体素子を供給する半導体素子供給ユニットと、半導体素子供給ユニットより供給された半導体素子の第2電極を、基板ステージに保持され、接合補助剤が供給された基板の第1電極に押し付けて、第1電極と第2電極とを接合させることにより、基板に半導体素子を実装する実装ユニットとを備える。
【0025】
半導体素子供給ユニットにより供給された半導体素子は、例えば、実装ユニットが備える実装ツールにより保持され、その状態で、第2電極が第1電極に対して所定圧力で押し付けられる。そして、その状態で、実装ユニットが備える実装ヘッドから実装ツールを介して半導体素子に超音波振動や熱が加えられ、これにより、半導体素子の第2電極が、基板の第1電極に金属接合される。基板は、第1電極に第2電極を接合する間、第1基板ステージにより保持される。
【0026】
第1基板ステージは、基板を加熱する加熱手段(第1加熱手段)を具備してもよい。これにより、接合補助剤の還元作用が促進されるとともに、金属接合が促進されるため、実装に要する時間を短縮することができる。よって、実装基板の生産効率を向上させることができる。また、処理時間の短縮により、接合部における金属酸化物の生成を抑えて、接合信頼性を向上させることができる。さらに、第1基板ステージが第1加熱手段を具備する場合、接合処理の終了後に基板を加熱することが可能であり、接合処理の終了後に残存する余分な接合補助剤を速やかに除去することができる。
【0027】
本発明が適用される実装装置は、上記のように、基板に供給された接合補助剤の残存量を検出する検査ユニットを具備することができる。接合補助剤が有色であるため、接合補助剤の残存量の検出は目視でも可能であるが、実装プロセスの効率を向上させる観点からは、検査ユニットにより自動的に接合補助剤の残存量を検出することが望ましい。
【0028】
検査ユニットとしては、基板に供給された接合補助剤の残存量を、基板に残存する接合補助剤の分布状態により検出できるものが好ましい。検査ユニットは、例えば、基板に残存する有色の接合補助剤の分布状態を撮像する画像認識カメラを具備する。画像認識カメラにより得られる接合補助剤の分布面積の大きさは、接合補助剤の残存量にほぼ比例するため、接合補助剤の分布状態から残存量を検出することができる。残存量の検出に必要な演算は、画像認識カメラを制御する制御装置により行えばよい。このような制御装置は、CPU、MPUなどの中央演算装置、揮発性または不揮発性メモリ、各種インターフェースなどにより構成すればよい。
【0029】
なお、実装装置には、一般に、基板に半導体素子を実装する際の基板と半導体素子との位置合わせを行うための半導体素子認識カメラと基板認識カメラとが設けられている。検査ユニットを構成する画像認識カメラは、このような半導体素子または基板認識カメラと共通であってもよい。
【0030】
接合補助剤が、赤外線および紫外線の少なくとも一方を発光または吸収可能である場合、検査ユニットは、基板に供給された接合補助剤の残存量を、接合補助剤が発光または吸収する赤外線または紫外線を利用して検出するものでもよい。このような検査ユニットは、例えば、赤外線センサ、紫外線センサなどを具備している。
【0031】
検査ユニットによる、基板に供給された接合補助剤の残存量の検出は、基板に半導体素子を実装する前および基板に半導体素子を実装した後の少なくとも一方のタイミングで行えばよい。接合補助剤の残存量の検出を、基板に半導体素子を実装する前に行う場合には、接合補助剤が不足している状態での接合処理を避けることができる。
【0032】
また、予め基板の複数の実装位置に接合補助剤を塗布し、その後、複数の実装位置に順次、半導体素子を実装する場合には、2つ以上(例えば100個程度)の半導体素子の実装を終了した時点で接合補助剤の残存量を検出してもよい。例えば、複数の半導体素子を幾つかのグループに区分し、グループ毎に、半導体素子の供給、基板認識および半導体素子の実装を繰り返し、1つのグループ内の半導体素子の実装が完了する毎に、接合補助剤の残存量を検出する。このような方法によれば、接合補助剤の残存量の検出に多くの時間をかけずに、複数の半導体素子を基板に実装できるため、実装プロセスの効率を向上させることができる。1つのグループの半導体素子の実装を完了した時点で、残りの第1電極を覆う接合補助剤の残存量が不足すると考えられる場合には、残りの第1電極を覆うように接合補助剤が再供給される。なお、接合補助剤の残存量の検出のタイミングは上記に限られない。
【0033】
接合補助剤は、目視により認識できる色相、彩度および明度を有することが望ましい。このような接合補助剤を用いることで、接合補助剤が揮散して実装装置内を汚染した場合でも、汚染箇所を容易に目視で把握することができる。よって、実装装置のメンテナンスを容易に効率良く行うことができる。その結果、実装装置に不具合が発生する確率を小さくすることができる。
【0034】
本発明が適用される実装装置は、さらに、基板に接合補助剤を供給する前に、基板の第1電極をプラズマ処理するプラズマ処理ユニットを具備することができる。実装装置が、プラズマ処理ユニットを備えることにより、基板の第1電極から酸化膜の少なくとも一部を除去した後、直ちに、第1電極に半導体素子の第2電極を接合することができる。これにより、第1電極が酸化しやすいCuを含むような場合にも、酸素を含む通常雰囲気中(例えば大気中)で半導体素子の実装を行っても、第1電極に酸化膜が再生されるのを防止することができる。よって、第1電極に酸化膜が極力存在しない状態で接合処理を実行することができ、接合信頼性を向上させることが容易となる。
【0035】
また、基板の第1電極をプラズマ処理する場合、酸化膜がほとんど存在しない状態で金属接合のプロセスが進行することから、超音波の付与や加熱の時間が短縮される。これにより、接合処理中における金属酸化物の新たな生成がさらに抑制される。
【0036】
さらに、プラズマ処理により第1電極の酸化膜を除去することで、第1電極の表面に微細な凹凸が形成される。これにより、第1電極の濡れ性も良好になるために、接合補助剤により第1電極の表面を効果的に覆うことができる。その結果、第1電極と雰囲気中の酸素との接触が抑えられ、接合処理中の金属酸化物の生成を抑える効果が高められる。
【0037】
ここで、プラズマ処理ユニットには、第1電極をプラズマ処理するときに基板を保持する第2基板ステージを含ませることができる。これにより、例えば、第2基板ステージでプラズマ処理により1つの基板の酸化膜を除去する処理を実行している間に、同時に、第1基板ステージでは、プラズマ処理後の別の基板に半導体素子を実装することができる。したがって、実装基板の生産効率を向上させることができる。
【0038】
さらに、実装装置は、基板を第2基板ステージから第1基板ステージに移送する移送機構を備えるのが好ましい。これにより、プラズマ処理と、半導体素子の実装処理とを連続的に実行することが容易となる。あるいは、プラズマ処理の終了後に、基板を保持した状態の第2基板ステージをそのまま第1基板ステージの位置に移動させて、実装処理を行うこともできる。
【0039】
同様に、実装装置は、第2基板ステージを加熱する第2加熱手段を備えてもよい。これにより、第1電極のプラズマ処理を実行している間に、第1電極の温度を望ましい温度まで上昇させることができる。これにより、半導体素子の実装処理に要する時間が短縮され、実装基板の生産効率を向上させることができる。あるいは、第2加熱手段により基板を予め加熱することで、第1加熱手段による加熱時間を短縮することができる。
【0040】
実装装置が具備する実装ユニットの一態様は、第1電極と第2電極とを接合させるときに、半導体素子を基板に対して押し付けるとともに、半導体素子に超音波を付与する超音波印加手段もしくは超音波ヘッド(実装ヘッド)を具備する。超音波ヘッドを用いる場合、電極間の摩擦により、接合部の温度が局所的に上昇し、金属接合が促進される。また、摩擦による温度上昇により、接合補助剤による還元作用が活性化されるため、接合部で金属酸化物が生成されるのを防止することができる。なお、超音波ヘッドは、摩擦熱以外の方法で半導体素子を加熱する機能を更に備えてもよい。
【0041】
実装装置が具備する実装ユニットの一態様は、第1電極と第2電極とを接合させるときに、半導体素子を基板に対して押し付けるとともに、半導体素子を加熱する加熱手段もしくは加熱ヘッド(実装ヘッド)を具備する。加熱ヘッドを具備する実装ユニットは、第1電極および第2電極の少なくとも一方が、はんだ(低融点金属)を有する場合に適している。例えば、基板の第1電極が、プリコートはんだを具備する電極である場合や、半導体素子の第2電極が、はんだバンプを具備する電極である場合には、加熱ヘッドを用いることが望ましい。この場合、加熱ヘッドによる加熱により、接合補助剤による還元作用が活性化されるため、はんだ表面の酸化膜が除去されるとともに、接合部で金属酸化物が生成されるのを防止することができる。
【0042】
一方、本発明が適用される実装方法は、(i)第1電極を有する基板を、第1電極を上方に向けて基板ステージに保持する工程と、(ii)基板ステージに保持された基板に、第1電極が覆われるように、金属の表面酸化膜を除去する作用を有する還元性かつ有色の接合補助剤を供給する工程と、(iii)第2電極を有する半導体素子を供給する工程と、(iv)供給された半導体素子の第2電極を、基板ステージに保持され、接合補助剤が供給された基板の第1電極に押し付けて、第1電極と第2電極とを接合させることにより、基板に半導体素子を実装する工程と、を備える。
【0043】
上記のように、第1電極と第2電極との間の接合を、少なくとも第1電極と第2電極との間の接合界面の周囲に接合補助剤が存在する状態で行うことにより、第1電極と第2電極との接合界面(接触界面)に形成されている酸化膜が還元されるとともに、新たな酸化膜の形成も抑制される。よって、Au−Cu間およびCu−Cu間の金属接合の接合信頼性を向上させることができる。従って、高価な金の代わりに銅を電極として使用することができ、半導体素子が実装された基板(実装基板)の製造コストを削減することができる。
【0044】
上述したとおり、本発明は、第1電極がCu(銅)を含み、第2電極がAu(金)を含むような場合に、電極間の接合の品質を向上させる効果をより顕著に発揮する。特に第1電極に銅を使用することで、大幅なコスト削減が可能となる。すなわち、本発明の実装装置および実装方法は、第1電極と第2電極の少なくとも一方が銅を含む電極(Cu電極またはCu合金電極)である場合に使用するのに適しており、特にフリップチップボンディングを行う実装装置や実装方法に適用するのに適している。
【0045】
上記工程(iv)では、基板に半導体素子を実装する前に、基板と半導体素子との位置合わせを行う基板認識の工程が行われるのが一般的である。このような制御は、例えば、基板認識カメラと、これを制御する制御装置により行われる。具体的には、基板認識カメラにより基板を撮像し、基板と半導体素子の相対的な位置関係が正しくない場合には、第1基板ステージを移動させる移動機構などを利用して、基板の位置合わせが行われる。
【0046】
なお、既に述べたように、基板認識カメラは、接合補助剤の残存量を検出する検査ユニットを構成する画像認識カメラと共通であってもよい。また、基板認識の制御を行う制御装置も、接合補助剤の残存量の検出に必要な演算を行う制御装置と共通であってもよい。通常は、接合補助剤の検出や基板認識に必要な制御は、実装装置を全体的に制御する制御装置により行われる。
【0047】
上記工程(ii)においても、基板に接合補助剤を供給する前に、基板と、接合補助剤を供給するディスペンサなどの供給手段との位置合わせを行う基板認識の工程を行ってもよい。ただし、そのような基板認識を行わずに、接合補助剤を基板に供給しても問題ない。接合補助剤を供給する位置が正しい位置から多少外れたとしても、接合補助剤による第1電極の濡れ性が良好であるため、接合補助剤が基板上の第1電極に濡れ広がり、位置ずれは解消される。接合補助剤を供給する前に第1電極をプラズマ処理する場合には、特に良好な接合補助剤の濡れ広がりを期待できる。
【0048】
接合補助剤が基板に供給された後、第2電極を有する半導体素子が基板上に供給され、半導体素子の実装が行われる。その際、半導体素子は、吸引ノズルを兼ねる実装ツールにより保持された状態で基板上に供給される。実装ツールにより保持される半導体素子の位置や角度についても、所定の素子認識カメラにより認識され、必要に応じて微調整が行われる。
【0049】
基板に供給された接合補助剤の残存量を検出する場合、実装プロセスの効率化の観点から、基板と半導体素子との位置合わせを行う基板認識のプロセスを利用することが望ましい。例えば、1つの基板の複数の実装位置に複数の半導体素子を、順次、実装する場合、まず、第1の接合補助剤供給位置に、基板認識を行わずに、接合補助剤が供給される。その後、第1の接合補助剤供給位置に供給された接合補助剤の残存量を検出するとともに、基板と半導体素子との位置合わせのための基板認識を行い、半導体素子を基板に実装する。引き続き、第2の接合補助剤供給位置に、基板認識を行わずに、接合補助剤が供給される。その後、第2の接合補助剤供給位置に供給された接合補助剤の残存量を検出するとともに、基板と半導体素子との位置合わせのための基板認識を行い、半導体素子を基板に実装する。以降、同様の操作が繰り返される。
【0050】
上記工程(ii)では、予め、少なくとも1つの基板に、複数の半導体素子に対応する複数の第1電極が覆われるように、接合補助剤を供給してもよい。その後、複数の半導体素子が、それぞれ対応する第1電極が接合補助剤で覆われている間に実装される。ただし、このような実装方法では、接合補助剤が供給されてから最初に実装される半導体素子と、最後に実装される半導体素子とで、対応する第1電極を覆う接合補助剤の揮散の程度が大きく異なり得る。具体的には、後に実装される半導体素子ほど、接合補助剤の残存量が不足する可能性が高くなる。このような場合には、複数の半導体素子から選ばれる2つ以上、好ましくは10個以上、更に好ましくは50個以上の実装が完了する毎に、基板に供給された接合補助剤の残存量を検出する。そして、残りの第1電極を覆う接合補助剤の残存量が不足すると考えられる場合には、接合補助剤の再供給を行うようにする。
【0051】
本発明は、第1電極および第2電極より選ばれる少なくとも一方が、Cuを含む電極である場合に特に優れた効果を発揮する。Cuは安価で低抵抗である反面、酸化されやすいため、接合補助剤に不足のない状態で接合することが望まれるからである。また、Cuは酸化されやすいため、Cuを含む電極を採用する場合には、基板に接合補助剤を供給する前にCuを含む電極をプラズマ処理することが望ましい。
【0052】
次に、本発明の接合補助剤について説明する。
本発明に係る接合補助剤は、金属の表面酸化膜を除去する作用を有する還元性かつ有色の材料であり、金属の表面酸化膜を除去する作用を有する還元性の溶媒と、溶媒に溶解する着色剤とを含んでいる。還元性の溶媒は、通常は無色透明であるが、溶媒に着色剤を溶解させることで有色の接合補助剤が得られる。
【0053】
溶媒に溶解した着色剤は、溶媒とともに揮散する。従って、実装が完了した後、基板から接合補助剤を完全に揮散させると、着色剤は基板に残存せず、意図しない色に基板が着色されることがない。また、揮散した接合補助剤が付着した実装装置内の箇所には、接合補助剤とともに着色剤が付着している。従って、着色された箇所を着色剤が除去される程度に清掃すれば、接合補助剤のほとんどが除去されることになるため、実装装置のメンテナンスが容易となる。
【0054】
接合補助剤は、目視により認識できる色相、彩度および明度を有することが望ましい。このような色であれば、分光装置を要さずに、目視で接合補助剤の存在を確認できる。よって、基板に塗布された接合補助剤の残存量の把握やメンテナンスに有利である。
【0055】
着色剤は、共沸現象により、溶媒とともに揮発する性質を有するものが好ましい。このような性質を有する着色剤は、特に基板上に残存しにくいため、基板が意図しない色に着色される可能性をより低減することができる。従って、外観のきれいな実装基板を得ることができる。なお、プリンタなどに用いられるインクの場合、溶媒だけが揮散して、着色剤がインクの塗布面に沈着することが要求される。従って、インクの着色剤は、溶媒に完全に溶解する必要もない。換言すれば、本発明の接合補助剤は、インクとは逆の特性を有する。
【0056】
溶媒の沸点Tbと、着色剤の融点Tmとは、Tb>Tmを満たすことが好ましい。このような関係を有する場合、着色剤を溶媒に溶解する際に、溶解を促進するために、溶媒と着色剤との混合物を、着色剤の融点Tm以上、かつ溶媒の沸点Tb未満の温度で加熱することができる。よって、有色の接合補助剤の調製が容易である。また、Tb>Tmを満たす場合には、共沸現象が起り易く、基板上に着色剤が残存する確率をより小さくすることができる。着色剤が沸点Tbcを有する場合には、溶媒の沸点Tbと、着色剤の沸点Tbcとは、Tb>Tbcを満たすことが好ましい。
【0057】
接合補助剤の25℃における粘度は、0.1〜10Pa・sであることが好ましく、1〜5Pa・sであることがより好ましい。この程度の粘度であれば、取り扱いが容易であるため、ディスペンサなどを用いて基板に供給しやすい。また、上記粘度の接合補助剤は、基板に供給した際には第1電極に濡れ広がりやすく、かつ基板の所望の位置にとどまりやすい。
【0058】
接合補助剤における着色剤の好ましい含有量は、溶媒や着色剤の種類により異なり、特に限定されないが、0.01〜50質量%が好適であり、1〜10質量%がより好適である。着色剤の量を多くすると、接合補助剤の粘度は高くなる傾向がある。着色剤の量を少なくすると、粘度は低くなるが、色が薄くなる傾向がある。
【0059】
着色剤は、特に限定されないが、有機色素を用いることが好ましく、中でも油溶性染料が好ましい。また、着色剤自身が揮発性を有することが好ましい。このような着色剤としては、例えば、アゾ化合物(特にジスアゾ化合物)、シアニン化合物およびスチリル化合物よりなる群から選択される少なくとも1種を挙げることができる。アゾ化合物としては、ソルベントイエロー56、ソルベントレッド27などが溶媒に溶解しやすく、かつ溶媒とともに揮散しやすい点で好ましい。シアニン化合物としては、アントシアニン、メロシアニン、ローダシアニンなどが好ましい。スチリル化合物としては、スチリルフェノールなどが好ましい。これらは1種を単独で用いてもよく、複数種を混合して用いてもよい。着色剤は、目視で確認できる可視光領域の吸収や発光を呈するものに限らず、赤外領域や紫外領域の吸収や発光を呈するものでもよい。このような領域の吸収や発光は、例えば赤外線センサや紫外線センサなどを用いることにより検出することができる。
【0060】
溶媒は、例えば後の封止工程(図6E)を確実に行う観点から、揮発性溶媒であることが望ましく、中でもプロトン供与性溶媒が好ましい。プロトン供与性溶媒は、金属の表面酸化膜を除去する能力が高く、金属接合の信頼性を確保しやすいからである。プロトン供与性溶媒としては、例えば、アルコールおよび有機酸よりなる群から選択される少なくとも1種を用いることができる。
【0061】
アルコールとしては、分子量が50〜200である多官能アルコールが好ましい。より具体的には、例えば、グリセリン、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、カルビトールおよびセロソルブアルコールよりなる群から選択される少なくとも1種が挙げられる。有機酸としては、蟻酸、酢酸、安息香酸などが挙げられる。また、プロトン供与性を有さないアルカン、アミン化合物などを用いることもできる。アルカンとしては、デカン、テトラデカンなどを用いることができ、アミン化合物としては、ホルムアミド、ジメチルホルムアミドなどを用いることができる。また、多官能アルコールのアルキルエーテルを用いてもよい。具体的には、ジエチレングリコールモノ−n−ブチルエーテル、トリエチレングリコールジメチルエーテルなどを用いることができる。これらは単独で用いてもよく、複数種を混合して用いてもよい。プロトン供与性溶媒の一部として水を用いてもよい。
【0062】
上記のような接合補助剤は、例えば、還元性の溶媒と、溶媒に対する溶解性を有する着色剤とを混合するシンプルな方法により製造することができる。また、溶媒の沸点Tbより低く、かつ着色剤の融点Tm以上の温度で、混合された溶媒と着色剤とを同時に加熱することで、接合補助剤の製造をより迅速に行うことができる。さらに、溶媒と着色剤との混合物には、着色剤の溶解を促進させるために、溶媒と着色剤に対する両親媒性物質(界面活性剤)を含ませてもよい。
【0063】
例えば、接合補助剤として利用できるグリセリン(溶媒、沸点290℃)とソルベントイエロー56(着色剤、融点93〜95℃)との混合物は、グリセリンを調製用容器内に投入し、その中に所定量のソルベントイエロー56を直接投入し、容器内の混合物を攪拌することで得ることができる。攪拌中の混合物は、95〜100℃で加熱してもよい。ソルベントイエロー56が完全に溶解すれば、有色の接合補助剤が得られる。接合補助剤は、必要に応じて、室温まで冷却し、密閉容器に保存すればよい。
【0064】
接合補助剤には、必要に応じて、可塑剤、帯電防止剤、粘度調整剤、表面張力調整剤、消泡剤などの添加剤を含ませてもよい。ただし、フィラー(例えば無機酸化物などのセラミックス)は接合補助剤に含めないことが望ましい。
【0065】
なお、半導体素子供給ユニットは、装置の小型化、ないしは装置筐体の内部空間の有効利用の観点から、第1基板ステージよりも下方に配置された、複数の半導体素子が載置される半導体素子載置部を含むのが好ましい。この場合、半導体素子供給ユニットは、半導体素子載置部から半導体素子をピックアップし、上方に移動させて、超音波ヘッド、加熱ヘッドなどの実装ヘッドに受け渡す上方移動機構を含むのが好ましい。そして、上方移動機構は、一端側に回転中心部があり他端側に半導体保持部がある軸状部、並びに、半導体保持部により半導体素子を保持する軸状部を回転中心部により半回転させる回転機構を含むのが好ましい。
【0066】
上記の構成では、半導体素子載置部には、複数の半導体素子が、例えば第2電極を上に向けて載置される。そして、上方移動機構の回転機構の動作により、半導体素子は上下が反転されて実装ヘッドに受け渡される。実装ヘッドは第2電極を下に向けた状態で半導体素子を受け取る。これにより、第1基板ステージにより第1電極を上に向けて保持されている基板に、容易に半導体素子をフリップチップボンディングすることができる。このように、上方移動機構が回転機構を含むために、上方移動機構により半導体素子をピックアップするときの半導体素子の吸着面と、実装ヘッドが半導体素子を保持するときの半導体素子の吸着面とを反対側にすることができる。よって、半導体素子をスムーズに受け渡すことができる。
【0067】
第1電極に第2電極を超音波接合するときには、基板を、第1基板ステージにより80〜150℃に加熱することが好ましい。基板を80℃以上に加熱することで、超音波接合処理の時間を短縮することができ、電極間の接合界面に酸化物が介在するのを抑制することができる。よって、電極間の接合信頼性を向上させることができる。また、基板を加熱することにより、接合補助剤による還元の効果も促進することができる。さらに、加熱の上限を150℃とすることで、沸点が200℃以上であるような溶媒を接合補助剤に使用した場合に、実装処理中に接合補助剤が直ちに完全に蒸発してしまうのを防止することができる。
【0068】
さらに、第1電極をプラズマ処理するときには、基板を、第2基板ステージにより50〜100℃に加熱することが好ましい。このような温度で基板を加熱することにより、酸化膜を除去する処理の間に、基板を十分に予熱することができ、生産効率の更なる向上を図ることができる。
【0069】
第1電極に第2電極を接合するときには、超音波ヘッドや加熱ヘッドもしくは実装ツールを、200〜300℃に加熱することが好ましい。これにより、接合処理の時間を短縮することができ、電極間の接合信頼性を向上させることができる。さらに、加熱により第2電極が軟化することで、実装に必要な荷重または超音波の強度を低減させることが可能になる。このため、各電極へのダメージを減少させることが可能となるという効果も期待できる。
【0070】
さらに、本発明の製造方法では、通常雰囲気中で、第2電極を第1電極に接合するのが好ましい。N2雰囲気等の低酸素雰囲気の実現は、コスト上昇の要因となるからである。本発明によれば、通常雰囲気中であっても、接合中の電極間における金属酸化物の生成を抑えることが十分に可能である。
【0071】
以下、本発明が適用される実施形態を、図面を参照して詳細に説明する。
(実施形態1)
図1に半導体素子を基板に実装する実装装置の一実施形態を斜視図により示す。図2に、実装装置の図1の矢視側面図を示す。図3に、実装装置の制御系統のブロック図を示す。図4に、基板を移送する移送機構の概略構成を示す。
【0072】
図示例の実装装置10は、基板12に半導体素子14を実装するための装置であり、例えば半導体素子14としての発光素子を基板12にフリップチップ実装するフリップチップボンディング装置として構成されている。実装装置10は、1つの基台2を備えており、その基台2が下記の全てのユニットを支持している。
【0073】
そして、実装装置10は、1つの筐体3により上記の全てのユニットを内包した、独立の装置として構成される。なお、図1においては、実装装置10の内部構造の理解を容易にするために、筐体3は、一部分だけを示している。図中、X軸方向は実装装置10の前後方向を示し、Y軸方向は実装装置10の左右方向を示し、Z軸方向は鉛直上下方向を示す。
【0074】
実装装置10は、基板12の電極12a(第1電極、図6A等参照)に、半導体素子14の電極(バンプ)14a(第2電極)を超音波接合するための実装ユニット16と、基板12に実装される半導体素子14を供給する半導体素子供給ユニット18と、基板12の電極12aをプラズマ処理することで電極12aの酸化膜を除去するプラズマ処理ユニット20と、プラズマ処理された電極12aに、金属の表面酸化膜を除去する作用を有する還元性を有する有色の接合補助剤を供給するディスペンサユニット22と、樹脂封止ユニット70と、制御装置80と、を備える。なお、制御装置80は、図1には示しておらず、実装装置10の制御系統を示す図3にだけ示している。
【0075】
半導体素子供給ユニット18は、水平方向(X−Y軸方向)に移動可能な素子供給ステージ24(素子載置部)と、素子供給ステージ移動機構25と、素子ピックアップユニット26とを備える。半導体素子供給ユニット18は、他に、素子供給ステージカメラ102と、エジェクタ106とを含む。
【0076】
素子供給ステージ24の上面には、複数の半導体素子14を含むウェハ104が、シート状部材105に貼り付けられ、バンプ14aを上に向けた状態で、載置される。素子供給ステージ移動機構25は、例えばXYテーブル装置から構成されている。素子供給ステージカメラ102の光軸は、素子供給ステージ24上で素子ピックアップユニット26により半導体素子14をピックアップすべき位置(素子ピックアップ位置P1という)と交叉している。
【0077】
エジェクタ106は、素子ピックアップ位置P1の下方に配置され、ウェハ104から、素子ピックアップユニット26によりピックアップされる半導体素子14を上に押し出すように動作する。
【0078】
素子ピックアップユニット26は、ピックアップヘッド26aと、ピックアップツール26bと、ピックアップヘッド26aを支持するアーム26cと、ピックアップヘッド移動機構28と、ピックアップヘッド回転機構29とを含む。
【0079】
ピックアップツール26bは軸状部を有し、その軸状部の一端部には、例えば、素子供給ステージ24から1つの半導体素子14をピックアップするための吸着ノズルが開口している。ピックアップツール26bの他端部はピックアップヘッド26aに接続されている。
【0080】
ピックアップヘッド26aは、水平方向に延びる長軸状のアーム26cの一端部に接続されている。アーム26cの他端部は、ピックアップヘッド移動機構28およびピックアップヘッド回転機構29に接続されている。ピックアップヘッド移動機構28は、図示しないY−Z軸方向移動機構を含んでおり、ピックアップヘッド26aをY軸方向およびZ軸方向に所定範囲で移動させる。
【0081】
ピックアップヘッド回転機構29は、アーム26cを、その軸芯を回転中心として180度(半回転)させる機構である。ピックアップツール26bは、軸状部がアーム26cの延びる方向と直交するように、ピックアップヘッド26aに取り付けられている。アーム26cが半回転することで、ピックアップツール26bは、先端部が上を向いた状態と下を向いた状態との間で回転される。これにより、ピックアップツール26bにより保持された半導体素子14は、上下が反転するように回転される。ピックアップツール26bがピックアップする半導体素子14は、素子供給ステージ24のX−Y軸方向の移動により選択され、エジェクタ106によりウェハ104から押し上げられる。
【0082】
実装ユニット16は、実装ヘッド30と、実装ヘッド30に取り付けられて半導体素子14を保持する実装ツール30aと、実装ヘッド30を移動する実装ヘッド移動機構32と、基板12の電極12aに半導体素子14のバンプ14aを接合する間、基板12を保持する実装ステージ(第1基板ステージ)34と、実装ステージ移動機構112(例えばXYテーブル)とを含む。実装ユニット16は、さらに、チップ認識カメラ108と、基板認識カメラ110とを備えている。実装ヘッド移動機構32は、実装ヘッド30をY軸方向に移動するY軸方向移動機構32aと、実装ヘッド30をZ軸方向に移動するZ軸方向移動機構32bとを含む。
【0083】
実装ヘッド30は、公知の超音波発振器、加圧手段、トランスデューサー、あるいは超音波ホーン等を含む超音波ヘッドであってもよく、所定の加熱装置、加圧手段等を含む加熱ヘッドであってもよい。実装ツール30aは、例えば、半導体素子14を吸着して保持する吸着ノズルを含む。チップ認識カメラ108は、その上方の素子認識位置P2にて、実装ツール30aにより保持された半導体素子14の画像を撮像して、その保持姿勢を認識する。その保持姿勢が所定の姿勢からずれている場合には、そのずれは、実装ツール30aの回転等により修正される。
【0084】
基板認識カメラ110は、基板12の電極12aや位置合せマーク等の画像を撮像して、基板12上の半導体素子14の実装位置P4を認識する。その撮像の際には、実装ステージ移動機構112により、実装ステージ(第1基板ステージ)34がX−Y平面内で適宜の位置に移動される。制御装置80は、認識された実装位置P4に基づいて、各電極12aと、対応する各バンプ14aとを接合し得るように位置決めをして、実装ステージ移動機構112により実装ステージ34を移動させる。それと対応して、制御装置80は、チップ認識カメラ108の認識結果に基づいて、実装ヘッド移動機構32により実装ヘッド30を移動させる。
【0085】
本実施形態では、基板認識カメラ110は、基板12に供給された接合補助剤の残存量を検出する検査ユニットとしても機能している。具体的には、基板認識カメラ110が実装位置P4の認識を行う際に基板12を撮像すると、撮像された画像には、基板12に供給された有色の接合補助剤の分布状態の映像も含まれている。従って、制御装置80は、接合補助剤の分布状態(例えば分布面積)から接合補助剤の残存量を検出することが可能である。また、接合補助剤が有色であることから、接合補助剤の分布状態の映像が鮮明に把握されるため、基板認識カメラ110の性能によらず、接合補助剤の残存量を比較的正確に算出することが可能である。
【0086】
実装ヘッド移動機構32のY軸方向移動機構32aは、Y軸方向に延びる2本のY軸レール32cと、リニアモータの可動子であるY軸スライダ32dとを含む。Z軸方向移動機構32bは、Y軸スライダ32dに取り付けられた昇降機構32eと、昇降機構32eにより上下される実装ヘッド支持プレート32fとを含む。実装ヘッド30は、実装ヘッド支持プレート32fの下端部に取り付けられている。
【0087】
制御装置80は、素子ピックアップユニット26から実装ヘッド30への半導体素子14の受け渡し動作が所定の受け渡し位置P3で行われ、チップ認識カメラ108による半導体素子14の撮像動作が素子認識位置P2で行われるように、実装ヘッド移動機構32により実装ヘッド30の位置決めをする。実装ステージ34は、加熱手段であるヒータ34aを内蔵しており、これにより基板12を所定の温度(例えば80〜150℃の温度)まで加熱する。
【0088】
プラズマ処理ユニット20は、基板12の電極12aの酸化膜を除去するために大気圧プラズマを生成するプラズマヘッド36と、電極12aをプラズマ処理する間、基板12を保持するプラズマ処理ステージ38(第2基板ステージ)と、プラズマヘッド移動機構40と、基板認識カメラ114と、プラズマ処理ステージ移動機構39(図4参照)とを備えている。プラズマヘッド36は、高圧エアー等を使用して大気圧プラズマを発生させる公知の大気圧プラズマ発生機構を含む。
【0089】
プラズマヘッド移動機構40は、X軸方向に延びる2本のX軸レール40aと、リニアモータの可動子であるX軸スライダ40bとを含む。プラズマヘッド36は、X軸スライダ40bに直接的に取り付けられている。
【0090】
ディスペンサユニット22は、基板12の電極12aに有色の接合補助剤を塗布して供給する接合補助剤供給ヘッド(ディスペンサ)42と、接合補助剤供給ヘッド移動機構44とを備えている。接合補助剤供給ヘッド移動機構44は、Y軸方向移動機構44aおよびZ軸方向移動機構44bを含む。Y軸方向移動機構44aは、上述したY軸レール32cと、リニアモータの可動子であるY軸スライダ44cとを含む。Z軸方向移動機構44bは、Y軸スライダ44cに取り付けられた昇降機構44dと、昇降機構44dにより上下される接合補助剤供給ヘッド支持プレート44eとを含む。接合補助剤供給ヘッド42は、接合補助剤供給ヘッド支持プレート44eの下端部に取り付けられている。接合補助剤供給ヘッド(ディスペンサ)42からは、必要に応じて、基板認識カメラ110を利用して、接合補助剤供給位置の位置決め(基板認識)を行った後、基板12の電極12aに有色の接合補助剤を塗布して供給する。
【0091】
樹脂封止ユニット70は、封止用樹脂を供給する樹脂供給ヘッド(ディスペンサ)72と、樹脂供給ヘッド移動機構74とを備えている。なお、樹脂供給ヘッド72は接合補助剤供給ヘッド42とともに接合補助剤供給ヘッド支持プレート44eに取り付けられている。このため、樹脂供給ヘッド移動機構74は接合補助剤供給ヘッド移動機構44と共通のY軸方向移動機構44aおよびZ軸方向移動機構44bを含む。
【0092】
図3に、実装装置の制御系統をブロック図により示す。図3に示すように、実装装置10に備えられる制御装置80は、素子供給ステージ移動機構25の作動制御を行って、素子供給ステージ24を基台2に対してX軸方向およびY軸方向(水平方向)に移動させる。制御装置80は、実装ステージ移動機構112の作動制御を行って、実装ステージ34を基台2に対して水平方向に移動させる。制御装置80は、プラズマ処理ステージ移動機構39の作動制御を行って、プラズマ処理ステージ38を基台2に対して水平方向に移動させる。制御装置80は、プラズマヘッド移動機構40の作動制御を行って、プラズマヘッド36をX軸方向に移動させる。
【0093】
制御装置80は、ピックアップヘッド移動機構28およびピックアップヘッド回転機構29の作動制御も行い、ピックアップヘッド26aをY軸方向およびZ軸方向に移動させるとともに、X軸回りに回転させる。制御装置80は、図示しないピックアップヘッド吸着機構の作動制御を行って、ピックアップツール26bにより半導体素子14を吸着させる。
【0094】
制御装置80は、実装ヘッド移動機構32のY軸方向移動機構32aおよびZ軸方向移動機構32bの作動制御も行い、実装ヘッド30をY軸方向およびZ軸方向に移動させる。制御装置80は、図示しない実装ヘッド吸着機構の作動制御を行って、実装ツール30aにより半導体素子14を吸着させる。
【0095】
制御装置80は、接合補助剤供給ヘッド(ディスペンサ)移動機構44のY軸方向移動機構44aおよびZ軸方向移動機構44bの作動制御も行い、接合補助剤供給ヘッド42および樹脂供給ヘッド72をY軸方向およびZ軸方向に移動させる。制御装置80は、図示しないディスペンサ機構の作動制御を行って、接合補助剤供給ヘッド42により接合補助剤の供給を行わせるとともに、樹脂供給ヘッド72により樹脂の供給を行わせる。
【0096】
制御装置80は、さらに、エジェクタ106を駆動し、素子ピックアップ位置P1にある半導体素子14を上方に突き上げさせる。
【0097】
制御装置80は、さらに、素子供給ステージカメラ102の作動制御を行って、素子ピックアップ位置P1を含む所定領域の撮像動作を行わせる。制御装置80は、基板認識カメラ110の作動制御を行って、実装位置P4を含む所定領域の撮像動作を行わせる。更に、制御装置80は、必要なタイミングで撮像された画像を分析して、接合補助剤の残存量をその分布状態から算出し、残存量が不足する場合には、接合補助剤供給ヘッド42により接合補助剤の基板12への再供給を行わせる。さらに、制御装置80は、素子認識カメラ108の作動制御を行って、チップ認識位置P2を含む所定領域の撮像動作を行わせる。上記の各撮像動作により得られた画像は制御装置80に入力される。
【0098】
以下、図5のフローチャートならびに図6A図6Eの説明図を参照して、図1の実装装置10により半導体素子14を基板12に実装する手順を説明する。
【0099】
図6Aに示すように、基板12の上面には複数の配線11が形成されており、配線11の端部が電極12a(第1電極)として形成されている。図6C図6Eに示すように、半導体素子14の一例である発光素子(LEDチップ)は、それぞれの電極に接続されたバンプ14a(第2電極)を備えている。ここで、基板12の配線11は、例えば銅(Cu)から形成され、電極12aは、同様にCuから形成される。半導体素子14のバンプ14aは、例えば金(Au)から形成される。図6Aに示すように、基板12の電極12aは、酸化膜13により覆われている。なお、図6Aにおいては、視認性の観点から、酸化膜13の厚みのスケールを大きくしている。
【0100】
(酸化膜除去処理)
基板12に半導体素子14を実装する前の準備工程として、プラズマ処理ステージ38で、基板12の電極12aをプラズマ処理して、電極12aから酸化膜13を除去する(S1)。
【0101】
具体的には、基板12を、電極12aを上に向けて、プラズマ処理ステージ38(第2基板ステージ)により保持した状態で、プラズマヘッド36により大気圧プラズマを発生させる。プラズマヘッド36により発生された大気圧プラズマは、プラズマヘッド36の下面に設けたプラズマ照射部を介して基板12の各電極12aに照射される。これにより、電極12aおよびその近傍の配線11の酸化膜13が除去される。このとき、プラズマ処理ステージ38の内部に備えられたヒータ38a(図4参照)により、基板12を、例えば50〜100℃の温度となるまで加熱する。また、このとき同時に、酸化膜除去処理された他の基板12に対して、図6C図6Dにより示すように、半導体素子14の超音波接合処理が実行される。
【0102】
プラズマ処理が終了すると、図4に示すように、プラズマ処理ステージ38に備えられた基板昇降機構37により基板12の左右の端部を支持し、基板12を上昇させる。これにより、基板12がプラズマ処理ステージ38から持ち上げられ、その状態で、移送機構35が備える移送ツメ35aを、基板12のX軸方向における前側の端部に接触させる。そして、移送ツメ35aにより基板12をX軸方向における後側に押圧することにより、基板12が実装ステージ34(第1基板ステージ)の方に押し出されて移送される。なお、移送ツメ35aは、基板12を移送するとき以外は異なる場所に退避している。
【0103】
(接合補助剤供給工程)
移送機構35により基板12がプラズマ処理ステージ38から実装ステージ34へ移送されると、実装ステージ34により基板12が保持される。その状態で、基板認識カメラ110による認識結果に基づいて、実装ステージ移動機構112により実装ステージ34を移動させることで、基板12の位置決めを行う。その後、図6Bに示すように、基板12の配線11および電極12aに、接合補助剤供給ヘッド42により接合補助剤7を供給する(S2)。
【0104】
ここで、接合補助剤は、グリセリン100質量部に対してソルベントイエロー56を5質量部溶解した液状またはペースト状の色素溶液である。接合補助剤を、超音波接合処理の前に電極12aに供給することで、酸化膜除去処理で未処理の酸化膜13があれば、その酸化膜13が除去される。さらに、電極12aとバンプ14aとの接触部の周囲が接合補助剤7により覆われることで、両電極を超音波接合する際に生成される金属酸化物(銅の酸化物)を除去することができ、両電極の接合界面に金属酸化物が介在されるのを防止することができる。接合補助剤は、超音波接合が行われた後は、後述する接合補助剤除去処理により、接合界面およびその近傍から蒸発して除去される。
【0105】
(半導体素子供給工程)
素子供給ステージ24から1個の半導体素子14を、素子ピックアップユニット26のピックアップツール26bにより吸着して、保持する。その状態で、ピックアップヘッド移動機構28によりピックアップヘッド26aを移動させるとともに、ピックアップヘッド回転機構29によりアーム26cを半回転(180°回転)させる。これにより、半導体素子14の上下が反転されて、半導体素子14が受け渡し位置P3まで移動され、実装ツール30aに受け渡される。このようにして、半導体素子14が実装ツール30aにより保持される(S3)。
【0106】
(基板認識/接合補助剤残存量検出処理)
実装ツール30aは、半導体素子14を保持した状態で、各バンプ14aが各電極12aと対応するように、半導体素子14を実装位置P4の上方に移動させる。その状態で、基板認識カメラ110による認識結果に基づいて、実装ステージ移動機構112により実装ステージ34を移動させることで、基板12の位置決めを行う。同時に、基板認識カメラ110により撮像された画像内の接合補助剤の分布状態(例えば分布面積)から接合補助剤の残存量が検出される(S4)。
【0107】
制御装置80が、接合補助剤の残存量が十分であると判断すると、次の超音波接合処理に移行する。一方、制御装置80が、接合補助剤の残存量が不足していると判断した場合には、接合補助剤供給ヘッド42による接合補助剤7の供給が再度行われる(S5)。その後、次の超音波接合処理に移行する。
【0108】
(超音波接合処理)
制御装置80は、接合補助剤7の残存量が確認された後、実装ヘッド30を下降させ、各バンプ14aを、対応する各電極12aに押し付けようにして接触させる。このとき、各電極12aおよびその近傍の配線11上には、接合補助剤7が供給されているために、バンプ14aと電極12aとの接触面の周囲は、接合補助剤7により覆われた状態となっている(図6C参照)。
【0109】
図6Cの状態で、実装ヘッド30において発生された超音波振動を、実装ツール30aを通して半導体素子14に付与する。これにより、バンプ14aと電極12aとの接触面に摩擦が発生して、バンプ14aと電極12aとが金属接合(すなわち、超音波接合)される(S6)。その後、実装ヘッド30における超音波振動の発生を停止し、実装ツール30aによる半導体素子14の保持を解除する。その後、実装ヘッド30を上昇させて、実装ツール30aを半導体素子14から離脱させる。
【0110】
基板12に対する全ての半導体素子14の実装が完了すると、次の接合補助剤除去処理に移行する(S7のYes)。一方、基板12に対する全ての半導体素子14の実装が完了していない場合には(S7のNo)、ステップS2に戻り、基板12の次の実装位置に接合補助剤の供給が行われ、ステップS3以降が繰り返される。
【0111】
(接合補助剤除去処理)
次に、基板12と半導体素子14との間に残存している接合補助剤7の除去を行う(S8)。具体的には、ヒータ34aにより実装ステージ34を介して基板12を加熱することにより、接合補助剤7の蒸発を促進させて、接合補助剤7の除去を行う。あるいは、図示しないファンにより、熱風を吹き付けることで、接合補助剤7の蒸発を促進させてもよい。以上の処理により、図6Dに示すように、基板12と半導体素子14との間に残存していた接合補助剤7が除去される。
【0112】
なお、接合補助剤除去処理は、超音波接合処理後に残存する接合補助剤を、後述する樹脂封止工程に先立って除去することが目的であるため、残存する接合補助剤の量に応じて接合補助剤除去処理の実施の必要性を検討し、場合によっては接合補助剤除去処理を省略しても良い。
【0113】
(樹脂封止処理)
次に、基板12と半導体素子14との接合部分などを樹脂によって封止して、半導体素子実装基板1を完成させる(S9)。具体的には、電極12aとバンプ14aとの接合部を含めて、配線11、電極12a、およびバンプ14aの表面を覆うように樹脂供給ヘッド72により樹脂21を塗布する。これにより、図6Eに示すように、半導体素子14と基板12との間を樹脂21により封止する。半導体素子14が発光素子であれば、樹脂21には、光透過性を有する樹脂を用いるのが好ましい。
【0114】
上述のように、超音波接合では、バンプ14aが電極12aに押し付けられた状態で、半導体素子14に超音波振動が付与される。このため、摩擦熱により、バンプ14aと電極12aとの接触部は局所的に高温になる。これにより、例えば電極12aがCuを含んでいるような場合に電極12aのバンプ14aとの接触面が酸化しても、還元性を有する接合補助剤により摩擦面の周囲が覆われているので、金属酸化物の生成を抑制することができ、接合界面に金属酸化物が混入するのを防止することができる。これにより、十分な接合強度を確保することができる。このとき、接合補助剤7による還元反応は、上記の摩擦熱により促進される。したがって、より効果的に、超音波接合中の金属酸化物の生成を抑制することができる。また、酸化膜除去処理で、処理量の制御が容易なプラズマ処理により酸化被膜を除去することから、酸化被膜の除去が不十分であることに起因して、接合の信頼性が低下するのを防止することもできる。
【0115】
なお、基板12に複数の半導体素子14を実装する場合には、上記の接合補助剤供給処理(S2)において、複数の半導体素子14に対応する電極12aが覆われるように、基板12に接合補助剤7を供給してもよい。ただし、上記の基板認識/接合補助剤残存量検出処理(S4)では、半導体素子を実装する際に毎回、接合補助剤の残存量を確認すると、実装プロセスの効率を向上させることが困難となる場合がある。
【0116】
そこで、図7のフローチャートに示すように、複数の半導体素子14を幾つかのグループに区分し、グループ毎に、半導体素子14の供給(S3)と、基板12と半導体素子14との位置合わせのための基板認識(S4a)と、半導体素子14の実装(S5a)とを複数回繰り返し、1つのグループ内の半導体素子14の実装が完了する毎に、接合補助剤の残存量を検出する(S6a)。例えば、基板12に200個の半導体素子14を実装する場合には、100個の半導体素子14の実装を完了する毎に、残りの電極12aを覆う接合補助剤の残存量を検出する。
【0117】
直近に実装が完了した半導体素子14の近傍における接合補助剤の残存量が十分である場合には、そのまま次のグループの実装に移行する。一方、直近に実装が完了した半導体素子14の近傍における接合補助剤の残存量が不十分である場合には、残りの半導体素子14を実装する際に、接合補助剤が不足するおそれがあると考えられる。従って、実装が完了していない残りの電極12aに対し、接合補助剤供給ヘッド42による接合補助剤7の再供給が行われる(S7a)。その後、次のグループの半導体素子14の供給(S3)と、基板12と半導体素子14との位置合わせのための基板認識(S4a)と、半導体素子14の実装(S5a)とが、グループ内の全ての半導体素子14の実装を完了するまで繰り返される。そして、そのグループの半導体素子14の実装を完了した時点で、接合補助剤の残存量が検出される。
【0118】
以上のように、本発明によれば、有色の接合補助剤を用いていることから、実装装置が具備する認識装置(検査ユニット)により、基板上における接合補助剤の存在量を容易に把握できる。よって、基板への接合補助剤の供給量を安定化させることが容易となり、さらに、接合補助剤が不足している状態で半導体素子の実装が行われるのを防止することができる。また、目視で接合補助剤の存在を確認できることから、予期せず揮散した接合補助剤が実装装置内に付着した場合でも、実装装置のメンテナンスが容易となるという付随的効果も得られる。
【0119】
本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
【産業上の利用可能性】
【0120】
本発明は、Au−Cu接合やCu−Cu接合を行う半導体素子の実装、特にフリップチップ実装の分野において有用である。
【符号の説明】
【0121】
7:接合補助剤、10:実装装置、12:基板、12a:第1電極、14:半導体素子、14a:バンプ、16:実装ユニット、18:半導体素子供給ユニット、20:プラズマ処理ユニット、22:接合補助剤供給ユニット、30:実装ヘッド、35:移送機構、36:プラズマヘッド、42:接合補助剤供給ヘッド
図1
図2
図3
図4
図5
図6A
図6B
図6C
図6D
図6E
図7